Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20, 2 (1990), 161-171 Review of Research Faculty of Science Mathematics Series

ON MULTIVALUED CONTRACTIONS IN PROBABILISTIC METRIC SPACES

Olga Hadžić¹

Institute of Mathematics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Yugoslavia

Abstract

Some properties of multivalued contractions in probabilistic metric spaces are investigated.

AMS Mathematics Subject Classification (1980): 47H10 Key words and phrases: Multivalued contractions, probabilistic metric spaces.

1. Introduction

For singlevalued mappings there are two types of contractions in probabilistic metric spaces. The first one is introduced by V.H.Sehgal and A.T.Bharucha-Reid in [9] and the second one by T.L.Hicks in [5].

Definition 1. A mapping $f: S \to S$, where (S, \mathcal{F}) is a probabilistic semimetric space, is a B-contraction if there is a $k \in (0,1)$ such that for every $p, q \in S$ and all x > 0

$$F_{fp,fq}(kx) \geq F_{p,q}(x)$$
.

¹This research was supported by Science Fund of Serbia, grant number 0401A, through Matematički institut

162 O. Hadžić

Definition 2. A mapping $f: S \to S$, where (S, \mathcal{F}) is a probabilistic semimetric space, is an H-contraction if there is a $k \in (0,1)$ such that for every $p, q \in S$ and every x > 0

$$F_{p,q}(x) > 1 - x \Rightarrow F_{fp,fq}(kx) > 1 - kx$$
.

Let (S, \mathcal{F}) be a probabilistic semimetric space and for every $p, q \in S$

$$\beta(p,q) = \inf\{h; F_{p,q}(h^+) > 1 - h\}.$$

If (S, \mathcal{F}, t) is a probabilistic metric space with $t \geq t_m$ $(t_m(x, y) = \max\{x + y - 1, 0\}, (x, y) \in [0, 1]^2)$ then β is a metric on S [6].

In [6] the following Theorem is proved.

Theorem A. The mapping $f: S \to S$ is an H-contraction on probabilistic metric space (S, \mathcal{F}, t) with $t \geq t_m$ if and only if f is a metric contraction on the metric space (S, β) .

A B-contraction need not be an H-contraction and an H-contraction need not be a B-contraction [8].

In [8] some sufficient conditions for \mathcal{F} are given such that every B contraction on (S, \mathcal{F}) is an H-contraction.

Theorem B. Let (S,\mathcal{F}) be a probabilistic semimetric space such that $Ran(\mathcal{F})$ is finite and $Ran(\mathcal{F}) \setminus \{\epsilon_0\}$ is strictly increasing on [0,1], where $\epsilon_0(x) = 0$ for $x \leq 0$ and $\epsilon_0(x) = 1$ for x > 0. Then every B-contraction on (S,\mathcal{F}) is an H-contraction.

In general, it is not true that every B-contraction is an H-contraction and some examples are given in [8].

For multivalued mappings up to now there are three definitions of multivalued probabilistic contractions which are in some sense generalization of Definitions 1 and 2. The aim of this paper is to give some properties of a multivalued probabilistic contraction with respect to Definitions 3, 4 and 5 given below.

2. Preliminaries

Let (S, \mathcal{F}) be a propabilistic semimetric space and A a nonempty subset of S. The function $D_A(\cdot)$, defined by

$$D_A(u) = \sup_{s < u} \inf_{p,q \in A} F_{p,q}(s), \quad u \in \mathbb{R}^+$$

is called the probabilistic <u>diameter</u> of the set A and the set A is <u>probabilistic</u> <u>bounded</u> if and only if

$$\sup_{\mathbf{u}\in\mathbf{R}^+}D_A(\mathbf{u})=1.$$

For every two probabilistic bounded subsets A and B from S

$$\tilde{F}_{A,B}(u) = \sup_{s < u} \inf_{x \in A} \sup_{y \in B} F_{x,y}(s).$$

Definition 3. Let (S, \mathcal{F}) be a probabilistic semimetric space, $f: S \rightarrow nB(S)$ (nonempty, bounded subsets of S) and there exists $k \in (0,1)$ such that

$$\tilde{F}_{fp,fq}(ku) \geq F_{p,q}(u)$$
, for every $p,q \in S$ and every $u > 0$.

Then f is a B - contraction type mapping.

Definition 4. Let (S, \mathcal{F}) be a probabilistic semimetric space, $f: S \to n(S)$ and there exists $k \in (0,1)$ such that the following condition is satisfied:

For every
$$p, q \in S$$
 and for every $v \in fp$ there exists $w \in fq$ such that for every $u > 0$ $F_{v,w}(ku) \ge F_{p,q}(u)$.

