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Abstract

Some properties of K-bounded sets and N-bounded sets in sequen-
tial convergence linear spaces are proved and some criterions for N-
boundedness are obtained. Examples of K-konvergent, (N-konvergent)
and K-bounded (N-bounded) sets are presented.

AMS Mathematics Subject Classiﬁcation (1980): 54A20, 46A15
Key words and phrases:’ Convergent linear space, K-convergence, N-
convergence, K-boundedness, N-boundedness.

1. Introduction

A kind of summable property of convergences in topological vector spaces
was orginally introduced by S.Mazur and W.Orlicz in 1953 [12]. Recently
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this property was rediscovered by members of the Katowice Branch of the
Mathematical Institute of Polish Academy of Scince. Many authors de-
veloped the theory of A'-convergent spaces (K-Katowice) for example in
(1,2,3,6,9,13-17,20]. The notion of i -convergence has proven to be quite
useful and interesting in studying various topics in functional analysis. This
is particularly true in the case of the uniform boundedness principle, where
the notion of K-boundedness has led to versions of the uniform boundedness
principle which are valid in the absence of any completeness assumptions
(11,2,3,20)).

Recently it has been applied in the theory of Adjoint Theorem ([15),[16],[17]),
which has an application in the theory of Closed Graph Theorems.

Another kind of summable property of convergences, the so-called N-
property (N = Novosibirsk) has been introduced in [19]. In this paper we
shall introduce the notion of N-boundedness. We shall also prove some
properties of K'-bounded sets in convergences linear spaces. We shall obtain
some criteria for N-boundedness. We shall present an example which illus-
trates the relationship between the notion of K-convergent (/N-convergent)
sequences and K'-boundedness (V-boundeness).

2. Convergences, K-sequences and N-sequences

The convergence of sequences of elements in topological spaces is well known.
It can be seen as a function which to some sequences assigns elements called
limits. It can be also seen as a set of pairs ((z,),z) such that z is a limit
of sequence (z,). In analysis we also deal with cases when convergence of
sequences is introduced directly without using topology.. Examples for this
are pointwise convergence, convergence almost everywhere and others.

In this paper by a convergence in a set X we mean a set G of pairs
((2s),z), where z,, for n € N and z are elements of X. The meaning of
expression ((z,),z) € G is that the sequence (z,) converges to z, or equiv-
alently, z is a limit of (z,). Instead of ((z,),2) € G we shall equivalently
write z, S z, or simply, z, — z ([4],{14]). To be able to prove properties of
a convergence, or theorems concerning notions defined by the convergence
we have to postulate some properties as axioms of the convergence. In this
paper we are interested in relations between properties of a convergence and
properties of K-convergent, N-convergent sequences and boundedness.
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In the sequel we shall be concerned with convergences in Abelian groups
and linear spases. We start with recalling the notion of K-sequences and N-
sequences. Assume that X is an Abelian group endowed with a convergence
G and (z,) is a sequence of elements z, in X. It will be convinient to say
that a sequence (z,) is series convergent to z and write

[~ ] n
Zz,. =z |if Z T — IT.
k=1

n=1

It may happen that there is no series convergent sequence when no prop-
erty is required from G. However, we have the following evident proposition.

Proposition 1.

(a) If G satisfies the condition A
(§') 2z, = 0 whenever z, = 0 for n € N, then
zero sequences are series convergent to zero.

(b) If G satisfies the conditions
(F) z, — z implies z,,, — =

and
(L) zp, —» z and yo — y implies z, — yo —
-y,

then series convergent sequences converge lo zero.

It is well known that the completness of metric spaces is of great impor-
tance. The procedure of completion makes sense in the case of metric spaces
but this is not the case when we deal with convergence spaces. It apears that
in many cases the completeness property may be successfully replaced by
a summable property of sequences ({1}, ,[2]). This was first noticed by Or-
licz and Mazur in their paper [12] and independently it was rediscovered and
studied at the seminar at Katowice ([1),[2],[5],[9]) conducted by J.Mikusinski
and P.Antosik. To be more exact we adopt the following definition.

Definition 1. A sequence (z.) of elements in an Abelian group X endowed
with a convergence is said to be a K-convergent sequence or shorter K-
sequence if each subsequence of (z,) has a series convergent subsequence.
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If (S') holds, then zero sequences are K'-sequences. Sequences converging
to zero may not be a K-sequence. For instance, if X is the group of rational
numberg with the usual convergence, then the sequence (1071%") is not a
K -sequence.

Proposition 2. If a convergence in X satisfies (F), (L;) and the condition
(U) z, 4 0 implies that there ezists a subsequence (z,,,) of

(zn) whose no subsequence converges to zero,

then K -sequences converge to zero,

If z, — =z implies (zn ~ z) is a K-sequence we say that X is a K-
convergence group. In [9] is given an example of a K-normed linear space,
but not complete. In [6] it is proved that K" metric groups are of the second
category. There are examples of K-topological groups but not of the second
category (see [8]).

