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Abstract

The notions of the sequential p—measure of noncompactness and
of the sequentially (y,y)—condensing mapping in topological vector
spaces are introduced. Some examples of sequential »—measures of
noncompactness are given.
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1. Introduction

If a measure of noncompactness is not defined on all, but only on the count-
able subsets of a locally convex space, then Sadovskij call it a sequential
measure of noncompactness ({6]). Proceeding on [6; 1.4] and [3; Definition
4], we shall introduce the notion of the sequential »—measure of noncom-
pactness in topological vector spaces. Referring to this, we shall consider
some examples of ¢o—measures of noncompactness. At this, the p—measure
auf noncompactness Jy introduced in [5] is of exceptional importance, just
as the well-known Istritescu’s measure of noncompactness (cp. [1]).

117



118 L. Kaniok

Finally, we shall define the notion of the sequentially (,v)—condensing
mapping in topological vector spaces. At this, the condition

@(1(T(M))) 2 7(M) = T(M) is compact (M C D(T)),

which is fundamental far a (¢,v)—condensing mapping 7" (cp. [3], [5]), is
relaxed by assuming that it holds only for at most countable sets M C
D(T). We shall show, that every sequentially (¢, Ji;)—condensing mapping
is (¢, Ju)—condensing, too.

2. Notions and definitions

In this paper every topological vector space will be assumed to be separated
and real. Let E be a topological vector space and K C E. By U(F) we
shall denote a fundamental system of circled, closed neighbourhoods of zero
in E and by Fy the set of all nonnegative functions on U(E) with the
natural order. Moreover, by K, cok, @K and 8K we shall denote the
closed hull, the convex hull, the closed convex hull and the boundary of K,
respectively. We define 2K := {M C K : M # 0}, b(K) := {M € 2K :
M is bounded}, cc(K) := {M € 2K : M is closed in K, M is convex} and
fuce(E):={KCE:K = UK,-, I is finite, K; € cc(E) for all i € I}.

. el

We say that K € 2F is of Zima’s type ([3]), iff for every U € U(E) there
exists V € U(E) so that co(V N (K — K)) C U. Special examples of sets of
Zima’s type are given in [2] and [3]. K is said to be starshaped, relative to
someu € K,iff tz+ (1 —t)u€ K for all z € K and all ¢ € [0,1].

Let K € 26, M € b(coK) and U € U(E). As in [5] we define

J(M,U) := sup{a > 0: M contains a countable set {z, : n € N}
such that z; — z; & aU for i # k}

(sup @ = 0, by definition). By [Jyy(M))(U) := J(M,U) a mapping
Ju : b(CBK) — Fy is defined.
Now, let (E, d) be a metric space, K € 2F and M € ¥coK). We define
((1]): -
a(M) := inf{e > 0: M has a finite @ — net in E},
B(M) inf{a > 0 : M has a finite a — net in M},
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J(M) := sup{a > 0: M contains an infinite a — discrete set}
(sup® =0)
and
x(M) := inf{a > 0: M has a finite a — cover}.

The mappings o, 8, J, x are the well-known Hausdorff’s, inner Hausdorff’s,
Istratescu’s and Kuratowski’s function, respectively. For fundamental prop-
erties of these functions see [1], [2], [3], [6], [7], respectively.

In [1] Danes asked the question ([1; Problem 1]): Is J algebraically
subadditive? The following result is the answer to this problem.

Proposition 1. Let (E,d) be a metric vector space and K € 2E. Then, the
inequality

J(M+N)< J(M)+J(N) (M € b(®@K), N € b(zK))
holds.

Proof. Without loss of generality we may assume that J(M + N) >
max{J(M), J(N)}. Let € > 0 such that J(M)+¢ =:a < b:=J(M +
N) — €. Then there is an infinite set {z, + yn : n € N} C M + N such that
d(z; + yi, zx + yx) > b for ¢ # k. Since J(M) > a, there is an infinite set

{2n; + ¥, : 5 €N} C {2, + ¥n : n € N}
with
b < d(zn; + Yni»Tny + ¥n,) < A(Zn;s2n,) + AYn;sym,) < a4+ d(Yni» Yny)

for i # k.

Then there must be d(y,,,yn,) > b —a for i # k. From this the assertion
follows.

3. Sequential p—measures of noncompactness in
topological vector spaces

In the following, let E be a topological vector space, K € 2F, A a partially
ordered set with the partial ordering <, ¢ : A - A and M a system of
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subsets of To K such that:
MeM=(Me M,coM e M,MU {u} € M(u € K),N € M(N C M)),

if we don’t state additional claims.

Moreover we denote by M, the system of all at most countable sets of

M.

Definition 1. ([3]) The mapping v : M — A is said to be a p—measure of
noncompactness on K, iff the following conditions are satisfied:

(1) "M)=y(MU{u})=7(M)2y(N) (MeM,NCM, u€K),

(2 7(coM) < p(y(M)) (M € M).

If o(t) =t (t € A), then v is called measure of noncompactness on K.

Examples.

