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Abstract

The paper deals with the oscillatory and asymptotic behaviour of
solutions of second order neutral difference equations with variable co-
efficients and some generalizations of such equations.
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1. Introduction

This paper deals with the oscillatory and asymptotic behaviour of solutions
of the second order neutral difference equation of the form

(1) A(a(n)A(2(n) + pz(n — no))) + g(n)f(z(n — mo)) = 0,

where {a(n)} and {g(n)} are positive sequences and A is the forward differ-
ence operator defined by Ay(n) = y(n + 1) — y(n). p is a constant and the
function f is considered subject to the condition

(0) f is nondecreasing and uf(u) > 0 for u # 0.
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By a solution of (1) we mean a real sequence {y(n)} satisfying (1).
Throughout this paper, we usually refer to a solution {y(n)} simply as a
solution y and consider only nontrivial solutions.

A real sequence {r(n)} eventually has some property if there exists
N > 0 such that 7(n) has this property for n = N,N + 1,....

A nontrivial solution y of (1) is said to be oscillatory if y(n) changes its
sing infinitely many times. QOtherwise, y is said to be nonoscillatory an
equation is called oscillatory if all its solutions are oscillatory. Otherwise,
it is called nonoscillatory.

Similarly, as in the theory of differential equations, in a neutral difference
equation the highest difference of the unknown function appéars with the
argument n (the present state of the system) and with one or more retarded
arguments (the past state of the system). Investigations of such systems,
beside their theoretical interest, have some importance for application (see

[1] and [2}).

There is much current interest in the oscillation theory of differential
equations of the neutral type see ([3],[4],[5] and [6]). As far as the author
is aware, not to much has been done on the theory of difference equations.
This, and the fact that the results for adequate difference equations could
be quite different, are motivations for this paper.

2. Preliminaries

In what follows we shall use the following lemmas which give useful informa-
tion about the bounds for nonoscillatory solutions of the following equation:

(2) A(a(n)Az(n)) + q(n)f(2(n)) =0, n=0,1,..,..

Lemma 1. ([7]) Consider (2) subject to conditions (0),
(C1)g(n) 2 0 for n = 0,1,..., and g(n) is not eventually zero,
a(n) > 0 and

(Cz) E?:O 7.117,:)' < 0o.

Then, every nonoscillatory solution y of (2) satisfies eventually the fol-
lowing estimate
Ap(n) <|y(n) |< B
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for some positive constants A and B (depending on y ), where

=1
o) = 2 3y

i=n

Lemma 2. ([8]) Consider (2) subject to conditions(0),(C1),a(n) > 0 and
(Cs) XaZo ql,'.)' =00

Then, every nonoscillatory solution y of (2) satisfies eventually the fol-
lowing estimate

C <| y(n)|< DR(n)
for some positive constants C and D (depending on y), where
R(n) = i 1
=0 a(t) .

Near this apriori estimate we next need

Lemma 3. Suppose that z(n) > 0 eventually and define

k
(3) z(n) =) piz(n—m;), p; > 0.

=0

Ifpo > Y% . pi = P, then z(n) — C > 0 if and only if z(n) — F-%'E’n — 00.

Proof. Suppose that z(n) — C. Let lim,_,oz(n) = limy_00 Z(n¢) = g_{-&
and

C-¢q

P+po

Jim z(n) = lim z(n,) =

We shall prove that ¢; = ¢ = 0.

a) suppose that ¢, > ¢ > 0 and ¢; > 0. Taking n = n; + mg, (3) implies
that

_C+aq C+5
_P+Po +Z

where —gs — € < §; < q1 + € eventually for every ¢ > 0. The above equation
implies

|—l

k k
Poqi = — ) _pibi < Y pilaz + ¢).

=1 =1
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Choosing € < zt3'-"?£q1 we get q; < g2, a contradiction.

b) Suppose that g2 > ¢1 > 0 and ¢z > 0. Taking n = n, +my, (3) implies
that

_ C - qz C+ 6
" P+ Po Z P+po
where —q2 — € < §; < q1 + € eventually for every € > 0. The above equation

implies

Pogz = Zp.é < Zp.(ql +¢).

i=1
Choosing ¢ < P—"fﬁqg we get q2 < 1, & contradiction.

As the convergence of z(n) implies the convergence of z(n — m;) to the
same limit, the proof of the second part of the theorem is obvious.
Remark 1. If pp = P, z(n) = 2 + (—1)" for appropriate m; could be a
counter-example.

3. Oscillations and asymptotic behaviour

Consider the second order neutral difference equation

A(a(r)A(z(n) + pz(n — no))) + g(n) f(2(n — mo)) = 0, n = 0,1, ...
where a(n),q(n) > 0; 0<p < 1: ng,mp € N and f satisfies (0).

Theorem 1. If
o0
Y an)=oco and Ty, zhy Tiek, 2(k) = 0o
n=kg

then every solution z of (1) is either oscillatory or else z(n) — 0 as n — co.