Then f is a C - contraction type mapping.

Definition 5. Let (S, \mathcal{F}) be a probabilistic semimetric space, $f: S \to n(S)$ and there exists $k \in (0, 1)$ such that the following implication holds for every $p, q \in S$ and u > 0:

$$F_{p,q}(u) > 1 - u \Rightarrow \tilde{F}_{fp,fq}(ku) > 1 - ku$$
.

Then f is an H_1 - contraction type mapping.

O. Hadžić

Definition 6. Let (S,\mathcal{F}) be a probabilistic semimetric space, $f:S \to n(S)$ and there exists $k \in (0,1)$ such that the following implication holds for every $p,q \in S$ and x > 0:

$$F_{p,q}(x) > 1 - x \Rightarrow for \ every \ u \in fp \ there \ exists$$

 $v(u) \in fq \ such \ that \ F_{u,v(u)}(kx) > 1 - kx.$

Then f is an H_2 - contraction.

The Hausdorff function of noncompactness $\beta_A(\cdot)$ (A is a probabilistic bounded subset of S) is defined in the following way [10]:

$$\beta_A(u) = \sup\{\epsilon > 0; \text{ there exists a finite}$$

subset
$$A_f$$
 of S such that $\tilde{F}_{A,A_f}(u) \ge \epsilon$.

The function β has the following properties:

- (i) $\beta_A \in \Delta$, where Δ is the set of distribution functions.
- (ii) $\beta_A(u) \geq D_A(u)$, for every $u \in \mathbf{R}$.
- (iii) $\emptyset \neq A \subset B \subset S \Rightarrow \beta_A(u) \geq \beta_B(u)$, for every $u \in \mathbb{R}$.
- (iv) $\beta_{A\cup B}(u) = \min\{\beta_A(u), \beta_B(u)\}\$, for every $u \in \mathbb{R}$.
- (v) $\beta_A(u) = \beta_{\bar{A}}(u)(u \in \mathbf{R})$, where \bar{A} is the closure of A.
- (vi) $\beta_A = \epsilon_0 \Rightarrow A$ is precompact.

If (S, \mathcal{F}) is a probabilistic semimetric space, K a probabilistic bounded subset of S and T a mapping from K into n(S) (nonempty subsets of S) we say that T is densifying on K with respect to β if T(K) is probabilistic bounded and for every $B \subset K$:

$$\beta_{T(B)}(u) \leq \beta_B(u)$$
 foe every $u > 0 \Rightarrow B$ is precompact.

A mapping $f: K \to n(S)$ is a k-set probabilistic contraction if $T(A) \in B(S)$, for every $A \subseteq K$ and

$$\beta_{T(A)}(ks) \ge \beta_A(s)$$
, for every $s > 0$.

The first result is a generalization of Theorem 3.1 from [8].

Theorem 1. Let (S,\mathcal{F}) be a probabilistic semimetric space and $f:S\to Com(S)$ (nonempty compact subsets of S) be a B-contraction type mapping. If $Ran(\mathcal{F})$ is finite and each element of $Ran(\tilde{\mathcal{F}})\setminus\{\epsilon_0\}$ is strictly increasing on [0,1] then there exists $\gamma\in(0,1)$ such that

$$D_{\beta}(fp, fq) \leq \gamma \beta(p, q)$$
, for every $p, q \in S$

where D_{β} is defined by:

$$D_{\beta}(A,B) = \max \{ \sup_{p \in A} \inf_{q \in B} \beta(p,q), \sup_{p \in B} \inf_{q \in A} \beta(p,q) \}.$$

First, we shall prove the following Lemma.

Lemma 1. Let $(S, \tilde{\mathcal{F}})$ be a probabilistic semimetric space and $f: S \to Com(S)$ be a B – contraction type mapping such that each element of $Ran(\tilde{\mathcal{F}})\setminus \{\epsilon_0\}$ is strictly increasing on [0,1]. Then

$$D_{\beta}(fp, fq) \leq \beta(p, q)$$
, for every $p, q \in S$.

If (S, \mathcal{F}, t) is a Menger space such that $t \geq t_m$ then $D_{\beta}(fp, fq) < \beta(p, q)$ for every $p \neq q$.

