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Abstract

Let F and G be continuous, commuting mappings of a complete
metric space (X, d) into B(X) satisfying the inequality

§(FPz,GPy) < max{cé(F z,G’y), %6(F'2,F'lz), %6(G‘y,G"y) :
0<r,s<p; 0<r, s <p}

for all z,y in X, where 0 € ¢ < 1 and p is a fixed positive integer. It is
proved that if F and G also map B(X) into itself, then F and G have
a unique common fixed point z.
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In the following, as in [1], we let (X,d) be a complete metric space And
let B(X) be the set of all nonempty, bounded subsets of X. The function
6(A, B) with A and B in B(X) is defined by

6(A, B) = sup{d(a,b): a € A, b € B}.
If A consists of a single point a we write

5(A, B) = 6(a, B).
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If B also consist of a single point b we write
§(A, B) = é(a,b) = d(a,b).
It follows immediately that
4(A, B)
6(A,B)
for all A, B and C in B(X).

If now {Ap:n=1,2..}isa sequénce of sets in B(X), we say that it
converges to the subset A of X if

§(B,A) 2 0,
§(4,C) +4(C, B)

A

(i) each point a in A is the limit of some convergent sequence {a, € A, :
n=12..}

(ii) for arbitrary £ > 0, there exists an integer N such that A, C A, for
n > N, where A, is the union of all open spheres with centers in A
and radius .

The set A is then said to be the limit of the sequence {A,}.

The following lemma was proved in [1).

Lemma 1. If {A,} and {B,} are séquences of bounded subsets of a com-
plete metric space (X,d) which converge to the bounded subsets A eand B
respectively, then the sequence {6(An, B,)} converges to §( A, B).

Now let F be a mapping of a complete metric space (X, d) into B(X).
We say that the mapping F is continuous at a point z in X if whenever
{zn} is a sequence of points in X converging to z, the sequence {Fz,} in
B(X) converges to Fz in B(X). We say that F is a continuous mapping of
X into B(X) if F is continuous at each point z in X. We say that a point z
in X is a fixed point of F if z is in F2z. If A is any nonempty subsets of X
we define the set FA by

FA= | Fa.
a€A :
If G is a second mappmgs of X into B(X) we say that F and G commute
if FGx = GFz for all z in X. It then follows that FGA = GFA for all
nonempty subsets A of X.

We now prove the following theorem.



Common fixed points of commuting set-valued mappings 149

Theorem 1. Let F and G be continuous, commuting mappings of a com-
plete metric space (X,d) inlo B(X) satisfying the inequality

(1) 6(FPz,GPy) < max{cs(F'z,G"y), %J(F'::,F"z), %5((;',,, G"y):
0<r,s<p; 0<7, s <p}

for all z,y in X where 0 < ¢ < 1 and p is a fized posilive integer. If F and
G also map B(X) into itself, then F and G have a unique common fized
point z. Further Fz = Gz = {z}.

Proof. We will first of all assume, without loss of generality, that ¢ > -%-
This will mean that (1 — ¢)/c < 1.

Since we are supposing that F and G map B(X) into itself we note that
both sides of inequality (1) are finite. Further, if A and B are any sets in
B(X) then it follows that

9) 6(FPA,GPB) < max{c6(FTA,G*B), L6(F" A, F"' A),
3
%J(G’B,G"’B) :0<rs<p;0<7, s <p},

both sides of the inequality again being finite.

Now let 2z be an arbitrary point in X and put X,,, = F™G"z for m,n =
0,1,2,..., where Xoo = x. Let us suppose that the set of rcal numbers
{K,:n=0,1,2,...} is unbounded, where

Ky = max{§(Xn—-ii, Xpp): 0<i<n}.
Then there exists an integer n > 2p such that
(3) (1-¢)Xpn>c.max{ 7, 8(Xps, Xps'), 6(5p, Xsrp): 0< 1,8,8 < p}

and
4) K, >max{K, : 0<r<n}.

Inequality (3) implies that
(5) K, > max{§(Xps, Xpsr), 6(Xsp, Xgrp) : 0< 5,8 < p})

since (1 —¢)/e < 1.
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Inequalities (3) and (4) imply that

66(Xr—|'.|'1 Xps) S CJ(Xr—i,i)pr) + ca(pr’ Xps)
< cko+(1-0K,
= K,

for 0 < i< r <nand0< s<p. Similarly
cJ(X,_.',;,X,p) < K,
for0<i<r<nand 0<s<pandso

(6) Kpn > c.max{6(X,_ii, Xps),8(Xr—ii, Xap):0<i<r<n;0<s<p}.
In the case when 0 < i < p, inequality (4) implies that
1 1 1 |
56(Xr-.',i,Xr'-;,.') < -2—5(Xr-i,i,pr)+ -2-5(pr,Xr'—.',.') < K,
forn-p<r<nandn-p<r <nandso

1
(7) K, > E.maX{J(X,_.'_;,X,:_,',,') :0< i< p;
n-p<r<n;n—-p<r<n}

Similarly, when p < i < n, inequality (4) implies that
1 , .