(a) Let K be a set of Zima’s type with K € b(E), which is starshaped,
relative to some u € K. For every U € U(FE) we can choose a neighbourhood
W, € U(E) (fixed) such that J(co M,U) < J(M,W,) for every M C K ([5;
Corollary to Lemma 2)). By v(U) := W, (U € U(F)) and ¢*(f) := fov(f €
Fu) we define a mapping ¢* of Fy into Fyy and Jyy is a ¢*— measure of
noncompactness on K ([5; Proposition 2.]).

(b) Let (E,p) be a paranormed space (s. [2], [3]). E is a metrizable
topological vector space. The fundamental system of neighbourhoods of
zero in E is given by the family V = {V;: r > 0}, where V; := {z € F :
p(z)<r}.

Let K € 2% and ¢ : (0,00) — (0,00). The set K is said to be of Z,—type
([3D), iff, for every 7 > 0, co(V; N (K — K) C V(). In [3] Hadzi¢ gave an
example of a set of Z,—type. Every set, which is of Z,—type, is of Zima’s
type also, if inf{p(r): 7> 0} =0 ([3]).

Let K be a convex set with K € b(E). Hadzi¢ proved in [3] that the
inner Hausdorff’s and the Kuratowski’s function satisfy the condition (2)
from Definition 1, if K is of Z,—type and ¢ : [0,00) — [0,00) is a right
continuous and a continuous mapping, respectively. The mapping x satisfies
(1) from Definition 1 also, but 3 is not monotone, in general (s. [1}).
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On K the following inequality holds ([1; Proposition 1}):
a<pB<J<x< 2.

Hence, the Istratescu’s function J and the Kuratowski’s function x are
2p—measures of noncompactness on K, if K is of Z,—type and ¢ : [0,00) —
[0,00) is a right continuous, non decreasing mapping. If, in addition, ¢ is
positive homogeneous then the Hausdorff’s function a is a 2p—measure of
noncompactness on such a set X, too.

Definition 2. We say, that the mapping v : M, — A is a sequential
@—measure of noncompactness on K, iff, for all M,N € M, the follow-
ing conditions hold:

(1) Y(N) < v(M) = v(M U {u}) (NCM,ueK),
(2) Y(N) < o(v(M)) (N C coM)

If o(t) = t(t € A) then v will be called a sequential measure of noncompact-
ness on K.

Remark. Such properties as the subadditivity, the algebraic subadditiv-
ity and the positive homogenity have the same importance, which is well-
known from the theory of the measures of noncompactness, for sequential
¢—measures of noncompactness, too.

It is obvious that every ¢—mecasure of noncompactness is a sequential
¢—measure of noncompactness also. Sadovskij proved ([6]) that in a metric
vector space every sequential measure of noncompactness generates a mea-
sure of noncompactness in specified way by the preservation of the basic
properties. Analogously to Theorem 1.1. from [6] we can prove the

Theorem 1. Let E be a metric vector space, K € 26,0 : A - A a non

decreasing mapping and v a sequential ¢p—measure of noncompactness on
K. Then, by

(i) -7(]\1) i=sup{y(Z):Z € M,, ZC M} (M e M)

a o—measure of noncompactness on K is defined.

Ifthe implication(M e M, Ne M => MUNe M, M+Ne M, cM ¢
M (c € R)) holds and the mapping v is positively homogeneous, subadditive
or algebraically subadditive, then 4 has the corresponding property.
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Proof. (cp. [6; Theorem 1.1.]).
(1) The relations

FN)<HMU{u}) =F(M)<H(M) (MeM,NCM, ueK)

and the positive homogenity, the subadditivity and the algebraic subaddi-
tivity follow from the definition of 4 and from the equivalent properties of
7.

We shall prove the inequality (M) < (M) (M € M). The assertion is
clear for finite sets. Let M be an infinite set of M and Z := {z,}an at most
countable subset of M. Then there are z,, € M such that "ll_r.nm Tam =
(zn € Z). We denote the set of all z,, by Zp. Zp is a countable subset of
M with Z C Z,. Therefore 7(Z) < 7(Zo) and (M) < (M).

(2) Let M € M and Z = {z,} an at most countable subset of co M.
For every z, € Z there exist Zn1,...,Zamn) € M and cn1;...,Cam(n) 2 0
m(n) (
with E ent = 1 such that z, = E CnkZnk. Now we denote the set of all
znk(k € {1 .,m(r)}) by Zo. Zg i 1s an at most countable subset of M with
Z C co Zo. Hence Y(Z) < ¢(7(Zo)). Thus F(co M) < p(F(M)).

The question of the unicity of the extension of a sequential p—measure
of noncompactness from M, onto M arises. In particular, Sadovskij asked
the question ([6]):

Is a = &, if the Hausdorff’s measure of noncompactness a is extended to
& according to (i)? The equality holds in separable spaces ([6; p. 96]). In
arbitrary metric vector spaces the question is unanswered.

Now we deal with this problem and give a partial answer.

Lemma 1. Let M € b(coK) and U € U(E). It is

J(M,U) = max{J(Z,U): Z C M, Z is at most countable}.