The more restrictive summable property of sequencés has been intro-
duced and studied by S.L.Sobolev in his monograph {19].

Definition 2. A sequence (z,) of elements in an Abelian group X endowed
with a convergence is said to be an N-sequence, if each subsequence of (z,)
has a subsequence (yn) which is subseries convergent, i. e. for each subse-

quence (z,) of (yn) the series
o0
2,

n=1

converges to an element in X.

Obviously, N-sequences are K'-sequences. The converse is not true (see [9]).
Ifz, — zin X implies (z, — z) is an N-sequence, we say that X is an
N-convergence group. Recently Burzyk [5] has constructed an N-normed
space ( a dense subspace of ¢, ) wich is not complete.

3. Boundedness, I{-boundedness and N-bounded-
ness

In Funcional Analysis we deal with theorems on uniform bounded ness of
families of continuous and linear mappings on bounded subset of the domain
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of mappings. The theorems are valid under the assumption of completness
or Baire category or barelledness type. From the results of paper [2] (see,
Theorem 1, p.4), it folows that pointwise boundedfamilies of linear and
continuous mappings from a convergence linear space to a topological vector
space are uniformly bounded on so-colled K-bounded sets. Bearing in mind
to above mentioned result, it is interesting to now the conditions under
which bounded sets are K-bounded.

Throughout this section we assume that X is a linear space endowed
with a convergence G. We assume that the field of scalars is equipped with
the usual convergence. So, the field of scalars is an N-convergence field.

Definition 3. A subset Bof X is bounded, (K -bounded, N-bounded), if for
each sequence (z,) of elements z,, in B and for each sequence (o) of scalars
a, tending to zero the sequence (anz,) is convergent to zero (K -sequence,
N -sequence).

Obviously, N-bounded subsets of X are K-bounded. The converse is not
true even for normed spaces ([9]). In general, N-bounded sets may not be
bounded. Take, for instance, the space of measurable function on [0,1] with
the almost everywhere convergence.

This can be true even in the case of N-convergence space.
Example 1. Let R be the field of real numbers endowed with convergence G
such that z, S z if Y len — 2] < o0. Then (R,G) is an N-convergence
space in which the sequence (1) is N-bounded but not bounded. The reason

for that lies in the fact.that 1 S 0, but condidion (U) does not hold.

A K-bounded sequence can be not N-bounded even in a K-normed
space.
Example 2. We shall take the spaces from the Corollary of Theorem 3 from
(11}. Let e, (n € N) be unit vectors from /2. Let Y = lin{e,,n € N}.
Then there are two K-subspaces X; and X; of 12, such that X; N X; =Y
and for each linearly independent sequence (z,) tending to zero in I there
are two subsequences (z1,) and (z2,) of (z,), such that

% o
Ezln € X; but Zzln ¢X2 and

n=1 n=1

E% ¢ X, but }:un € X;

n=1
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Then (e,) is a K-bounded sequence in X, but it is not N-bounded. Namely,
if we take a sequence (ay) of scalars a, (n € N)tending zero, then the
sequence (ay, €,) is a K-sequence in X; and it is linearly independent and
ayn en — 0. Then , each subsequence of (a, €,) has a subsequence whose
sum belongs to X; and does not belong to X3, i.e. (e,) is not N-bounded.

If X is a FLUSH linear convergence space (S - stacionarity and H -
Hausdorff property,see [4],{14]), then each K-sequence is convergent to zero.
Hence, each K-bounded set is bounded but the converse is not always true.
But, there are a lot of important spaces for which the converse is also true.
Example 3. A topological vector space (X, 7) is said to be an A-space, if ev-
ery T-bounded subset of X is 7- K-bounded ([10],{17]). There are many inter-
esting A-spaces (see [10]). For example, if X is a B-space, then (X, o(X, X’))
is an A-space which is not barrelled and not even infrabarrelled (Theorem
5. from [10])). There exist A-spaces which are not K-spaces. For example
(P, weak),1 < p < oo.

Proposition 3.

(a) If the convergence in X satisfies (S'), then the set {0} is
bounded, (K -bounded, N -bounded).

(b) If convergence in X satisfies (F'), (L)) and (U), then
K -bounded sets are bounded.

(c) Subset of X are bounded (K -bounded, N -bounded) if their
countable subsets are bounded, (K -bounded, N -bounded).

(d) Finite unions of K-bounded (N bounded) sets are K-
bounded (N -bounded).

(e) Products by scalaras of bounded (K -bounded, N -bounded)
sets are (K-bounded, N -bounded).

