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Abstract

A numerical composite VAOR-Newton iteration, with a modified
nonlinear accelerated overrelaxation (VAOR) as the primary iteration
and the Newton method as a secondary iteration, is considered. Some
sufficient conditions for the local convergence of this method are given.
In the linear case these conditions describe the area of convergence of
the VAOR method, and also, as a subcase, the area of convergence of
the AOR method.
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1. Introduction

Let us consider the system of nonlinear equations
(1) Fz =0,

where F : V C¢ R®™ — R", and suppose that F is F-diffcrentiable and F’

is continuous in an open neighbourhood Vo C V of a point z* for which
Fz* = 0.
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For the solution of the nonlinear systel:ri (1) one can give a direct ex-
tension of methods for solving linear systems. So, there are the following
combinations: JOR-Newton, SOR-Newton, and many of their modifications,
see [15] for instance. The AOR method, introduced in [11] for solving lin-
ear systems, which is a two-parameter generalization of the JOR and SOR
methods, can be also extended to the nonlinear case. A modification of the
AOR method is described in [2], [3}, [5], [9],.[12], and it is called the VAOR
method. The extension of this method to the nonlinear case we have in [2],
[3], [12], [14]. Our VAOR-Newton method is an extrapolated VSOR-Newton
from [10], see also [4]. Hence, one can make the convergence statement us-
ing this fact in the same way for the extrapolation methods, see [15], {11].
However, it is possible to give sufficient conditions for the convergence of
our method only by considering the structure of the mapping F'.

Convergence studies of the extrapolation method for linear and nonlinear
systems have been undertaken and reported on by various authors; see for
instance, [2]-[5], [7]-[8], [11]-[14] and the books [15], [16], and references cited

therein.

In this paper we considered the VAOR-Newton method in cases that
F'(z*) belongs to some special subclasses of the H-matrix and give some
sufficient conditions for its local convergence.

2. Notations and definitions

We denote by R"™ the real n-dimensional linear space of column vectors
z = [z1,2,...,2,]T and by L(R™) the linear space of real matrices A = [a;]
of order n with unit matrix £. We use the coordinatewise partial orderings
on L(R") and R"; that is if A,B € L(R") then A > B(A > B) if and only
if a;; > bi; (aij > bij), for 4,7 = 1,2,...,n; and similarly for R". Let

A= Ap—-Ar - As

be the decomposition of A € L(R") into its diagonal, strictly lower and
strictly upper triangular parts, respectively.

Let N = 1,2,...,n, N(i) = N \ {i} and for 4 = [a;;] € L(R") let -

Pi(A) = Y lail, Pl(A) = Z|a,J| Qi(A) = Jmax lai;], i € N.

jEN(f) 7=1
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For any real or complex n X n matrix A = [a;;}, we denote by
M(A) = [my;]

the n x n matrix defined by

mes = 4 laal i i=4,
v —laij| if # 3.

Definition 1. A real matriz A = [a;;] is called an M-matriz if and only if
ai; <0,1€ N,j € N(i), and A is nonsingular with A~! > 0.

Definition 2. A real or complez matriz A is called an H-matriz if and only
if M(A) is an M-matriz.

Definition 3. Annxn compler matriz A = [a;;] is called lower semistrictly
diagonally dominant if and only if

laijl Z R(A)1 ZE N’

la:i:| > P/(A), i€ N.

The matrix A is called semistrictly diagonally dominant if and only if
there exists a permutation matrix Q such that QAQT is lower semistrictly
diagonally dominant.

Definition 4. An n X n complez matriz A = [a;;] is called generalized
diagonally dominant if and only if there exists a reqular diagonal matriz
W = diag(wy,...,wn) such that AW is strictly diagonally dominant, that
is |aiiws) > Pi(AW), i€ N.

3. On the convergence of the VAOR-Newton -
method

The SOR-Newton method, cf. [15)], is defined by

1k Bi(@k)
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where, as usual, fy, ..., fn are components of F, w € R\{0}, fi(z) = gﬁ:(:c)
and ff;(z)#0,z€ V. i€eN.
Our generalization of the SOR-Newton method is the VAOR-Newton
method, see [2] - [3], [12] - [14] , which reduces to it if w = ¢ and ¢;(z) =
i(z):

2) et = ot —wllod, ie N
25t = ok ai‘;(ik": ,1EN

where w,o € R\ {0}, ¢i(z) # 0,and

ki _ [.k+1 k+1 _k KnT
2= 5P i eE L 28], i e N

Without loss of generality, we may assume that f;(z) >0,z €V, i€ N.
Because of that we assume now on that ¢;(z) >0, z€V, i€ N.