Proof. Let r>0 be such that $0< r<\frac{1-k}{k}\beta(p,q)$ where k is the contraction constant and $\beta(p,q)>0$. Then $\beta(p,q)>k[\beta(p,q)+r]$ and since $\tilde{F}_{fp,fq}$ is strictly increasing we have that

$$\tilde{F}_{fp,fq}(\beta(p,q)) > \tilde{F}_{fp,fq}(k(\beta(p,q)+r)) \ge F_{p,q}(\beta(p,q)+r) > 1 - \beta(p,q).$$

From the Definition of $\tilde{F}_{fp,fq}$ it follows that

$$\sup_{s<\beta(p,q)}\inf_{u\in fp}\sup_{v\in fq}F_{u,v}(s)>1-\beta(p,q)$$

which implies

(1)
$$\inf_{u \in f_p} \sup_{v \in f_q} F_{u,v}(\beta(p,q)) > 1 - \beta(p,q)$$

and similarly

(2)
$$\inf_{v \in fq} \sup_{u \in fp} F_{u,v}(\beta(p,q)) > 1 - \beta(p,q).$$

From (1) it follows that for every $u \in fp$

$$\sup_{\mathbf{v}\in f_q}F_{\mathbf{u},\mathbf{v}}(\beta(p,q))>1-\beta(p,q)$$

and from (2) that for every $v \in fq$

$$\sup_{u \in f_p} F_{u,v}(\beta(p,q)) > 1 - \beta(p,q).$$

This means that for every $u \in fp$ there exists $v(u) \in fq$ such that

(3)
$$F_{\mathbf{u},\mathbf{v}(\mathbf{u})}(\beta(p,q)) > 1 - \beta(p,q)$$

and similarly for every $v \in fq$ there exists $u(v) \in fp$ such that

(4)
$$F_{u(v),v}(\beta(p,q)) > 1 - \beta(p,q).$$

Relation (3) implies that $\beta(u, v(u)) < \beta(p, q)$ and relation (4) implies that $\beta(u(v), v) < \beta(p, q)$. Hence

$$\inf_{\boldsymbol{v}\in fq}\beta(\boldsymbol{u},\boldsymbol{v})<\beta(\boldsymbol{p},q),\inf_{\boldsymbol{u}\in fp}\beta(\boldsymbol{u},\boldsymbol{v})<\beta(\boldsymbol{p},q)$$

which implies that

(5)
$$\sup_{u \in f_p} \inf_{v \in f_q} \beta(u, v) \le \beta(p, q)$$

(6)
$$\sup_{v \in f_q} \inf_{u \in f_p} \beta(u, v) \leq \beta(p, q).$$

From (5) and (6) we have that

$$D_{\beta}(fp, fq) \leq \beta(p, q)$$
, for every $p, q \in S$.

If (S, \mathcal{F}, t) is a Menger space such that $t \geq t_m$ then $\beta(\cdot, \cdot)$ is a metric on S and $\psi(u) = \inf_{v \in f_q} \beta(u, v)$ and $\varphi(v) = \inf_{u \in f_p} \beta(u, v)$ are continuous function $\psi : f_p \to \mathbb{R}^+$, $\varphi : f_q \to \mathbb{R}^+$. Since f_p and f_q are compact there exist $u_0 \in f_p$ and $v_0 \in f_q$ such that

$$\psi(u_0) = \sup_{u \in f_p} \psi(u), \ \varphi(v_0) = \sup_{v \in f_q} \varphi(v).$$

Hence

$$\sup_{u \in f_p} \inf_{v \in f_q} \beta(u,v) = \inf_{v \in f_q} \beta(u_0,v) < \beta(p,q)$$

and

$$\sup_{v \in f_q} \inf_{u \in f_p} \beta(u, v) = \inf_{u \in f_p} \beta(u, v_0) < \beta(p, q).$$

This means that $D_{\beta}(fp, fq) < \beta(p, q)$ for $p \neq q$.

Proof of Theorem 1. As in [8] for every $(p,q) \in S \times S$, $p \neq q$ there exists $\gamma_{p,q} \in (0,1)$ such that

$$D(fp, fq) < \gamma_{p,q}\beta(p,q).$$

Since the set $Ran(\mathcal{F})$ is finite there exists γ such that $Max\{\gamma_{p,q}; p, q \in S\} < \gamma < 1$. Hence, for every $p, q \in S$

(7)
$$D_{\beta}(fp, fq) \leq \gamma \beta(p, q).$$

Remark 1. If (S, \mathcal{F}, t) is a Menger space such that $t \geq t_m$ and that (S, β) is a compact metric space using the Lemma we can obtain a fixed point result for $f: S \to Cl(S)$ (the family of nonempty closed subsets of S) which is a continuous B-contraction and $\tilde{\mathcal{F}}$ is such that every element of $Ran(\tilde{\mathcal{F}}) \setminus \{\epsilon_0\}$ is strictly increasing.