- (8) K, > E.max{J(Xn_.-,,X,,_.-,,.:) :p<isnm;
i-p<r<ii-p<r<i).

On using inequality (2) it follows that

o1 1
8(Xn—iir Xpp) < max{ed(Xr—ii, Xps), 58(Xr—iis Xr1—ii) 56(Xpas Xpwt) :
n-p<r<nn—-p<r'<n0<s<p;0<s<p}
for 0 < i < p. Inequalities (5), (6) and (7) now imply that

(9) max{§(Xn—ii, Xpp) : 0< i< p} < K.
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Again on using inequality (2) it follows that

6(Xn—iis Xpp) = 6(XPP’XH—",") <

< maﬂx{c's(Xsann—i,r), 6(Xsp7Xs'p)a = ( n—zr,Xn—i,r') .
i-p<r<ii-p<r<i OSSSP; 0< s <p}
for p < i < n. Inequalities (5), (6) and (8) now imply that

(10) max{§(Xn—i;i,Xpp) : i<p<n}< K,

and inequalities (9) and (10) together imply that K, < K,, a contradiction.
Thus

sup{Kn: n=0,1,2,...} = sup{8(Xpn-i;i, Xpp) :0< i< 52 =0,1,2,..} =

= sup{6(Xmn, Xpp) : myn =0,1,2,...} <
and so
sup{é(Xmn,Xnt) : m,n,h,k=0,1,2,...} <
< sup{6(Xmn,Xpp) + 6(Xpp, Xnk) : m,n,h,k=0,1,2,...} =
=M < co.
We now note that since we are assuming that ¢ > 3 the following in-
equality holds
(11) §(FPA, G”B) < c.max{6(FTA,G*B), §(F"A,F" A),
§(G°B,G*B): 0<r, ', s, 8 < p}

for all A,B in B(X). For arbitrary ¢ > 0, choose an integer N such that
¢NM < €. Then if m,n,h,k > Np we have with repeated use of inequality

(1)
6(Xn‘m,xkh) < c.max{8(Xrn, Xs;), ‘6(Xm,xf:n), 8(Xnjs Xngo) -
m-p<rr'<m;k-p<j j <k}
C. max{&(X,,, Xij)v 6(X1'39Xr'8')f 6(Xijaxi'j') :
m—-p<r,r’<m;n-p<s, s <n;
h—p<i, !<h k-p<j j <k}

IA
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< cz.ma.x{cS(X,-.,Xij), 6(XTI)XT'I')$ 6(X"J"X"'J") :
m-2p<r,r<m;yn-2p<s, s <n;
h—2p<i,i'<h;k-2p<j, j <k}

< Nomax{6(Xrs, Xi;), 6(Xrey Xpra)y 6(Xij, Xarjr) :
m—-—Np<r,f"<m;n—-—Np<s, s <n;
h—Np<i, i <h k—-Np<j j'<k}

< MM<e.

Choosing a point z, in X, for n = 1,2,... it follows that

d(zm, zn) < 6(Xmm1 er) <é¢

for m,n > Np. The sequence {z,} is therefore a Cauchy sequence in the
complete metric space X and so has a limit z in X. Further

8z, Fz,) < d(z,zp)+ 6(zpm, Fz,)
S d(Z, zm) + 6(Xmm,Xn+1,n)

since Z,, is in Xy, and Fz, is in X;41,,. Thus
6(z,Fz,) < d(z,2,) + ¢
for m,n 4+ 1 > Np. Letting m tend to infinity it follows that
(2, Fzn) <€

for n + 1 > Np. Using the continuity of F and the lemma, it follows on
letting n tend to infinity that

§z,Fz)<e.

Since ¢ is arbitrary, §(z, Fz) = 0 and so we must have Fz = {z}.

We can prove similarly that there exists a point 2’ in X such that Gz’ =
{2'}. Then

d(z,7') = 6(FPz,GP%)
< e.max{6(F z,G°7), §(F z,F" z), §(G°,G* ') :
O S r’r’,sis’ S p}

cd(z,2)
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and so z = z'. Then point 2 is therefore a common fixed point of F and G.

Now suppose that F' and G have a second common fixed point w so
that F"G*’w is contained in FPGPw for r,s = 0,1,2,...,p. Then on using
inequlity (11) we have

§(FPGPw, FPGPw) = §(FPG?w,GP FPw) <
< c. max{6(F"GPw,G* FPw), §( F'GPw, F" G?w), §(G* FPw,G* FPw) :
0<rr,sd<p}=
= cd(FPGPw, FPGPw)

and so §( FPGPw, FPGPw) = 0. It follows that the set FPGPw consists of a
single point which must be w. This means that Fw = Gw = {w}. Thus

_ d(z,w) = §(F?2,Gw) <
< c.max{6(F",G*w), §(F"z,F"'z), §(G*w,G* w): 0 < r,r',8,8' < p} =
= ed(z,w)

and it follows that the common fixed point z of F and G is unique. This
completes the proof of the theorem.

