Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20, 2 (1990), 113-120 Review of Research Faculty of Science Mathematics Series

REGULAR BOREL t-DECOMPOSABLE MEASURES

Endre Pap

Institute of Mathematich, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Yugoslavia

Abstract

The aim of the present paper is to study the regularity of Borel t-conorm decomposable measures.

AMS Mathematics Subject Classification (1980): 28B10, 28C15 Key words and phrases: t-conorm, Borel sets, order continuous, regular Borel \perp -decomposable measure.

1. Introduction

In this paper we shall investigate the regularity property of the \bot -decomposable measure with respect to a t-conorm \bot . We have considered such measures in previous papers [6]- [8] (see also [1] and [10]) on families of abstract sets. In this paper we shall restrict ourselves to the \bot -decomposable measures defined on the class $\mathcal B$ of Borel sets of a locally compact set X. Among other results, we shall prove the singleton characterization of atoms of the regular Borel \bot -decomposable measure - Theorem 1. We shall also give some conditions which ensure the regularity of the \bot -decomposable measures with respect to continuous at zero t-conorms \bot -Theorem 4. We shall prove the order continuity of \bot -decomposable measures which are decomposable with respect to t-conorm \bot , which have a series property - Theorem 5.

2. Consequences of the regularity

Let X be locally compact Hausdorff topological space and let \mathcal{K} be the lattice of all the compact subsets of X. Borel σ -ring \mathcal{B} is the smallest σ -ring containing \mathcal{K} . We shall denote by \mathcal{O} the class of all the open sets belonging to \mathcal{B} .

A function $\bot : [0,1] \times [0,1] \to [0,1]$ will be called t-conorm, if it is associative, commutative, monotone and has 0 as a neutral element (see [1], [6] - [8], [10]). A set function $m : \mathcal{B} \to [0,1]$ with $m(\emptyset) = 0$ will be called a (Borel) \bot -decomposable measure if

$$m(A \cup B) = m(A) \perp m(B)$$

holds for all $A, B \in \mathcal{B}$, such that $A \cap B = \emptyset$.

A \perp -decomposable measure m is **regular**, if for each set $A \in \mathcal{B}$ and each $\varepsilon > 0$ there exist $K \in \mathcal{K}$ and $V \in \mathcal{O}$, such that $K \subset A \subset V$ and

$$m(V \setminus K) < \varepsilon$$
.

A set function $m: \mathcal{B} \to [0,1]$ is order continuous if

$$\lim_{n\to\infty} m(E_n)=0$$

for any sequence (E_n) , $E_n \in \mathcal{B}$ $(n \in \mathcal{N})$, such that $E_n \setminus \emptyset$.

A set function $m: \mathcal{B} \to [0,1]$ is exhaustive, if

$$\lim_{n\to\infty} m(E_n)=0$$

for any sequence (E_n) of pairwise disjoint sets from \mathcal{B} .

A set $A \in \mathcal{B}$ is an atom of \perp -decomposable measure m iff m(A) > 0 and either $m(A \cap B) = 0$ or $m(A \setminus B) = 0$ for any $B \in \mathcal{B}$.

We have in the following theorem as an important property of atoms of regular Borel \pmd-decomposable measures.

Theorem 1. Let $m: \mathcal{B} \to [0,1]$ be a regular Borel \perp -decomposable measure with respect to an arbitrary but fixed t-conorm \perp . If $A \in \mathcal{B}$ is an atom of m, then there exists a point $a \in A$ such that

$$m(A)=m(\{a\}).$$

Proof. Let $A \in \mathcal{B}$ be an arbitrary, but fixed atom of m. We denote with \mathcal{K}' the family of the compact sets $K \subset A$, such that $m(A \setminus K) = 0$. Since for of any fixed $K \in \mathcal{K}'$,

$$K \cap B \subset A \cap B$$
 and $K \setminus B \subset A \setminus B$

hold for any $B \in \mathcal{B}$, we have by the monotonicity of m

$$m(K\cap B)\cdot m(K\setminus B)=0.$$

Then, since we have

$$m(K) = m(A \setminus K) \perp m(K) = m(A) > 0,$$

K is an atom of m.

Further, for each K_1 and K_2 from \mathcal{K}' we have by the monotonicity and \perp -subaddivity of m

$$m(A \setminus (K_1 \cap K_2)) = m((A \setminus K_1) \cup (A \setminus K_2)) \le$$

$$\le m(A \setminus K_1) \perp m(A \setminus K_2).$$

Hence, by $m(A \setminus K_i) = 0$ (i = 1, 2) we have

$$m(A \setminus (K_1 \cap K_2)) = 0$$
, i.e. $K_1 \cap K_2 \in \mathcal{K}'$.

