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Some properties of multivalued contractions in probabilistic metric
spaces are investigated.
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1. Introduction

For singlevalued mappings there are two types of contractions in prob-
abilistic metric spaces. The first one is introduced by V.H.Sehgal and
A.T.Bharucha-Reid in [9] and the second one by T.L.Hicks in [5].

~ Definition 1. A mapping f : § — 5, where (S,F) is a probabilistic semi-
metric space, i3 a B—contraction if there is a k € (0,1) such that for every
p,g€ S andallz >0
Fip,so(kz) 2 Fpo(2)-

" IThis research was supported by Science Fund of Serbia, grant number 0401A, through
Matematicki institut

161



162 ‘ ‘ O. Hadzié

Definition 2. A mapping f : S — S, where (S,F) is a probabilistic semi-
metric space, is an H — contraction if there is a k € (0,1) such that for every
P,q€ES and everyz > 0

Foq(z) > 1 — 2 2 Frpgo(kx) > 1 — k2.

Let (S, F) be a probabilistic seuimetric space and for every p,g € §
B(p,q) = inf{h; Fp 4(h*) > 1 - h}.

If (S,F,t) is a probabilistic metric space with t > t, (tm(z,y) =
max{z + y — 1,0},(z,y) € [0, 1]?) then 8 is a metric on § [6] .

In [6] the following Theorem is proved .

Theorem A. The mapping f : S — S is an H— contraction on prob-
abilistic metric space (S,F,t) with t > t,, if and only if [ is a metric
contraction on the metric space (S, ).

A B—contraction need not be an H —contraction and an H —contraction
need not be a B—contraction [8].

In [8] some sufficient conditions for F are given such that every B con-
traction on (5, F) is an H—contraction.

Theorem B. Let (5,F) be a probabilistic semimetric space such that
Ran(F) is finite and Ran(F) \ {€} is strictly increasing on [0,1], where
€o(z) =0 for x <0 and eg(z) = 1 for x > 0. Then every B—contraction on
(S,F) is an H— contraction.

In general, it is not true that every B—contraction is an H —contraction
and some examples are given in [8].

For multivalued mappings up to now there are three definitions of mul-
tivalued probabilistic contractions which are in some sense generalization of
Definitions 1 and 2. The aim of this paper is to give some properties of a
multivalued probabilistic contraction with respect to Definitions 3, 4 and 5
given below.
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2. Preliminaries

Let (S, F) be a propabilistic semimetric space and A a nonempty subset of
S. The function D4(-), defined by

Dy(u) = f:g pi.:lefA Foq(s), meRt

is called the probabilistic diameter of the set A and the set A is probabilistic
bounded if and only if

sup Dy(w)=1.
wellt

For every two probabilistic bounded subsets A and B from S

Fup(w) = f:g 3615 ,Esug F;4(s).

Definition 3. Let (5,F) be a probabilistic semimetric space, f : § —
nB(S) (nonempty, bounded subsets of S) and there exists k € (0,1) such
that

Frpq(ku) > F, ((u), for everyp,q € S and every u> 0.

Then f is a B — contraction lype mapping .

Definition 4. Let (S,F) be a probabilistic semimetric space, f : S — n(S)
and there ezists k € (0,1) such that the following condition is satisfied:

For every p,q € S and for every v € fp
there erists w € fq such that for every u > 0

Fou(ku) 2 Fpq(n).

Then f is a C — contraction type mapping.

Definition 5. Let (S,F) be a probabilistic semimetric space, f : § — n(S)
and there ezists k € (0,1) such that the following implication holds for every
2,gES andu>0: ‘ S

Fpq(u) > 1 —u = Frppo(ku) > 1 — ku.

Then f is an Hy - contraction type mapping.
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Definition 8. Let (S,F) be a probabilistic semimetric space, f : S — n(S)
and there ezists k € (0,1) such that the following implication holds for every
p,q€ESandz > 0:

Fpq(z) > 1 —z = for every u € fp there erists N
v(u) € fq such that F, y(u)(kz) > 1 - kz.

Then f is an H2 - contraction.

The Hausdorff function of noncompactness 4(:) (A is a probabilistic
bounded subset of S) is defined in the following way [10]:

Ba(u) = sup{e > 0; there exists a finite
subset Ay of § such that F.‘A,Af(u) > €}.
The function 8 has the following properties:
(i) B4 € A, where A is the set of distribution functions.
(i1) Ba(u) > Da(u), for every u € R.
(iii) P # AcC BC S = Ba(u) > Bp(u), for every u € R.
(iv) Baus(u) = min{B(u),BB(u)}, for every u € R.
(v) Ba(u) = B4(u)(u € R), where A is the closure of A.

(vi) Ba = €g = A is precompact.

