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t-conorm decomposable measures.
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1 . Introduction

In this paper we shall investigate the regularity property of the L-decompo-
sable measure with respect.to a t-conorm L. We have considered such mea-
sures in previous papers [6]- [8] (see also [1] and [10]) on families of abstract
sets. In this paper we shall restrict ourselves to the L-decomposable mea-
sures defined on the class B of Borel sets of a locally compact set X. Among
other results, we shall prove the singleton characterization of atoms of the
regular Borel L-decomposable measure - Theorem 1. We shall also give some
conditions which ensure the regularity of the L-decomposable measures with
respect to continuous at zero t-conorms L-Theorem 4. We shall prove the
order continuity of L-decomposable measures which are decomposable with
respect to t-conorm L, which have a series property - Theorem 5.
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2 . Consequences of the regularity

Let X be locally compact Hausdorff topological space and let K be the
lattice of all the compact subsets of X. Borel o-ring B is the smallest o-ring
containing K. We shall denote by O the class of all the open sets belonging
to B.

A function L : [0,1] x [0,1] — [0,1] will be called t-conorm, if it is
asociative, commutative, monotone and has 0 as a neutral element (see [1],
[6] - [8], [10]). A set function m : B — [0,1] with m(@) = 0 will be caled a
(Borel) L-decomposable measure if

m(AU B) = m(A)Lm(B)

holds for all A,B € B, such that AN B = 0.
A 1-decomposable measure m is regular, if for each set A € B and each
€ >0 thereexist K € K and V € @, such that K C A C V and

m(V\K)<e.
A set function m : B — [0,1] is order continuous if
Jim m(En) =0

for any sequence (E,), E, € B (n € N), such that E, \, .

A set function m : B — [0,1] is exhaustive, if

Jim, m(Er) =

for any sequence (E,) of pairwise disjoint sets from B.

A set A € B is an atom of L-decomposable measure m iff m(A4) > 0
and either m(AN B) = 0 or m(A\ B) = 0 for any B € B.

We have in the following theorem as an important property of atoms of
regular Borel L-decomposable measures. '

Theorem 1. Let m: B — [0,1] be a regular Borel L -decomposable measure
with respect to an arbitrary but fized t-conorm L. If A € B is an atom of
m, then there ezists a point a € A such that :

m(4) = m({a}).
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Proof. Let A € B be an arbitrary, but fixed atom of m. We denote with K’
the family of the compact sets K C A, such that m(A \ K) = 0. Since for
of any fixed K € X',

KnBCcANnB and K\BC A\B
hold for any B € B, we have by the ménotonicity of m
m(KNB)-m(K\B)=
Then, since we have
m(K)=m(A\K) L m(K)=m(A) >0,

K is an atom of m.
Further, for each K; and K, from K’ we have by the monotonicity and
1 -subaddivity of m

m(A\ (Ki N K3)) = m((A\ K1) U (A\ K2)) <

"< m(A\ K1) L m(A\ Ky).
Hence, by m(A\ K;) =0 (i = 1,2) we have

m(A\(K1NK3)) =0, ie. K1NK;€K'.

Now, let
Ko= () K.
Kex!

Then K is a non-emty compact set. Indeed, if we would suppose the con-
trary,i.e. Ko = @, then, since X is a Hausdorff topological space, there would
exist some finite subcollection of { K'} xexs with an empty intersection. This
is imposible, since this finite subcollection would belong to K’, but it is an
atom as an element of X’, which is non-empty. We shall show that K, € K'.
Namely, for an arbitrary but fixed K € K’ there has to be m(K \ Kp) = 0.
If we suppose that this is not true, then, since for any B € B, we have

BN(K\Ko)CANB and
(K'\ Ko)\ B C A\ B,

we obtain
m(B N (K \ Ko)) - m((K \ Ko)\ B) =0,
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i.e. K\ Ko would be an atom of m. We have
(1) m(A) = m(A\ K) L m(K \ Ko) L m(Kp).

Since we supposed that m(K \ Ko) > 0 and A , K are atoms of m (which
implies m(A) > 0 and m(Kyo) = m(K N Kp) = 0) , we obtain by (1)

m(A) = m(K \ Ko).

Hence,

m(A\ (K \ Ko)) = 0.

These facts imply that K \ Ko has to contain an element of K'. Since K is
non-empty, this is a contradiction. So, we have m(K \ Ko) = 0. Then, by
(1), we obtain m(A) = m(Kpy), i.e. m(A\ Ko) = 0. That means Ky € K'.
We shall show that Ky reduces on a set with one element. If we suppose the
contrary that Ko contains at least two distinct elements a; and a;, then,
since X is a locally compact Hausdorff topological space, there exists an
open neighbourhood V of a; such that V does not contain a; . Then, we
have
Ko = (Ko \V)U(KoN V).

Since one of the sets Ko\ V, Ko NV has to belong to K’ , but Ky is the
least element from K'’, we obtain a contradiction. So, we have for some
a € A m(A) = m(Ko) = m({a}).

In the special case X = R, we have

Theorem 2. Fach continuous from above regular Borel 1 -decomposable
measure m: B(R) — [0, 1] with respect to an arbitrary but fired t-conorm L
on the Borel o-algebra B(R), which has the property

m((a,b)) = g(b~ a) ((a,b) C [0,1])
for some continuous at 0 function g with g(0) = 0, is non-atomic.

