Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20, 1 (1990), 89-95 Review of Research Faculty of Science Mathematics Series

A COMMON FIXED POINT THEOREM FOR A FAMILY OF MAPPINGS IN CONVEX METRIC SPACES

Olga Hadžić 1

Institute of Mathematics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Yugoslavia

Abstract

In this paper a generalization of the common fixed point theorem from [2] is proved.

AMS Mathematics Subject Classification (1980): 47H10

Key words and phrases: Common fixed points, convex metric spaces.

1. Introduction

There are many fixed point theorems or common fixed point theorems in convex metric spaces ([1], [2], [3], [4], [7], [8]).

In [2] we proved the following common fixed point theorem.

Theorem 1. Let (M,d) be a complete, convex metric space, K a nonempty, closed subset of M, $f,S,T:K\to M$ continuous mappings so that $\partial K\subseteq SK\cap TK$, $f(K)\cap K\subseteq SK\cap TK$ and

$$Tx \in \partial K \Rightarrow f(x) \in K; Sx \in \partial K \Rightarrow fx \in K.$$

¹This research was supported by Science Fund of Serbia, grant number 0401A, through Matematički institut

If (f,S) and (f,T) are weakly commutative and there exists a nondecreasing function $q:[0,\infty)\to [0,1)$ such that

$$d(fx, fy) \le q(d(Sx, Ty))d(Sx, Ty), for every x, y \in K$$

then there exists $z \in K$ so that

$$z = fz \in \{Tz, Sz\}.$$

If $S,T:M\to M$ then there exists one and only one $z\in K$ such that z=fz=Tz=Sz.

In this paper we shall prove a generalization of Theorem 1 if $S,T:M\to M$.

The notion of a weakly commutative pair of mappings is introduced by Sessa in [6] and the notion of a compatible pair of mappings by Jungck in [5]. There are examples of compatible pairs which are not weakly commutative and weakly commutative pairs which are not commutative.

The next definition is a slight modification of the Jungck definition.

Definition 1. Let (M,d) be a metric space, $A: \mathcal{D}(A) \to M, S: \mathcal{D}(S) \to M$, $\mathcal{D}(A) \subseteq M, \mathcal{D}(S) \subseteq M$. The pair (A,S) is said to be compatible if for every sequence $\{x_n\}_{n\in\mathbb{N}}$ from $\mathcal{D}(A)\cap\mathcal{D}(S)$ such that $\lim_{n\to\infty}Ax_n=\lim_{n\to\infty}Sx_n=t\in M$ and $Ax_n\in\mathcal{D}(S), Sx_n\in\mathcal{D}(A)$, for every $n\in\mathbb{N}$ the relation

$$\lim_{n\to\infty}d(ASx_n,SAx_n)=0$$

holds.

2. A common fixed point theorem

The following fixed point theorem is a generalization of Theorem 1 if $S, T : M \to M$.

Theorem 2. Let (M,d) be a complete, convex metric space, K a nonempty closed subset of $M,S,T:M\to M$ continuous mappings so that $\partial K\subseteq SK\cap TK$, for every $i\in \mathbb{N},\ A_i:K\to M$ continuous mappings such that

 $A_iK \cap K \subseteq SK \cap TK$, (A_i, S) and (A_i, T) compatible pairs and there exists a nondecreasing function $q:[0,\infty) \to [0,1)$ such that

$$d(A_ix, A_jy) \leq q(d(Sx, Ty))d(Sx, Ty),$$

for every $i \neq j (i, j \in \mathbb{N})$ and every $x, y \in K$.

If for every $i \in \mathbb{N}$ and $x \in K$ the implications

$$Tx \in \partial K \Rightarrow A_i x \in K$$
; $Sx \in \partial K \Rightarrow A_i x \in K$

hold, then there exists $z \in K$ such that

$$z = Tz = Sz = A_iz$$
, for every $i \in \mathbb{N}$.