Now, let

$$K_0=\bigcap_{K\in\mathcal{K}'}K.$$

Then K_0 is a non-emty compact set. Indeed, if we would suppose the contrary, i.e. $K_0 = \emptyset$, then, since X is a Hausdorff topological space, there would exist some finite subcollection of $\{K\}_{K \in \mathcal{K}'}$ with an empty intersection. This is imposible, since this finite subcollection would belong to \mathcal{K}' , but it is an atom as an element of \mathcal{K}' , which is non-empty. We shall show that $K_0 \in \mathcal{K}'$. Namely, for an arbitrary but fixed $K \in \mathcal{K}'$ there has to be $m(K \setminus K_0) = 0$. If we suppose that this is not true, then, since for any $B \in \mathcal{B}$, we have

$$B \cap (K \setminus K_0) \subset A \cap B$$
 and
$$(K \setminus K_0) \setminus B \subset A \setminus B,$$

we obtain

$$m(B \cap (K \setminus K_0)) \cdot m((K \setminus K_0) \setminus B) = 0,$$

i.e. $K \setminus K_0$ would be an atom of m. We have

$$(1) m(A) = m(A \setminus K) \perp m(K \setminus K_0) \perp m(K_0).$$

Since we supposed that $m(K \setminus K_0) > 0$ and A, K are atoms of m (which implies m(A) > 0 and $m(K_0) = m(K \cap K_0) = 0$), we obtain by (1)

$$m(A)=m(K\setminus K_0).$$

Hence,

$$m(A\setminus (K\setminus K_0))=0.$$

These facts imply that $K \setminus K_0$ has to contain an element of K'. Since K_0 is non-empty, this is a contradiction. So, we have $m(K \setminus K_0) = 0$. Then, by (1), we obtain $m(A) = m(K_0)$, i.e. $m(A \setminus K_0) = 0$. That means $K_0 \in K'$. We shall show that K_0 reduces on a set with one element. If we suppose the contrary that K_0 contains at least two distinct elements a_1 and a_2 , then, since X is a locally compact Hausdorff topological space, there exists an open neighbourhood V of a_1 such that \bar{V} does not contain a_2 . Then, we have

$$K_0 = (K_0 \setminus V) \cup (K_0 \cap \bar{V}).$$

Since one of the sets $K_0 \setminus V$, $K_0 \cap \bar{V}$ has to belong to K', but K_0 is the least element from K', we obtain a contradiction. So, we have for some $a \in A$ $m(A) = m(K_0) = m(\{a\})$.

In the special case $X = \mathbf{R}$, we have

Theorem 2. Each continuous from above regular Borel \perp -decomposable measure $m: \mathcal{B}(\mathbf{R}) \to [0,1]$ with respect to an arbitrary but fixed t-conorm \perp on the Borel σ -algebra $\mathcal{B}(\mathbf{R})$, which has the property

$$m((a,b)) = g(b-a) \ ((a,b) \subset [0,1])$$

for some continuous at 0 function g with g(0) = 0, is non-atomic.

Proof. Suppose the contrary. Then, there exists an atom $A \in \mathcal{B}(\mathbb{R})$ of m. Then, by Theorem 1, there exists $a \in A$, such that $m(A) = m(\{a\})$. Then,

$$m(\{a\}) = m(\bigcap_{n=1}^{\infty} (a - \frac{1}{n}, a + \frac{1}{n})) =$$

$$=\lim_{n\to\infty}m((a-\frac{1}{n},a+\frac{1}{n}))=$$

$$= \lim_{n \to \infty} g(\frac{2}{n}) = 0 \text{ i.e. } m(\{a\}) = 0.$$

Contradicton.

Theorem 3. A regular Borel \perp -decomposable measure m with respect to an arbitrary but fixed t-conorm \perp is exhaustive on the family of open sets O.