Namely, the following result is well known [2]: Let (S,d) be a compact metric space and $f: S \to Cl(S)$ a continuous mapping such that

$$D(fp, fq) < d(p, q), p \neq q.$$

Then f has a fixed point. Hence, we have the following result:

Proposition 1. Let (S, \mathcal{F}, t) be a Menger space such that $t \geq t_m$ and (S, β) is a compact metric space, $f: S \to Cl(S)$ a continuous B- contraction and every element of $Ran(\tilde{\mathcal{F}}) \setminus \{\epsilon_0\}$ is strictly increasing. Then there exists $x \in S$ such that $x \in fx$.

Remark 2. Using the well known Nadler's fixed point theorem we have the following result.

Proposition 2. Suppose that all the conditions of Theorem 1 are satisfied and that (S,β) is a complete metric space. Then there exists $x \in S$ such that $x \in fx$.

Remark 3. Suppose that (7) holds for every $p,q \in S$ and that $F_{p,q}(x) > 1-x$. This implies that $\beta(p,q) < x$ and (7) implies that $D_{\beta}(fp,fq) < \gamma x$. Using the definition of D_{β} we have that $\sup_{u \in fp} \inf_{v \in fq} \beta(u,v) < \gamma x$ and $\sup_{v \in fq} \inf_{u \in fp} \beta(u,v) < \gamma x$. Hence $\inf_{v \in fq} \beta(u,v) < \gamma x$, for every $u \in fp$ and $\inf_{u \in fp} \beta(u,v) < \gamma x$, for every $v \in fq$. Since fp and fq are compact for every $u \in fp$ there exists $v(u) \in fq$ such that

$$F_{u,v(u)}(\gamma x) > 1 - \gamma x$$

and similarly for every $v \in fq$ there exists $u(v) \in fp$ such that

$$F_{u(v),v}(\gamma x) > 1 - \gamma x.$$

From this we have that f is an H_2 – contraction.

Theorem 2. Let (S,\mathcal{F}) be a probabilistic semimetric space and $f:S\to nB(S)$ an H_1 - contraction. Then f is an H_2 - contraction and

(8)
$$D_{\beta}(fp, fq) \leq k \cdot \beta(p, q)$$
 for every $p, q \in S$.

Proof. Let $\beta(p,q) < s$. We shall prove that

$$(9) D_{\beta}(fp, fq) \leq ks$$

which implies (8).

From $\beta(p,q) < s$ it follows that $F_{p,q}(s) > 1 - s$. Since f is an H_1 -contraction we have that

$$\tilde{F}_{fp,fq}(ks) > 1 - ks$$

and so

(10)
$$\sup_{u < ks} \inf_{u \in fp} \sup_{v \in fq} F_{u,v}(u) > 1 - ks$$

(11)
$$\sup_{u < ks} \inf_{v \in fq} \sup_{v \in fp} F_{u,v}(u) > 1 - ks.$$

Relations (10) and (11) implies that

(12)
$$\inf_{u \in f_p} \sup_{v \in f_q} F_{u,v}(ks) > 1 - ks$$

(13)
$$\inf_{v \in fq} \sup_{u \in fp} F_{u,v}(ks) > 1 - ks$$

and so for every $u \in fp$ and $v \in fq$ we have that

(14)
$$\sup_{v \in fq} F_{u,v}(ks) > 1 - ks$$

(15)
$$\sup_{u \in fp} F_{u,v}(ks) > 1 - ks.$$

Hence, for every $u \in fp$ there exists $v(u) \in fq$ such that $F_{u,v(u)}(ks) > 1-ks$ and for every $v \in fq$ there exists $u(v) \in fp$ such that $F_{v,u(v)}(ks) > 1-ks$. Thus, $\beta(u,v(u)) < ks$ and $\beta(v,u(v)) < ks$ which implies that

$$D_{\beta}(fp, fq) \leq ks.$$

Corollary 1. If (S, \mathcal{F}, t) is a complete Menger space such that $t \geq t_m$ and $f: S \to CB(S)$ (closed and bounded subsets of S) an H_1 -contraction then there exists $x \in S$ such that $x \in fx$.

Theorem 3. Let (S, \mathcal{F}, t) be a probabilistic bounded Menger space with continuous T-norm t and $f: S \to Com(S)$ a C - contraction. Then f is a k-set probabilistic contraction.