Proof. Let x be a nonoscillatiry solution of (1). Suppose, without loss of
generality, that z(n) > 0 eventually. This implies that z(n — ng) > 0 and
z(n — mo) > 0 eventually. Set

(4) z(n) = z(n) + pz(n — ng),
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then z(n) > z(n) > 0 eventually.
According to (1) we have A(a(n)Az(n)) < 0 eventually. Thus, either
Az(n) > 0 or Az(n) < 0 eventually.

a) Assume that Az(n) > 0 eventually. It follows that Az(n — mg) > 0
eventually and by (4)
z(n — mo) = z(n — mg) — pz(n — g — M) >

2 z(n — mo) - pz(n — no — mo) 2 z(n — mg) — p2(n — my),

which implies
z(n — mo) 2 (1 — p)z(n — mo) = p12(n — mo).

Define a positive sequence w such that

_ a(n)Az(n)
)= Hoan = mo))’
then ‘
Aw(n) = A(a(n)Az(n)) Af(plz(n - my))a(n + 1)Az(n + 1) < —q(n).

fprz(n —mo)) ~ f(mz(n — mo))f(prz(n — mo +1)) =

Summing the above inequality from N to n we get

N
w(n) < w(N) - ) q(k) = —o0, n — oo,

k=n

which is a contradiction.

b) Assume that Az(n) < 0 eventually. Then lim,_, z(n) ¢ and

suppose that ¢ > 0. According to Lemma 3 lim,_,o, z(n — mg) = ﬁ‘p which

implies that z(n — mg) > m%ﬁ eventually. Thus

Aa(m)A2(m) < ~f gy

eventually. Summing the above inequality from N to n we get

a(mAs(n) € aMA) - f55—) 3 )
k=N
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Using the assumptions of the theorem it yields to

1
a(m)Az(n) < 3 f(55 + )) Z g(k)

eventually. Dividing by a(n) and summing from N to n we get

() < 20~ 1) 2 oy 2 ) =

k=N

while n — oo, and this is a contradiction to the fact that 2(n) — ¢ > 0.
Thus ¢ = 0 and the proof is complete.

The next theorem guarantees that all the solutions of (1) are oscillatory.

Theorem 2. If Y32, q(n) = oo and Y32, 7('77 = 00, then equation (1)
is oscillatory. :

Proof. Let z be a nonoscillatory solution of (1) and let z(n) be of a positive
sign eventually. As in the proof of Theorem 1, we define z(n). The second
condition of the theorem, as it was shown in [8], implies that Az(n) > 0
eventually . As the proof follows the same line as in case a) of Theorem 1,
it will be omitted.

Remark 2. Accorrding to Lemma 3, we can generalize the assertions of
Theorem 1 and the Theorem 2 to the case

k
(5)A(a(n)A(z(n) + Ep,'z(n - m;)))+ g¢(n)f(z(n —mp)) =0, n=0,1,

1=1
while Y%, p; < 1.

A natural question is what happens when $"° 2 a(n) converges. The an-
swer gives the following

Theorem 3. Consider equation (1) where a(n),q(n) > 0; 0 < p < oo,
P #1; f satisfies (0);

o0

1
> am) <% and Y024, tay Lh=ko 4(K) = 00

ﬂ,=k0

Then, every solution z of (1) is either oscillatory or else z(n) — 0 since
n — 00.
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Proof. As in the proof of Theorem 1 we introduce z(n) and differentiate
two cases:

a) Assume that Az(n) > 0 eventually. According to Lemma 1 we have

that lim,—.. 2(n) = ¢ > 0, which by Lemma 3 gives that lim,_., z(n) = %

and the estimate z(n — mg) > -_'-g?fr':‘s’l eventually. Conditions 3 22, ;(1;; <
oo and 3000 RIZjE:l;:k g(k) = oo imply that 3°02 . ¢(n) = 0o and we can
proceed as in the proof of case a) of Theorem 1.

b) Assume that Az(n) < 0 eventually. According to the observations

given in case a) the proof follows the same line as in the proof of case b) of
Theorem 1.

Remark 3. In the light of Lemma 3 we are able to generalize the
assertions of Theorem 3 on the difference equation (5) if 0 < p;, 215:1 pi <1
or

for some fixed j.
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REZIME

OSCILACHE I ASIMPTOTSKO PONASANJE NEKIH
NEUTRALNIH DIFERENCNIH JEDNACINA DRUGOG REDA

U radu se posmatra neutralna diferencna jednacina drugog reda
A(a(n)A(z(n) + pz(n - nO))) + ‘I(n)f(z(n - mO)) = Ov n= Oa 17 e

a(n),q(n) > 0; p 2 0 a f je neopadajuéa funkcija takva da je uf(u) > 0 za

u #0.
Daju se dovoljni uslovi da bi sva resenja bila oscilatorna ili da bi jos even-
tualno tezila nuli.
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