Under additional conditions imposed on the convergence in X we get
further properties similar to properties of bounded subsets od topological

vectors.

Proposition 4.
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(a) If G satisfies the condition (M,) a, — 0 implies
a,z — 0 foreachz € X,
then finite subsets of X are K-bounded (N -bounded). If, add:-
tionally, (U) holds,then finite subsets of X are bounded.

(b) Finite algebraic sums of N -bounded subsets of X are N-
bounded, whenever G satisfies the condition
(L2) 2, — zandy, — y impliesz, + y, — z + .

We note that (S) and (L) imply La, but (S) and (L;) do not imply
(L1).

Proposition 4(b) is not valid for K bounded sets. This is due to the fact

that Cartesian products of K -convergence groups may not be K-convergence
groups. This can be shown in the following way .
Example 4. Let ¢; for i € N be unit vectors in {? and let E = span{e; :
t € N}. E is a dense linear subspace of {2. Following the proof of Theorem
2 in [9], we find K -subspaces E! and E? of I such that E* N E? = E. We
note that E! x E?is not a K-space. In other words, the Cartesian product
of K-spaces may not be a K space. In fact, consider z, = %en forne N.
Then, z, € E for n € N, z, — 0 and (zn,z,) — 0. Suppose that
there exists a summable subsequence (zm,,Zm, ), and Y ox, (ZnnsZn,) =
2, Ty 1y Znn) = (z,y). This implies that z = y, z € EY,
z € E?. Consequently, z € E, since E' N E? = E. On the other hand,
z = m%, m%,) ¢ E. This contradiction shows that E!* x E? is not a
K-space.

We note that the sequence (z,,0), (0,z,) (n € N) are K-bounded
in E! and E?, respectively. But (z,,0) + (0,z,) = (zn,2s) and so
(Zp,Zs) (n € N) is not K-bounded. This shows that the algebraic sums of
K-bounded sets may not be K-bounded.

Proposition 5.
(a) If X is a K-convergence group andY is an N -convergen-
ce group, then the Cartesian product X x Y is a K -convergence

group.

(b) If A is a K -bounded subsets of X and B is an N-bounded
subsets of X, then A + B is a K-bounded subsets of X .
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Example 5. It is interesting to note that the weak convergence in 2 is
not a I-convergence. The sequence (e,) converges weakly to zero, but it is
not K-convergent. At the same time, the sequence is weakly bounded and
K-bounded. Moreover, from the results in [3] (see Proposition 1), it follows
that weakly bounded subsets of /2 are K-bounded.

In what follows we shall study the conditions under which bounded subsets
of linear space X equipped with a convergence G are K-bounded. To do
this we adopt the following definitions.

A sequence (z,) of elements in X is said to be Cauchy, if for each in-
creasing sequence (p,) of positive integers z,,,, — zp, — 0. Under
conditions (L;), convergent sequences are Cauchy. A subset A of X is com-
plete, if each Cauchy sequence of elements in A converges to an element in
A. Closed subsets of a complete topological group are complete.

A sequence (z,) of elements in X is said to be convex convergent if

for any sequence of finite systems of positive integers p,,, ... ,Pnk,, such
that min(p,,, ... ,Pnk,) — 00 and for any sequences of finite systems of
nonnegative scalars ay,,, ... ,Qp,, suchthata,, + ... +op, < 1,the

sequence of sums
App1Tpyy + oo+ Opp Tppr,

converges to zero.

Proposition 8. Subsequence of convez cconvergent sequences are convex
convergent.

"Convex convergent sequences converge to zero. Sequences converging to
zero in a convex topological vector space are convex convergent.In general,
sequences converging to zero in F-spaces are not convex convergent (see |2|,
p-10). However, sequences converging to zero in F spaces have convex con-
vergent subsequences.This observation leads us to the following definition.
A convergence G in a linear spaces X is said to be subsequentially convex
convergent if each sequence converging to zero in X has a convex convergent
subsequence ([2], p.10). F-spaces are subsequentially convex convergent. We
have the following theorem.

Theorem IfG is a complete subsequentially conver convergence in a linear
space X, then bounded subsets of X are N-bounded. '

Proof. Assume that A is a bounded subset of linear space X endowed
with a complete subsequentially convex convergence. Suppose that z,, € A
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for n € N and (ay) is a sequence of scalars tending to zero. We should show
that (anz,) is an N-sequence. To this end we take a subsequence (8,y») of
(anz,) and, next, we take a subsequence v,t, of (Bnyn) such that

with
Th = V hnl

for n € N. We note that (1, 1y.tn) is a subsequentially convex convergent
sequence. We may assume that the sequence is convex convergent. Other-
wise, we would take a convex convergent subsequence of the sequence. We
assert that the series

o0
(1) > Antn
n=1
is convergent. In fact, assume that
— -1
Un = T, Tnln

for n € N. We have ,u,, = v,t, for n € N. We put

n
Sa = Y Tew
k=1

. Let (p,n) be an increasing sequence of positive integers. We have

Pn41

SPn+l - Spn = 2 Trtlk

k=pn
for n € N. Since (u;) is a convex convergent sequence and

Pn+1

kasl,

k=pn

we have
SPn+1 - SPn - 0.