Proof. The proof of this theorem is in fact given in a part of the proof of Theorem 1 from [4] but we shall give it here for the completeness.

In order to prove the inequality

(16)
$$\beta_{f(A)}(ks) \ge \beta_A(s)$$
, for every $s > 0$

and every $A \subset S$ we shall prove that for every $\epsilon \in (0,s)$

(17)
$$\beta_A(s-\epsilon) \le \beta_{f(A)}(ks)$$

which implies (16), since $\beta_A(\cdot)$ is a left continuous function. If $\beta_A(s) = 0$ then (16) follows and suppose that $\beta_A(s) > 0$. In order to prove (17) we shall prove the implication:

(18)
$$r < \beta_A(s - \epsilon) \Rightarrow r < \beta_{f(A)}(ks)$$

since (18) implies (17). From $r < \beta_A(s - \epsilon)$ it follows that there exists a finite set $A_f = \{x_1, x_2, ..., x_n\} \subset S$ such that

$$\inf_{z \in A} \max_{w \in A_f} F_{z,w}(s - \epsilon) > r$$

and so for every $z \in A$ there exists $w(z) \in A_f$ so that $F_{z,w(z)}(s-\epsilon) > r$. If $y \in fz$ $(z \in A)$ then there exists $x \in f(w(z))$ so that

$$F_{y,x}(k(s-\epsilon)) \ge F_{z,w(z)}(s-\epsilon).$$

Let $\delta \in (0,r)$ and $\lambda(\delta) \in (0,1)$ be such that (t(r,1)=r)

$$1 \ge u > 1 - \lambda(\delta) \Rightarrow t(r, u) > r - \delta$$

and for every $i \in \{1, 2, ..., n\}$ let

$$fx_i \subset \cup_{j=1}^{n(i)} U_{x_j^i}(\frac{k\epsilon}{2}, \lambda(\delta))$$

where

$$U_{\nu}(\epsilon,\lambda) = \{p; \ p \in S, F_{p,\nu}(\epsilon) > 1 - \lambda\}.$$

It can be proved that

(19)
$$\tilde{F}_{f(A),\cup_{i=1}^{n}\cup_{j=1}^{n(i)}\{z_{j}^{i}\}}(ks) > r\delta$$

and (19) implies $\beta_{f(A)}(ks) \ge r - \delta$. Hence $\beta_{f(A)}(ks) \ge r$ since δ is an arbitrary element from (0, r).

Remark 4. It is obvious that f is densifying on S with respect to β if S is complete.

References

- [1] Bocsan, Gh., Constantin, Gh.: The Kuratowski function and some applications to the probabilistic metric spaces, Sem. Teor. Funct. Si. Mat. Apl., Timisoara RS Romania, No. 1, 1973.
- [2] Czerwik, S.: Fixed point theorems and special solutions of functional equations, Universytet Slaski, Katowice, 1980.

- [3] Hadžić, O.: Some theorems on the fixed points in probabilistic metric and random normed spaces, Bull. Unione Mat. Ital. (6), 1-B (1982), 381-391.
- [4] Hadžić, O.: Fixed point theorems for multivalued mappings in some classes of fuzzy metric spaces, Fuzzy Sets and Systems 29 (1989), 115-125.
- [5] Hicks, T.L.: Fixed point theory in probabilistic metric spaces, Univ. u Novom Sadu Zb. Rad. Prirod. - Mat. Fak. Ser. Mat. 13 (1983), 63-72.
- [6] Radu, V.: Some fixed point theorems in probabilistic metric spaces, Lectures Notes in Math. 1233, 125-133.
- [7] Schweizer B., Sklar, A.: Probabilistic Metric Spaces, Elsevier North -Holland, 1983.
- [8] Schweizer, B., Sherwood, H., Tardif, R.M.: Contractions on probabilistic metric spaces, Examples and counter examples, Stochastica XII-1 (1988), 5-17.
- [9] Sehgal, V.M., Bharucha-Reid, A.T.: Fixed points of contraction mappings in probabilistic metric spaces, Math. Systems Theory 6(1972), 97-102.
- [10] Tan, D.H.: On probabilistic condensing mappings, Rev. Roum. Math. Pures Appl. 26,10(1981), 1305-1317.

REZIME

O VIŠEZNAČNIM KONTRAKCIJAMA U VEROVATNOSNIM METRIČKIM PROSTORIMA

Neke osobine višeznačnih kontrakcija u verovatnosnim metričkim prostorima su ispitane.

Received by the editors June 12, 1990.