Proof. Suppose the contrary. Then, there exists an atom A € B(R) of m.
Then, by Theorem 1, there exists a € A, such that m(A) = m({a}). Then,

m({a}) = m((\(a - 20+ ) =

n=1

. 1 1
= lim m((e - ~e+-)) =
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= lim g(%) =0 ie. m({a}) = 0.

n-—00

Contradicton.

Theorem 3. A regular Borel L-decomposable measure m with respect to an
arbitrary but fized t-conorm L is exhaustive on the family of open sets O.

Proof. Let (O,) be a sequence of open sets from O which are pairwise
disjoint. Since U2, 0y, is an open set, for any £ > 0, there exists a compact
set K such that K C U320, and

m(G O\ K) < c.
n=1

Since (O,,) is an open cover of K, there exists a natural number ng such that
K C U2, ,0,. Then, we have by the monotonicity of m for k > ng + 1

n=1

m(0) < m(e () 0n\ ) < m( | 0a'\ K)
n=1

n=1

3 . Regularity and continuity

We have in the following theorem conditions which ensure the regularity of
the Borel t-conorm decomposable measure.

Theorem 4. Let m: B — [0,1] be a L-decomposable measure with respect
to a continuous at zero t-conorm L, which is ezhaustive on the family of
compact sets K and salisfies the condition

(2) m(A) = sup{m(K): K € K,K C A} (A € B).
Then m is a regular Borel 1 -decomposable measure.

Proof. Suppose that m is not regular. Then, there exist a set A from B and
a number ¢ > 0 such that
3) m(V\K)>¢

foreach K €e X,V € O,K Cc AC V. Let us fix such sets Ky and V. Then,
by (2), there exist C1,D1 € K,C CVo\ A, D1 C A\ Ko, such that

m(C1) 2 3m(Vo\ 4) and m(D1) 2 sm(4\ Ko).
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If we denote by V; = V5 \ C; and K3 = Ko U Dy, then we have V; € O and
K, € K and
KiCACW.

Hence, by (3), we have
m(Vl\ Al) > E.

Now, we are going to repeat the preceding procedure. After n-steps we have
Cn,D'n e Ka Cn C V-l \A, Dn C A\K -1
such that

4 m(Cn)> %m(Vn_l \A); m(D,)> %m(A\K 1)

So, we have two sequences (C,) and (D)) of pairwise disjoint sets from K,
whice are subsets of Vp . Since m is exhaustive on K ,we obtain by (4)

nanolo m(Vo\ A) =0 and Jl{rolo m(A\ Knc1) = 0.
Hence, by continuity at zero of t-conorm L, we have
nanolo m(Vo \ Kp) = nlLrgg((V,. \A)U(A\ K,))=0.

Contradiction with (3).

Now, we are going to introduce an important condition for the t-conorm

1. '
A t-conorm 1 has the series property if for some kg € N

4(

r T

5"2To) SI ,(I € [0,1])

holds. It is obvious that t-conorm with the series property is also continuous
at zero. :

Many important known t-conorms have the series property. For ex-
ample: 1,.(z,y) = min(z + y,l),1 Us(z,y) = min(z + y + Azy,1) for
A> -1,5(z,y) = (2P + y? — zPyP)>, for fixed p > 0, etc.

Theorem 5. Fach regular Borel 1 -decomposable measure m with respect to
a t-conorm L which has the series property is order continuous and exhaus-
tive.
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Proof. Let (A,) be a sequence from B such that A, \, ® and let ¢ > 0 .
Since m is regular, we can choose Ki € K (k € N) such that
. €
m(Ax \ Ki) < Sk-1)+hy (keN).
Hence, by the series property of L and L-subadditivity of m, we obtain

m(|J(Ae\ K)) <
k=1

< (oo (M(ANKR) L A1\ K no1)) LM Ap—2\ Kn—2))L ... Lm(A1\K})) <
€ € £ €
< (- (e L 5mmam) L gimerri )L - Lom) <
€ € 3
<Gy Lommmm)t - Lgm) <&
We have N, K; € K and N, K; C A,. Since A, \, §, we obtain N, K; \,

@. Then, there exists a natural number ng such that N, K; = @ for n > no.
Hence, for n > ng

An = A\ () Ki = J(An \ K3) € J(4i \ Kb).
=1 =1 i=1
Then, by the monotonicity of m, we have

n
m(As) < m(|J(Ai\ K)) <¢
i=1
for n > ng, i.e. m is order continuous. If (E,) is a sequence of pairwise
disjoint sets from B, then the inequality

m(E,) < m( D E}) holds

k=n
Since U, Ex \, 9, the preceding inequality implies the exhaustivity of m.

Remark 1. Theorem 5 implies that the set function m(A) = supreaf(2),
from Ezample 2.4 of [8], is not regular, although it is o-sup-decomposable
and the sup has the sertes property.

Corollary 1. Each regular Borel L-decomposable measure m with respect
to an Archimedean t-conorm L, which has the series property, is o — L-
additive. -

Remark 2. For L-decomposable measure with respect to continuous (spe-
cially Archimedean) t-conorm, we can apply the results of H. Weber [9] and
P. Morales [5] on uniform semigroup valued measures.
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REZIME

REGULARNE BORELOVE t-KONORMA DEKOMPOZABILNE
MERE

U radu se ispituje regularnost .-dekompozabilnih mera u odnosu na t-
konormu 1 a koje su definisane na Borelovim skupovima lokalno kompak-
tnog Hausdorffovog topologkog prostora.

Received by the editors March 5, 1990. o