This shows that (1) is a Cauchy series. Since X is complete, then sum of (1)
is in X. Hence, by Proposition 6, each subseries of (1) is convergent, which
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means that (a,z,) is an N-convergent sequence.
Consequently A is an N-bounded set.

Under the same assumptions as in the Theorem, the conclusion of Propo-
sition 2 in [2] is that bounded subsets of X are K-bounded. So, our Theorem
is a stronger result than Proposition 2 in [2)].

It is well known that a continuous linear map between topological vector
spaces is bounded, i.e. preserves bounded sets. It is easy to prove

Proposition 7. A continuous linear map between convergence linear spaces
preserves K -bounded (N -bounded) sets.

Taking the identity map in the preceding proposition, we obtain
Corollary. If G; and G, are two convergences on a linear space X such
that G; C Gi, then each subset of X which is bounded, K-bounded or N-
bounded in G, is also bounded, K-bounded or N-bounded, respectively in
Gh.

4. Convergence and Boundedness

We note that in case of the topological vector spaces, convergent sequences
are bounded, more exactly, sets of members of convergent sequences are
bounded. We assume that X and G are as in the section 3.

If G satisfies the condition
(M) an, = 0and z, — zimplies a,z, — 0,
then convergent sequences in X are bounded.

It is interesting to note that if G is induced by a group topology on X
and the multiplication by scalar az is separately continuous, then (M) holds
(see |1}). In light of the definitions of K-boundedness and N-boundedness
natural questions which suggest themselves are:

(Q1)Are K — convergent sequences K — bounded?

(Q2)Are N — convergent sequences N — bounded?

Of course, in a metrizable sequentially complete linear topologocal space,
the answer to {); and §; is obviously: yes. We shall show that the answer
are generally: no.
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First, we present an example of K-convergent sequence which is not K-
bounded (see [3]).
Example 8. Let I be the space of all the bounded real sequences. Let
mg be the subspace of I°° which consist of those sequences (t;) with a finite

range. Pick an element = (z;) in ! such that z; # -0 for each j (for
example, z; = _-1-‘-;) Define a norm on mg induced by z, by means of the
formula,

Il = Nl = 3 Itz

=1

Let e; be the element of mg which has a 1 in the j* coordinate and 0
~ elsewhere.

We first claim that the sequence (e;) in (mg, || ||z) is N-convergent.
This is immediate, since for any subsequence (ex,) if ¥y = (¥;) € my is
defined by »; = 1ifi = k; for some j and y; = 0 otherwise, we have

n o0 ’
ly = Y el = > law,l — 0.
=1 j=nt1

The sequence (e;) is not K-bounded in (mg, || ||z), since if (;) is any
sequence of scalars which converges to 0 with ¢; # ¢; for i # j, then no
subseries of Etkjekj will converge to an element of mg. (Any subseries
2 tx;ex; will converge coordinatewise to an element of I°°\my).

The method used in the construction of the example above can be gener-
alized to yield a large number of examples of K-convergent sequences which
are not K-bounded (see (3], p.15).

The above example 6 shows that even N-convergent sequences are not
K-bounded. This gives negative answers to both questions.

K-bounded sets are also ipmortant in the construction of the locally con-
vex topology which is used in the theory of the uniform Boundedness Prin-
ciple ([2],[3],{20]) and in the theory of the Adjoint Theorem ([15],[16],[17]).
Example 7. Let X be a locally convex space and X', its dual. If we denote
by K(X,X"), the topology of uniform convergence on o(X’, X) - K-bounded
subsets of X', then K (X, X’) is stronger than the Mackey topology 7(X, X')
(Proposition 1 from [20]), but still have same bounded sets.

We have to express our gratitude to prof. P. Antosik for his valuable
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help in preparing this paper.
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REZIME

O SUMABILNOJ OGRANICENOSTI U KONVERGENTNOM
VEKTORSKOM PROSTORU

U radu su dokazane neke osobine K-ogranicenih i N-ograni¢enih skupova u
nizovno konvergentnom vektorskom prostoru. Dobijeni su i neki kriterijumi
za N-ograni¢enost, Dat je primer K-konvergentnog (N-konvergentnog) niza
koji nije K-ograniéen (N-ograniéen).
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