If (S, F) is a probabilistic semimetric space , K a probabilistic bounded
subset of S and T a mapping from K into n(S) (nonempty subsets of §)
we say that T is densifying on K with respect to 8 if T(K) is probabilistic
bounded and for every B C K :

Brsfu) < Bp(u) foe every u >0 = B is precompact.

A mapping f : K — n(S) is a k - set probabilistic contraction if T'(4) €
B(S), for every A C K and

Br(ay(ks) > Ba(s), for every 5>0.

The first result is a generalization of Theorem 3.1 from [8] .
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Theorem 1. Let (S,F) be a probabilistic semimetric space and f : § —
Com(S) (nonempty compact subsets of S) be a B~ contraction type mapping.
If Ran(F) is finite and each element of Ran(F)\ {0} is strictly increasing
on [0,1] then there exists v € (0,1) such that

Ds(fp, fg) < 1B(p,q), for every p,q€ S

where Dg is defined by:

D A,B = i f 9 ] i f b d
s(A, B) max{ilelg inf B(p,q) :lelg inf B(p,9)}

First, we shall prove the following Lemma.

Lemma 1. Let (S,F) be a probabilistic semimetric space and f:85-
Com(S) be a B - contraction type mapping such that each element of Ran(F)\
{€o} is strictly increasing on [0,1]. Then

Dg(fp, fq) < B(p,q), for every p,q € S.

If (S, F,t) is a Menger space such that t > t., then Dg(fp, fq) < B(p,q) for
every p # q.

Proof. Let r > 0 be such that 0 < r < 1—',“—"ﬂ(p,q) where k is the
contraction constant and 3(p,q) > 0. Then 3(p,q) > k[8(p,q) + r] and since
Fp. 14 is strictly increasing we have that

Fip1a(B(p19)) > Fip go(k(B(p,q) + 7)) > Fpg(B(p,q) + 1) > 1 — B(p,q)-

From the Definition of Fy, s, it follows that

sup inf sup F,,(s) > 1 - 8(p,q)
© s<B(pa) ¥ESP vesq

which implies

(1) igff sup F,.(B(p,9)) > 1 - B(p,q)
vE/PveSfq

and similarly
(2) inf sup Fy.(B(p,q)) > 1 - B(p,9)-
vEfeyefp
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From (1) it follows that for every u € fp

sap Fl-.v(ﬂ(?r 1)) >1- ﬁ(p) 9)
vcfy

and from (2) that for every v € fq

sup F,.(B(p.q)) > 1 — B(p,9q)-
wEfp

This means that for every u € fp there exists v{u) € fq such that

and similarly for every v € fgq there exists u(v) € fp such that
(4) Fl(r),v(ﬂ(Psq)) >1- ﬂ(p’q)'

Relation (3) implies that f(u,o(u)) < B(p,q) and relation (4) implies
that B(u(»),v) < B(p,q)- Hence

,ig,f, B(u,v) < B(p,q), .‘ig!f,ﬂ(u, v) < B(p,9q)

which implies that

(5) s:}) inf ﬂ(u v) < B(p.9)
(6) sup inf | B(u,0) < B(p.9)-
vEfq €

From (5) and (6) we have that

Dg(fp, fe) < B(p,q), for every p,g€ 5.

H (S,F,1) is a Menger space such that t > t,, then f(-,-) is a metric on
S and ¥(u) = inf,¢qy B(u,v) and o(v) = inf,¢pp, B(u,v) are continuous
function ¢ : fp — RY, ¢: fg —» R*._ Since fp and fq are compact there
exist ug € fp and vy € fq such that

Pug) = s:p ¥(u), p(m)= sup «p(v)
Hence

sup inf f(u,») = lnf ﬂ(ﬂo.") < B(p.q)
s€fpvESe
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and

sup mf B(u,v) = mf B(u,v0) < B(p,q)-
vE fq uESP

This means that Dg(fp, fq) < B(p,q) for p # q.

Proof of Theorem 1. As in [8] for every (p,q) € S X S, p # ¢ there
exists 7,4 € (0,1) such that '

D(fp, fq) < 1p,48(p,9)-

Since the set Ran(F) is finite there exists v such that Max{y,,; p,q €
S} < 7 < 1. Hence, for every p,q€ §

(7 Dg(fp. fa) < 18(p,q)-

Remark 1. If (S, F,t) is a Menger space such that ¢ > ¢, and that
(S,8) is a compact metric space using the Lemma we can obtain a fixed
point result for f : § — CI(S) (the family of nonempty closed subsets of §)
which is a continuous B—contraction and F is such that every element of
Ran(F)\ {¢o} is strictly increasing.

Namely, the following result is well known [2]: Let (S,d) be a compact
metric space and f : S — CI(S) a continuous mapping such that

D(fp, fg) < d(p,q), P # ¢

Then f has a fized point.
Hence, we have the following result:

Proposition 1. Let (S, F,t) be a Menger space such thatt > t,, and (S, )
is a compact metric space, f : § — CIl(S) a continuous B— contraction
and every element of Ran(F)\ {60} is strzctly increasing. Then there erists
z € § such that z € fz.