In case ¢ = w our VAOR-Newton method reduces the SOR-Newton
method from [10].

Let ®(z) = diag(p1(z),92,...,9n(z)). Our method (2) may be written
in the form z5+! = G¢,,,wzk although now mapping Gg - . becomes rather
complicated. If we denote with G¢, the iteration function of the SOR-
Newton method, then for iteration function G¢ ., of the VAOR-Newton
method we have

Go o0 = (1 - g) T+ qu.,.,z.
g/ o

This relation shows that the VAOR-Newton method is the extrapolated
VSOR-Newton method with extrapolation parameter 4. To prove the local
convergence of the VAOR-Newton method it is sufficient to show that Gg -
is differentiable at z* and that p(Gy ,,(2*)) < 1, see [15], the Ostrowski
theorem. Here p(G (z*)) is the spectral radius of the matrix Gg , ,(z*).

0w
In [15] we have G§ ,(z*) for pi(z) = fli(z), i € N, and in [10] is given
2.0(2%) = (8(z") - oFp(z")) " (®(z*) ~ 0 Fp(z") + 0 F§(2™)),
where F'(z*) = Fp(z*) — Fp(z™) — Fg(z*) is the decomposition of F'(z*)
into its diagonal, strictly lower and strictly upper triangular parts.

Thus, if Gg, is F-differentiable at z*,G¢ 4., is also F-differentiable at
the same point and
()  Go,u(z") = (B(z") - oFp(z")) " (®(c") - wFp(z*)+
+(w — o) Fp(z) + wFg(z*)).
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Theorem 1. Let F: V C R® — R" be F-differentiable in an open neig-
bourhood Vo C V of a point z* € V at which F' is continuous and Fz* = 0.
If F'(X*) is an H-matriz and w € (o0,q], o € [o,g], where

_ . pil=*)
17N fi(=z*)’

then the VAOR-Newton method is locally convergent.

Proof of this Theorem follows immediately from the corresponding the-
orem for the VAOR method from [3]. For technique see [2]- [5] , [12]- [14].

Theorem 2. If F'(z*) = F' = [f;;] and

(4) F' is lower semistrictly diagonally dominant, or
(5) . fifii > P.'(F’)Pj(F'), t€N, j € N(i), or
(6) there exists i € N such that

fiifi; = Pi(FY + i) > P(F')\fil, 5 € N(3), or

(7) fii > min{Pi(F'),Qi(F")}, i € N,and
Jii+ fij > Pi(F")+ Pj(F'), i€e N, j € N(i),

then F'(2*) is an H-matriz.

Proof. If F'(z*) satisfies (4), then the statement follows immediately from
(1] . In other cases proof is given in [6).

O

One can easily test conditions (4) - (7) and if F'(z*) satisfies one of
them there follows the local convergence of the VAOR-Newton method for
weE (0’ q]'ld € lo’q]

It is known that a matrix A is an H-matrix if and only if it is generalized
diagonally dominant, [3], [6], that is, there exists a regular diagonal matrix
W such that AW is strictly diagonally dominant. In case that the matrix W
is known, one can obtain a new area of convergence of the VAOR-Newton
method using techniques from [2)- (5], [7]- [9], [12]- [14], for strictly diagonally
dominant matrices and the following theorem, (3], [6].
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Theorem 3. Let F'(z*) = F' = [f;;] be strictly diagonally dominant ma-
triz. If pi(z*) >0, 1€ N and : ,

20
< t t, —
0<o0 <t 0<w< max{ ,1+p(G&'a,a)}, or
—_ fe e . / e . b
max wlfi = AF)] + 2max{0,wfii - ¢ilz")} <0<0,0<w<t, or
1eEN 213,( 7’-)
! / H *
i+ P - b 2 yi(2Y) —whi
< o < i S+ PUPY) = PAFYL+ 2mind0, e = o} o,
teEN 2P;(F—;~)
where "
ieN fii + Pi(F')’
then p(Gg,.,) < 1, that is, the VAOR-Newton method converges locally.