Proof. Let (O_n) be a sequence of open sets from \mathcal{O} which are pairwise disjoint. Since $\bigcup_{n=1}^{\infty} O_n$ is an open set, for any $\varepsilon > 0$, there exists a compact set K such that $K \subset \bigcup_{n=1}^{\infty} O_n$ and

$$m(\bigcup_{n=1}^{\infty} O_n \setminus K) < \varepsilon.$$

Since (O_n) is an open cover of K, there exists a natural number n_0 such that $K \subset \bigcup_{n=1}^{n_0} O_n$. Then, we have by the monotonicity of m for $k \ge n_0 + 1$

$$m(O_k) \le m(O_k \bigcup (\bigcup_{n=1}^{n_0} O_n \setminus K)) \le m(\bigcup_{n=1}^{\infty} O_n \setminus K)$$

3. Regularity and continuity

We have in the following theorem conditions which ensure the regularity of the Borel t-conorm decomposable measure.

Theorem 4. Let $m: \mathcal{B} \to [0,1]$ be a \perp -decomposable measure with respect to a continuous at zero t-conorm \perp , which is exhaustive on the family of compact sets K and satisfies the condition

(2)
$$m(A) = \sup\{m(K) : K \in \mathcal{K}, K \subset A\} \ (A \in \mathcal{B}).$$

Then m is a regular Borel \perp -decomposable measure.

Proof. Suppose that m is not regular. Then, there exist a set A from B and a number $\varepsilon > 0$ such that

$$m(V \setminus K) > \varepsilon$$

for each $K \in \mathcal{K}, V \in \mathcal{O}, K \subset A \subset V$. Let us fix such sets K_0 and V_0 . Then, by (2), there exist $C_1, D_1 \in \mathcal{K}, C \subset V_0 \setminus A$, $D_1 \subset A \setminus K_0$, such that

$$m(C_1) \geq \frac{1}{2}m(V_0 \setminus A)$$
 and $m(D_1) \geq \frac{1}{2}m(A \setminus K_0)$.

If we denote by $V_1 = V_0 \setminus C_1$ and $K_1 = K_0 \cup D_1$, then we have $V_1 \in \mathcal{O}$ and $K_1 \in \mathcal{K}$ and

$$K_1 \subset A \subset V_1$$
.

Hence, by (3), we have

$$m(V_1 \setminus A_1) > \varepsilon$$
.

Now, we are going to repeat the preceding procedure. After n-steps we have

$$C_n, D_n \in \mathcal{K}, C_n \subset V_{n-1} \setminus A, D_n \subset A \setminus K_{n-1},$$

such that

(4)
$$m(C_n) \ge \frac{1}{2}m(V_{n-1} \setminus A); \quad m(D_n) \ge \frac{1}{2}m(A \setminus K_{n-1}).$$

So, we have two sequences (C_n) and (D_n) of pairwise disjoint sets from K, whice are subsets of V_0 . Since m is exhaustive on K, we obtain by (4)

$$\lim_{n\to\infty} m(V_n \setminus A) = 0 \text{ and } \lim_{n\to\infty} m(A \setminus K_{n-1}) = 0.$$

Hence, by continuity at zero of t-conorm 1, we have

$$\lim_{n\to\infty} m(V_n \setminus K_n) = \lim_{n\to\infty} ((V_n \setminus A) \cup (A \setminus K_n)) = 0.$$

Contradiction with (3).

Now, we are going to introduce an important condition for the t-conorm \perp .

A t-conorm \perp has the series property if for some $k_0 \in N$

$$\perp (\frac{x}{2}, \frac{x}{2^{k_0}}) \leq x \quad (x \in [0, 1])$$

holds. It is obvious that t-conorm with the series property is also continuous at zero.

Many important known t-conorms have the series property. For example: $\perp_m(x,y) = min(x+y,1)$, $U_{\lambda}(x,y) = min(x+y+\lambda xy,1)$ for $\lambda > -1$, $S_p(x,y) = (x^p + y^p - x^p y^p)^{\frac{1}{p}}$, for fixed p > 0, etc.

Theorem 5. Each regular Borel \perp -decomposable measure m with respect to a t-conorm \perp which has the series property is order continuous and exhaustive.