Proof. Let $x \in \partial K$ and $p_0 \in K$ so that $x = Tp_0$. Then for every $i \in \mathbb{N}$, $A_ip_0 \in K$ and so $A_1p_0 \in SK$ which implies that there exists $p_1 \in K$ such that $Sp_1 = A_1p_0 \in K$. Let $p'_1 = A_1p_0, p'_2 = A_2p_1$. If $p'_2 \in K$ then there exists $p_2 \in K$ so that $Tp_2 = A_2p_1$ and if $p'_2 \notin K$, since M is a convex metric space, there exists $p_2 \in K$ such that $Tp_2 \in \partial K$ and

$$d(Sp_1, Tp_2) + d(Tp_2, A_2p_1) = d(Sp_1, A_2p_1).$$

If we continue this process we obtain sequences $\{p_n\}_{n\in\mathbb{N}}$ and $\{p'_n\}_{n\in\mathbb{N}}$ such that for every $n\in\mathbb{N},\ p_n\in K,\ p'_{n+1}=A_{n+1}p_n$ and the following implications hold:

(i)
$$p'_{2n} \in K \Rightarrow p'_{2n} = Tp_{2n},$$

 $p'_{2n} \notin K \Rightarrow Tp_{2n} \in \partial K$ and

$$d(Sp_{2n-1}, Tp_{2n}) + d(Tp_{2n}, A_{2n}p_{2n-1}) =$$

$$= d(Sp_{2n-1}, A_{2n}p_{2n-1})$$

(ii)
$$p'_{2n+1} \in K \Rightarrow p'_{2n+1} = Sp_{2n+1},$$

 $p'_{2n+1} \notin K \Rightarrow Sp_{2n+1} \in \partial K$ and

$$d(Tp_{2n}, Sp_{2n+1}) + d(Sp_{2n+1}, A_{2n+1}p_{2n}) = d(Tp_{2n}, A_{2n+1}p_{2n}).$$

Let us prove that there exists $z \in K$ such that $z = \lim_{n \to \infty} Tp_{2n} = \lim_{n \to \infty} Sp_{2n+1}$. The sets P_0, P_1, Q_0, Q_1 will be defined in the following way:

$$P_0 = \{p_{2n}; p'_{2n} = Tp_{2n}, n \in \mathbb{N}\},\$$

$$P_1 = \{p_{2n}; p'_{2n} \neq Tp_{2n}, n \in \mathbb{N}\},$$

$$Q_0 = \{p_{2n+1}; p'_{2n+1} = Sp_{2n+1}, n \in \mathbb{N}\},$$

$$Q_1 = \{p_{2n+1}; p'_{2n+1} \neq Sp_{2n+1}, n \in \mathbb{N}\}.$$

It is easy to see that we have the following possibilities:

$$(p_{2n}, p_{2n+1}) \in P_0 \times Q_0; (p_{2n}, p_{2n+1}) \in P_0 \times Q_1;$$

 $(p_{2n}, p_{2n+1}) \in P_1 \times Q_0.$

a) $(p_{2n}, p_{2n+1}) \in P_0 \times Q_0$.

Then

$$d(Tp_{2n}, Sp_{2n+1}) = d(A_{2n}p_{2n-1}, A_{2n+1}p_{2n}) \le q[d(Sp_{2n-1}, Tp_{2n})]d(Sp_{2n-1}, Tp_{2n}).$$

b) $(p_{2n}, p_{2n+1}) \in P_0 \times Q_1$.