Qur aim is to obtain in each of the cases (4) - (7), Theorem 2, a
corresponding matrix W = diag(w;,ws,ws,...,w,) such that the matrix
F'(z*)W is strictly diagonally dominant and @;(z*)w; > 0, ¢ € N. Then
by using Theorcin 3 we find wider than o € [0,q],w € (0,q] intervals of
convergence for both ¢ and w.

Theorem 4. Let matriz F'(z*) = F' = [f;;] be lower semistrictly diagonally
dominant, and let W = diag(wy,wa,...,w,), where

. Pl !
(8) 1>wn>—f‘(—m,
f'n.'n.
P/(F' n_ | fi:
(9) 1> w; >, il )+Z}J“_,+,w,|f1|, i=n—-1,n-2,...,1

Then the matriz F'(z*)W is strictly diagonally dominant.

Proof. Our assumptions are: f;; >0, i € N, and
i-1 '
fi > PI(F')=3_|fisl, i € N,
7=1

fi > P{(F) = Z |fi;], i € N.

JEN .
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So, we have that there exists w, such that (8) is satisfied. Let us assume
that there exists wn—1,Wn-2,...,wi+1 € (0,1), such that (9) holds. Then

n . n
P(F') = P(F)+ Y |fl 2 PAF) + 3 wilfisls
j=i+1 j=it+l
where equality holds only if 3-7_;,; |fij| = 0, that is, if P/(F') = Pi(F").
Therefore,
fi > P(F)+ Y wilfijl,
y=t+1
and it follows that all w;, t € N are well defined.

Let us consider the matrix AW and prove that it is strictly diagonally
dominant, that is
fiwi > P(F'W), i€ N.

From (8), (9) we have

n
fuwi > PF'W)+ 3 wilfijl,
Jj=i+1

and, since,

i-1

P{(F'W) > wjlfi;]

Jj=1

we obtain
fiiwi > Z wjlfi;| = P(F'W), i € N.
JEN()

o
~ Theorem 5. Let the matriz F'(z*) = F' = [f;;] be not strictly diagonally
dominant and let it satisfy
Then there ezists ezactly one p € N such that f,, < Pp(F’).

Let W = diag(wy,w;,...,w,), where w; = 1, i € N(p), and w, > f'y("ﬂl, if
fip=09 'EN(P), or

wp € (——P’(F'), 1+ “““{———-f“ ) e NG, S # "}) '
fw Ifl'pl

Then the matriz F'(z*)W is strictly diagonally dominant,
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Proof. From (10) it is obviously that there is the most one p € N such that

fi > Pi(F'), 1€ N(p)
Jop < Pp(F").

Since F’ is not a strictly diagonally dominant matrix, it follows that there
exists exactly one p with this property. If fi, = 0for all i € N(p), then

fawi = fii > P(F') = P(F'W),
and the matrix F'W is strictly diagonally dominant.
Let us suppose that f;; # 0 for some i € N(p), and let

i_;f’;lﬁ".l- n{i;”(i) i€ N(), f.-,,aéO}-

Ifipl

Then f;; > Pj(F') > |fjp| > 0 and there follows (f;; — P;(F'))(P;j(F') -
|fip|) > 0, that is,
fii — Pi(F') fis
—_——s 412>
'fjpl Pj(FI)
Since, from (10), T’f(%'f > ﬁ}(;f—l-)-, we now have that w, is well defined.

Let us now consider the rows of the matrix F'W for which f;;, # 0. Then
we obtain

P(F'W) = Py(F') + (wp = V| fip| < P(F') + (fii = Pi(F")) < fiiy
Py(F'W) = Pp(F') < wp fpp,
and conclude that F'W is a strictly diagonally dominant matrix.

O

The proof of the following Theorem 6 is analogous to the proof of The-
orem 3.

Theorem 6. Let the matriz F'(z*) = F' = [f;;] satisfy (6) and let W =
diag(w), ws,...,w,), where w; =1, j € N(i) and

Pi(F)
fii

w; >

iffji=0,j€N(i) or
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Pi(F')
fii

f”"lf—f’l(” i€ NG), f,-.-aéO})-

(11) w;€ ( , 1+ min{

Then the matriz F'W is strictly diagonally dominant.