Remark 2. Using the well known Nadler’s fixed point theorem we
have the following result. '

Proposition 2. Suppose that all the conditions of Theorem 1 are satisfied
and that (S,) is a complete metric space. Then there erists x € S such
that z € fz.



168 0. Hadzié

Remark 3. Suppose that (7) holds for every p,q € S and that
Fpq(z) > 1—z. This implies that 8(p, ¢) < z and (7) implies that Ds(fp, fq) <
yz. Using the definition of Ds we have that sup,¢, infyerq 8(u,v) < vz and
SUp,efq infuesp B(u,v) < yz. Hence infye g B(u,v) < vz, for every u € fp
and infyesp B(u,v) < 72, for every v € fq. Since fp and fq are compact for
every u € fp there exists v(u) € fq such that

Fu,v(u)(‘yz) >1-19z
and similarly for every v € fq there exists u(v) € fp such that
Fu(v),v(7z) > 1=z

From this we have that f is an Hy - contraction.

Theorem 2. Let (S,F) be a probabilistic semimetric space and f : § —
nB(S) an H, - contraction. Then f is an Hy— contraction and

(8) Ds(fp, fa) < k- B(p,q) {or every p,q € S.

Proof . Let f(p,q) < s. We shall prove that

(9) Dg(fp,fq) < ks

which implies (8).

From f(p,q) < s it follows that Fp,(s) > 1 = s. Since f is an H;—
contraction we have that

Ffp,fq(ks) >1-ks

and so

(10) sup inf sup Fy,,(u) > 1—ks
u<ks ¥EfPve fq

(11) sup inf sup F, ,(u) > 1 - ks.
u<ks V€S vefp

Relations (10) and (11) implies that

(12) : inf sup Fy o (ks) > 1— ks
uEfpuefy
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13 f sup Fuo(ks)>1—-ks
(a3) 2f, 22, b

and so for every u € fp and v € fq we have that

(14) ' sup Fy(ks) > 1 —ks
vEfq

(15) sup Fy(ks) > 1 —ks.
u€fp

Hence, for every u € fp there'exists v(u) € fq such that F, w(u)(ks) > 1-
ks and for every v € fq there exists u(v) € fp such that F, ,,)(ks) > 1—ks.
Thus, B(u,v(u)) < ks and B(v,u(v)) < ks which implies that

Ds(fp, fq) < ks.

Corollary 1. If (S, F,t) is a complete Menger space such that t > t,, and
f: 8§ — CB(S) (closed and bounded subsets of S) an Hy- contraction then
there ezists ¢ € S such that z € fz.

Theorem 3. Let (S, F,t) be a probabilistic bounded Menger space with con-
tinuous T-norm t and f : S — Com(S) a C - contraction. Then f is a
k—set probabilistic contraction. -

Proof. The proof of this theorem is in fact given in a part of the proof of
Theorem 1 from [4] but we shall give it here for the completeness.

In order to prove the inequality
(16) Byay(ks) > Ba(s), forevery s> 0
and every A C S we shall prove that for every ¢ € (0, s)
(17) Ba(s—€) < ﬂf(A)(ks)

which implies (16), since ,BA( ) is a left continuous functnon If ﬂA(J) =0
then (16) follows and suppose that F4(s) > 0..In order to prove (17) we
shall prove the 1mphcatlon

(18) r < Ba(s— 6) =>r< ﬂf(A)(ks)
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since (18) implies (17). From r < f4(s — ¢) it follows that there exists a
finite set Ay = {z1,%2,...,Zn} C 5 such that

inf max F; ,(s—¢)>r
zIEIAwean ,w( )

and so for every 2z € A there exists w(z) € Ay so thatF, ,;)(s —¢€) > r. If
y € fz (z € A) then there exists z € f(w(z)) so that

Fy,,(lc(s - €)) 2 Fz,w(x)(s - €)-
Let é € (0,7) and A(6) € (0,1) be such that (¢(r,1) = r)
12u>1=-X8) = tru)>r-§

and for every i € {1,2,...,n} let

nls k
faicu L’U,;.(;‘, 20)

where o
U6, A) ={p; p€ S, F,.(¢) >1- A}

It can be proved that’

(19) Ff(A) U._.l ;‘i'){ }(ks) > 76

and (19) implies 3 4)(ks) > r—&. Hence 3y(4)(ks) > r since § is an a.rbltra.ry
element from (0, r).

Remark 4. It is obvious that f is densifying on § with respect to 3 if
§ is complete .
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REZIME

O VISEZNACNIM KONTRAKCIJAMA U VEROVATNOSNIM
METRICKIM PROSTORIMA

Neke osobine viseznatnih kontrakcija u verovatnosnim metrickim prostorima
su ispitane.
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