Then

$$d(Tp_{2n}, Sp_{2n+1}) = d(Tp_{2n}, A_{2n+1}p_{2n}) - d(Sp_{2n+1}, A_{2n+1}p_{2n})$$

$$\leq d(Tp_{2n}, A_{2n+1}p_{2n}) = d(A_{2n}p_{2n-1}, A_{2n+1}p_{2n}) \leq$$

$$\leq q[d(Sp_{2n-1}, Tp_{2n})]d(Sp_{2n-1}, Tp_{2n}).$$

c) $(p_{2n}, p_{2n+1}) \in P_1 \times Q_0$. Then

$$\begin{split} d(Tp_{2n}, Sp_{2n+1}) &\leq d(Tp_{2n}, A_{2n}p_{2n-1}) + d(A_{2n}p_{2n-1}, Sp_{2n+1}) \\ &= d(Tp_{2n}, A_{2n}p_{2n-1}) + d(A_{2n}p_{2n-1}, A_{2n+1}p_{2n}) \leq \\ &\leq d(Tp_{2n}, A_{2n}p_{2n-1}) + q[d(Sp_{2n-1}, Tp_{2n})]d(Sp_{2n-1}, Tp_{2n}) \\ &\leq d(Sp_{2n-1}, Tp_{2n}) + d(Tp_{2n}, A_{2n}p_{2n-1}) = \\ &= d(Sp_{2n-1}, A_{2n}p_{2n-1}). \end{split}$$

Since $p_{2n} \in P_1$ implies that $p_{2n-1} \in Q_0$ we have that $Sp_{2n-1} = A_{2n-1}p_{2n-2}$ and so

$$d(Tp_{2n}, Sp_{2n+1}) \le d(Sp_{2n-1}, A_{2n}p_{2n-1}) =$$

$$= d(A_{2n-1}p_{2n-2}, A_{2n}p_{2n-1}) \le q[d(Tp_{2n-2}, Sp_{2n-1})].$$

$$d(Tp_{2n-2}, Sp_{2n-1}).$$

It can be proved similarly that the following implications hold:

$$\begin{split} &(p_{2n-1},p_{2n}) \in Q_0 \times P_0 \Rightarrow d(Sp_{2n-1},Tp_{2n}) \leq \\ &\leq q[d(Tp_{2n-2},Sp_{2n-1})].d(Tp_{2n-2},Sp_{2n-1}); \\ &(p_{2n-1},p_{2n}) \in Q_1 \times P_0 \Rightarrow d(Sp_{2n-1},Tp_{2n}) \leq \\ &q[d(Tp_{2n-2},Sp_{2n-3})]d(Tp_{2n-2},Sp_{2n-3}); \\ &(p_{2n-1},p_{2n}) \in Q_0 \times P_1 \Rightarrow d(Sp_{2n-1},Tp_{2n}) \leq \\ &\leq q[d(Tp_{2n-2},Sp_{2n-1})]d(Tp_{2n-2},Sp_{2n-1}). \end{split}$$

It is easy to prove that

(1)
$$d(Tp_{2n}, Sp_{2n+1}) \leq [q(\delta)]^{n-1}.\delta,$$

(2)
$$d(Sp_{2n+1}, Tp_{2n+2}) < [q(\delta)]^n \delta,$$

where $\delta = \max\{d(Tp_2, Sp_3), d(Tp_2, Sp_1)\}.$

Since $q(\delta) < 1$, (1) and (2) imply that sequences $\{Tp_{2n}\}_{n \in \mathbb{N}}$ and $\{Sp_{2n+1}\}_{n \in \mathbb{N}}$ are Cauchy sequences in K. Since M is complete there exists $z \in K$ so that $z = \lim_{n \to \infty} Tp_{2n} = \lim_{n \to \infty} Sp_{2n+1}$. Further, there exists at least one subsequence $\{Tp_{2n_k}\}_{k \in \mathbb{N}}$ or $\{Sp_{2m_k+1}\}_{k \in \mathbb{N}}$ such that for every $k \in \mathbb{N}$, $p_{2n_k} \in P_0$ or $p_{2m_k+1} \in Q_0$. Hence, let us suppose that $p_{2n_k} \in P_0$, $k \in \mathbb{N}$. From the definition of the set P_0 it follows that $Tp_{2n_k} = A_{2n_k}p_{2n_k-1}$, $k \in \mathbb{N}$.