Proof. Let (A_n) be a sequence from \mathcal{B} such that $A_n \setminus \emptyset$ and let $\varepsilon > 0$. Since m is regular, we can choose $K_k \in \mathcal{K}$ $(k \in N)$ such that

$$m(A_k \setminus K_k) < \frac{\varepsilon}{2(k-1)+k_0} \ (k \in N).$$

Hence, by the series property of \bot and \bot -subadditivity of m, we obtain

$$m(\bigcup_{k=1}^n (A_k \setminus K_k)) \le$$

$$\leq (\dots((m(A_n\backslash K_n)\bot m(A_{n-1}\backslash K_{n-1}))\bot m(A_{n-2}\backslash K_{n-2}))\bot \dots \bot m(A_1\backslash K_1)) \leq$$

$$\leq (\dots((\frac{\varepsilon}{2^{(n-1)+k_0}}\bot \frac{\varepsilon}{2^{(n-2)+k_0}})\bot \frac{\varepsilon}{2^{(n-3)+k_0}})\bot \dots \bot \frac{\varepsilon}{2^{k_0}}) \leq$$

$$\leq (\dots(\frac{\varepsilon}{2^{(n-2)}}\bot \frac{\varepsilon}{2^{(n-3)+k_0}})\bot \dots \bot \frac{\varepsilon}{2^{k_0}}) \leq \varepsilon.$$

We have $\bigcap_{i=1}^n K_i \in \mathcal{K}$ and $\bigcap_{i=1}^n K_i \subset A_n$. Since $A_n \setminus \emptyset$, we obtain $\bigcap_{i=1}^n K_i \setminus \emptyset$. Then, there exists a natural number n_0 such that $\bigcap_{i=1}^n K_i = \emptyset$ for $n \geq n_0$. Hence, for $n \geq n_0$

$$A_n = A_n \setminus \bigcap_{i=1}^n K_i = \bigcup_{i=1}^n (A_n \setminus K_i) \subset \bigcup_{i=1}^n (A_i \setminus K_i).$$

Then, by the monotonicity of m, we have

$$m(A_n) \leq m(\bigcup_{i=1}^n (A_i \setminus K_i)) < \varepsilon$$

for $n \geq n_0$, i.e. m is order continuous. If (E_n) is a sequence of pairwise disjoint sets from \mathcal{B} , then the inequality

$$m(E_n) \leq m(\bigcup_{k=n}^{\infty} E_k)$$
 holds

Since $\bigcup_{k=n}^{\infty} E_k \setminus \emptyset$, the preceding inequality implies the exhaustivity of m.

Remark 1. Theorem 5 implies that the set function $m(A) = \sup_{x \in A} f(x)$, from Example 2.4 of [8], is not regular, although it is σ -sup-decomposable and the sup has the series property.

Corollary 1. Each regular Borel \perp -decomposable measure m with respect to an Archimedean t-conorm \perp , which has the series property, is $\sigma - \perp$ -additive.

Remark 2. For \perp -decomposable measure with respect to continuous (specially Archimedean) t-conorm, we can apply the results of H. Weber [9] and P. Morales [5] on uniform semigroup valued measures.

References

- [1] D'Apuzzo, L., Squillante, M., Ventre, A.G.S.: A survey on decomposable measures, Control and Cybernetics (to appear)
- [2] Dinculeanu, N., Kluvanek, I.: On vector measures, Proc. London Math.Soc., III. Ser. 17 (1967), 505-512.
- [3] Dobrakov, I.: On submeasures I, Dissertationes Math. 112, Warszawa, 1974.
- [4] Khurana, S.S.: Extension and regularity of group-valued Baire measures, Bull. Acad. Polon. Sci. Ser Sci. Math. Astron. Phys. 22 (1974), 891-895.
- [5] Morales, P.: Regularity and extension of semigroup-valued Baire measures, Lecture Notes in Math. 794, Proc. Measure Theory, Oberwolfach 1979, Springer-Verlag, 1980, 317-323.
- [6] Pap, E.: Lebesgue and Saks decompositions of ⊥-decomposable measures, Fuzzy Sets and Systems, 38 (1990), 345-353.
- [7] Pap, E.: On non-additive set functions, Atti Sem. Mat. Fis. Univ. Modena, 39 (1991), 345-360.
- [8] Pap, E.: Extension of the continuous t-conorm decomposamble measure, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. (in print).
- [9] Weber, S.: Fortsetzung von Massen mit Werten in uniformen Halbgruppen, Arch. der Math. 27 (1976), 412-423.
- [10] Weber, S.: ⊥-decomposable measures and integrals for Archimedean t-conorms, J. Math. Anal. Appl. 101 (1984), 114-138.

REZIME

REGULARNE BORELOVE t-KONORMA DEKOMPOZABILNE MERE

U radu se ispituje regularnost 1-dekompozabilnih mera u odnosu na t-konormu 1 a koje su definisane na Borelovim skupovima lokalno kompaktnog Hausdorffovog topološkog prostora.

Received by the editors March 5, 1990.