Proof. Since Jy is monotone ([5]), the inequality sup{J(Z,U): Z C M, Z
is at most countable } < J(M,U) holds. It is easy to see that the equality
holds, if J(M,U) = 0. Let £ > 0 and J(M,U) > 0. There exists a countable
subset Z = {z, : n € N} of M such that z; — 2z, & (1+¢)~- J(M,U)U for
m # n. Hence J(Z,U) > (1+¢&)~1-J(M,U). Thus sup{J(Z,U): ZC M, Z
is at most countable} > J(M,U), too. Finally, we can write max instead
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of sup, since always from nango J(Z,,U) = J(M,U) follows J( U Zn,U) =
neN
J(M,U). '

Corollary 1. The equality Jy = Jy (5. (i)) holds on every set K € 2F of
an arbitrary topological vector space E.

Remark. In the same way as in the proof of the above Lemma it can be
proved that for the Istritescu’s measure of noncompactness J the equality
J = J (s. (i) with max instead of sup) is true on every set K € 2F of a metric
space E. Since the functions a and x are monotoneanda < < J < x < 2a
([1]) the following inequalities hold in any metric space:

B < 28.

IA

5 1
7<¥<r (v€{a,x}) and Eﬂ

Do -

The same relations are true for the well-known Hausdorff’s and Ku-
ratovski’s measure of noncompactness in locally convex spaces. This is a
partial answer to the above-mentioned problem from [6; p. 96).

4. Sequentially (¢,v)—condensing maps

The same agreements from the section 2 let be true for E, K, A,p, M and
M,. Moreover,let M € 2K and F: M — cc(K') be an upper semicontinuous
mapping.

Definition 3 (cp. [5]). Let v be a w—measure of noncompactness on K.
The mapping F is said to be a (p,7)— condensing mapping, iff for every
N C M the following implication holds:

(ii) UN) < o(v(F(N))) = F(N) is compact.

We call F sequentially (p,7)— condensing, iff (ii) holds for every at most
countable subset N of M.

In [5] we gave an example of a (¢*, Jy)—condensing mapping in an ar-
bitrary topological vector space, where ¢* is the mapping defined in the -
example (a) of section 3.
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It is obvious that a (¢, ¥)—condensing mapping is sequentially (¢,v)—-
condensing as well.

Theorem 2. In any topological vector space a sequentially (o, Jy)—conden-
sing mapping F : M — cc(K) is (o, Ju)—condensing.

Proof. Let N C M and let F(N) be not relatively compact. From the above
Lemma it follows that there is a countable, not relatively compact subset
Z of F(N) such that Jy(Z) = Jy(F(N)). We choose an at most countable

subset Zg of N with F(Zy) = Z. Since F(Zy) is not compact and F is
sequentially (¢, Jiy)—condensing,we obtain

Ju(N) 2 Ju(Zo) > ¢(Ju(F(Z0))) = ¢(Ju(Z)) = ¢(Ju(F(N))).

Hence, the inequality Jy(N) < o(Ju(F(N))) (N € M) implies the com-
pactness of F(N). This means that F is (¢, Jy)—condensing.

Remark. Just as in Theorem 2 it can be proved that in any metric vector
space a sequentially (¢, J)—condensing mapping is (¢, J)—condensing, since
J=1J.

Now, from [5; Corollary to Theorem 1 and Corollary to Theorem 2] we
obtain the following fixed point theorem.

Theorem 3. Let K be a set of Zima’s type with K € b(E), which is star-
shaped, relative to some u € K, and ¢* the mapping defined in the example
(a) of the section 2. Moreover, one of the following conditions holds:

(1) Let K € fucc(E), U C K an in K closed neighbourhood of u and
F :U — cc(K) a sequentially (¢*, Ju)— condensing mapping with z ¢
tF(z)+ (1 - t)u (z € dx U, t € (0,1)).

(2) Let F: K — cc(K) be a sequentially (¢*,Ju)—condensing mapping.
Then F has a fized point.

For continuous single-valued maps the notion of the sequentially (¢,7) -
condensing mapping can be defined as in Definition 3 by proceeding on the
assumption that v is a sequential o—measure of noncompactness.

Using Theorem 1, where in (i) "sup” can be replaced by "max” also
(cp. with the proof of the above Lemma), with the methods of the proof of
Theorem 2 it can be proved the ’
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Theorem 4. Let E be a metric vector space, K € 2E, M € 2K

@ : A — A non decreasing and vy a sequentially o—measure of noncompact-
ness on K. Then a sequentially (¢,v)—condensing mapping G : M — K
is (¢, 7)—condensing as well, where 7 is the ¢—measure of noncompactness

defined by (i).
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REZIME

O SEKVENCIJALNOJ MERI NEKOMPAKTNOSTI U
VEKTORSKO TOPOLOSKIM PROSTORIMA

Uvedeni su pojmovi sekvencijalne ¢ - mere nekompaktnosti i sekvencijalnog
(v,7) - kondenzujuéeg preslikavanja u vektorsko topoloskim prostorima.
Dati su neki primeri sekvencijalnih ¢ - mera nekompaktnosti.
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