Corollary 1. Let S and T be continuous, commuting mappings of a com-
plete metric space (X,d) into itself satisfying the inequality -

(12)  d(5%,T%y) < max{cd(S"z,T"y), -;—d(S’a:,S"'a:),
%d(T’y,T"y) :0<rr,s,¢ < p}
for all z,y in X, where 0 < ¢ < 1 and p is a fizred positive integer. Then

S and T have a unique common fized point z. Further z is the unique fired
point of S and T.

Proof. Define mappings F' and G of X into B(X) by putting
| Fz={Sz}, Gz={Tz)}

for all z in X. The conditions of the theorem are satisfied for F and G since
.whenr=r"=s=8=p

d(F'z,F"'z) = d(G'y,G"y) = 0.
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F and G therefore have a unique common fixed point z and z is then of
course the unique common fixed point of § and T.

Now suppose that § has a second fixed point w. Then on using inequality
(12)
d(w, z) = d(57w, T"z) < max{cd(w, ), %d(w, 2)}

and the uniqueness of z follows. Similarly z is the unique fixed point of T.

Theorem 2. Let F and G be commuting mappings of a complete metric
space (X, d) into B(X) satisfying the inequality
1 ’ 1
(13) 6(FPz,Gy) < max{cé(F z,G"y), 56(1"':}:,1‘" z), 56(y,Gy):
0<7<p;0< 1 <p;5=0, 1}

for all z,y in X, where 0 < ¢ < 1 and p is a fized positive integer. If F is
continuous and if F and G also map B(X) into itself, then F' and G have
a unique common fized point z. Further Fz = Gz = {z}.

Proof. Since F is continuous and F’ and G obviously satisfy inequality (2) it
follows as in the proof of theorem 1 that F' has a fixed point z and Fz = {z}.
Further on using inequality (13)

6(2,Gz) §(F?2,Gz)
< max{c8(z,Gz), %6(z,Gz)}

and it follows that Gz = {z}. The uniqueness of z follows easily. This
completes the proof of the theorem.

The corollary follows immediately.

Corollary 2. Let S and T be commuting mappings of a complete metric
space (X, d) into itself satisfying the inequality
d(S?z,Ty) < max{cd(S"z,T"y), %d(S"z,S":c), %d(y,Sy):
0<rr<p; s=0,1}

for all z,y in X, where 0 < ¢ < 1 and p is a fized positive integer. If S is
continuous then § and T have a unique common fized point z. Further z is
the unique fizxed point of S and T.
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The next theorem and its corollary follow easily.

Theorem 3. Let F and G be commuting mappings of a complete metric
space (X, d) into B(X) satisfying the inequality

§(F2,Gy) < max{ed(z,y), eb(z,Gy), eb(y, Fz), 58(z, Fe), 26(3,Gy)}

Jor all z,y in X, where 0 €< ¢ < 1. If F and G also map B(X) into itself,
then F and G have a unique common fized point z. Further Fz = Gz = {z}.

Corollary 3. Let S and T be commuting mappings of a complete metric
space (X, d) into itself satisfying the inequality

d(Sz, Ty) < max{cd(z, y), cd(z,Ty), cd(y, Sz), %d(z,Sa:), %d(y,Ty)}

for all z,y in X, where 0 < ¢ < 1. Then S and T have a unique common
fized point z. Further z is the unique fized point of S and T.

The result of the above corollary was given in [2].

We finally show that although the mappings F and G in theorems 1, 2
and 3 necessarily have a unique common fixed point it is possible for either
F or G to have a second fixed point. To see this let X = {z,y,2} with the
metric d defined by

d(zvz) = d(y’y) = d(zvz) =0,
d(z,y) =d(z,2) =1, d(y,z)=2.

Define mappings F' and G on X by

Fz = Fy = {z}, Fz={y,z},
Gz=Gy=Gz= {2'}

The conditions of the theorem are satisfied with ¢ = % but F has two fixed
points z and z.
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REZIME

ZAJEDNICKE NEPOKRETNE TACKE KOMUTIRAJUCIH
SKUPOVNIH FUNKCIJA

Neka su F'i G neprekidna, komutirajuca preslikavanja kompletnog metri¢kog
prostora (X,d) u B(X) za koje vaZi nejednakost

1 '} 1 '}
0(FPz,GPy) < max{cé(F z,Gy), 56(1""3:,17" z), §6(G"'y, G"y):
0<r,s<p; 07, s <p}
zasve z,y u X, gde je 0 < ¢ < 11 p fiksiran pozitivan ceo broj. Dokazano

je da ako F,G : B(X) — B(X) tada F i G imaju jedinstvenu nepokretnu
tatku z.
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