Proof. Let condition (6) be satisfied for some fixed i € N. If P,(F') > fi,
then P;(F') < f;;, j € N(i), and the reduces to the proof of the previous
Theorem. Indeed, from (6) we have f;; — P;(F') > 0if f; =0,and

Pi(F")
fii

-

fi5 = By > Uil (52 1) 2.0, £ £0, 5 € NG,

If P;(F') < fii, then
fij — Pj(F') >0,if f;; =0

and

fi; = Pi(F") P(F)
= S l>—= i f; #£0.
| fil fii fi#
So, w; is well defined. ALet us consider now the matrix F/'W:

(F'W);; = { {j’f ;ifm’

P(F'W) = { f;:((g))- Uil + wil £l ; il:(:‘),

From (11) it follows that
(F'W)i; = wifii > P,(F') = P{(F'W),
(F'W)j; = fi; > P{(F') = fil + wilfjil = Pi(F'W), j € N(3),
and we can conclude that F'W is a strictly diagonally dominant matrix.

o

Theorem 7. Let the matriz F'(z*) =F = [fi;] be not strictly diagonally
dominant and let it satisfy (7).

Then there ezists exactly one p € N such that f,, < Pp(F').
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Let W = diag(wy,w2,...,wy,), where w; = 1, i € N(p), and

Pyp(F)

7 if Qu(F')=0, or

wp >

/ | ii— P(F') . . /
wpy € (%?,l +min{LQ_p(—F'('_)—2 1€ N(P)}) if Qu(F') # 0.

Then the matriz F'(z™)W is strictly diagonally dominant.

Proof. It is ecasy to sce that there is exactly one p € N such that f,, <
Po(F'"). Qp(F'") = 0 implies f;; = 0 for ¢ € N(p), and, as in the proof of
Theorem 5, we conclude that F'(z)W is strictly diagonally dominant. If
Qp(F') # 0 we have f,p > Q,(F') and

fii = Pi(F') Jii = Bi(F") _ Bp(F')
—_—> 14 >
because f;; — Pi(F') > Pp(F') — fpp, which follows from (7). So, w, is well

defined. As in the proof of Theorem 5, we can now obtain Pi(F'W) <
fiw;, ¢ € N, that is, F'W is strictly diagonally dominant.

14 , 1€ N(p)

Now, we can casily prove the following theorem.

Theorem 8. Let F'(z*) = F' = [f;;] satisfy the conditions from one of
the theorerns 45,6,7 and let W be the diagonal matriz defined in the same
theorem. If
20
0<eo<t 0<w< max{l, ———},or

a0

—w{fiiw; — Pi(F'W) + 2max{0,w fi; — @i(z") }w;] <o <' 0

N aP(FAW)
O<w<tor
. .apy- L FY — P(F! . (Y 3 )
t < o < min w(fiwi + P(FrW) Pt(FSW)] + 2min{0, p;(z") — w fis Jw;
2P(FpW)

0<w<t,
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where p,0 = p(H(0, ),
H(o,w) = (®(z*)W — o FoW) ™" (8(z™)W — wFLW +
+{w — o)FTW + wFsW),
and .
2pi(z™)w;
fiiw; + P(FP'WY’
then the VAOR-Newton method converges locally.

t = min

Proof. Under the conditions of Theorem 8, F'W is strictly diagonally domi-
nant, @;(z")w; > 0, 1 € N and we can apply Theorem 3. Thus, we conclude
that _

p(H(o,w)) < 1.

Since,
w~ GQU“,W = H,

the spectral radius of G, , is less than 1, and the VAOR-Newton method
converges locally.

(]

From the definition of ¢, we have t > ¢ because of f;w; > P;(F'W). So, we
have obtained new intervals for convergence o and w, which are wider than
[0,¢] and (0, g]. At the same time matrix W in each of the considered cases
is very simple and it can be calculated during test conditions (4)-(7).

If & = Fp, we have the AOR-Newton method and Theorem 8 gives the
area of convergence of this method. If F is a linear mapping and & = Fp, the
VAOR-Newton method reduces to the linear AOR method, and Theorem 8
describes the area of convergence for this method.
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REZIME

O MODIFIKACLJI NELINEARNIH METODA GORNJE
RELAKSACHJE

Posmatra se komponovani VAOR-Njutnov iterativni postupak sa modifiko-
vanom relaksacijom (VAOR) kao primarnim i Njutnovim postupkom kao
sekundarnim postupkom. Dati su neki dovoljni uslovi za lokalnu konvergen-
ciju ovog postupka. U linearnom slu¢aju ovi uslovi opisuju oblast konver-
gencije VAOR postupka i takodje, kao podsluéaj, oblast konvergencije AOR
postupka.
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