We shall prove that for every $m \in \mathbb{N}$

(3)
$$d(z, A_m z) \le q(L)d(z, Tz)$$

for a positive number L. Since $\lim_{k\to\infty} d(Sp_{2n_k-1},Tz) = d(z,Tz)$, there exists L>0 such that

$$d(Sp_{2n_k-1},Tz) \leq L, k \in \mathbb{N}.$$

Since $Tp_{2n_k} = A_{2n_k}p_{2n_k-1}$, $k \in \mathbb{N}$ we have for $2n_k \neq m$:

$$\begin{split} d(Tp_{2n_k}, A_m z) &= d(A_{2n_k} p_{2n_k - 1}, A_m z) \le q[d(Sp_{2n_k - 1}, Tz)] \times \\ &\times d(Sp_{2n_k - 1}, Tz) \le q(L)d(Sp_{2n_k - 1}, Tz). \end{split}$$

When $k \to \infty$ we obtain that (3) holds. We shall prove that $\lim_{k\to\infty} A_m p_{2n_k} = z$. Suppose that $2n_k \neq m$.

Then

$$d(A_m p_{2n_k}, T p_{2n_k}) = d(A_m p_{2n_k}, A_{2n_k} p_{2n_k-1}) \le$$

$$\le q(L')d(T p_{2n_k}, S p_{2n_k-1})$$

where $d(Tp_{2n_k}, Sp_{2n_k-1}) \leq L'$, $k \in \mathbb{N}$. Hence $\lim_{k \to \infty} d(A_m p_{2n_k}, Tp_{2n_k}) = 0$ which implies that $\lim_{k \to \infty} A_m p_{2n_k} = z$. Since $Tp_{2n_k} \in K$ and $T: M \to M$ from the relation $\lim_{k \to \infty} d(A_m p_{2n_k}, Tp_{2n_k}) = 0$ it follows, using the compatibility of A_m and T, that

$$\lim_{k\to\infty}d(T(A_mp_{2n_k}),A_m(Tp_{2n_k}))=0.$$

This implies that $Tz = A_m z$, for every $m \in \mathbb{N}$ since T and A_m are continuous. From (3) we obtain that $d(z, A_m z) \leq q(L)d(z, A_m z)$, for every $m \in \mathbb{N}$ and since q(L) < 1 we have that $z = A_m z$. It remains to be proved that z = Sz. Suppose that $s \neq m$. Then we have for every $k \in \mathbb{N}$ that

$$d(A_sp_{2n_k-1},A_mp_{2n_k}) \leq q(L')d(Sp_{2n_k-1},Tp_{2n_k})$$

and since $\lim_{k\to\infty} d(Sp_{2n_k-1}, Tp_{2n_k}) = 0$ we obtain that $\lim_{k\to\infty} A_{a}p_{2n_k-1} = z$, for every $s\in \mathbb{N}$. We shall prove that $\lim_{k\to\infty} A_m Sp_{2n_k-1} = Sz$. Since (A_m, S) are compatible and $\lim_{k\to\infty} Sp_{2n_k-1} = \lim_{k\to\infty} A_m p_{2n_k-1} = z$ it follows that

$$\lim_{k\to\infty}d(A_mSp_{2n_k-1},SA_mp_{2n_k-1})=0.$$

Since S is continuous and $\lim_{k\to\infty} A_m p_{2n_k-1} = z$ we obtain that $\lim_{k\to\infty} A_m S p_{2n_k-1} = Sz$. Further, we have that for $m \neq s$ and every $k \in \mathbb{N}$

$$d(A_s p_{2n_k}, A_m S p_{2n_k-1}) \le q(L^n) d(T p_{2n_k}, S S p_{2n_k-1}))$$

which implies, when $k \to \infty$ that $d(z, Sz) \le q(L^n)d(z, Sz)$. Here L^n is such that $d(Tp_{2n_k}, S(Sp_{2n_k-1})) \le L^n$ for every $k \in \mathbb{N}$. Since $q(L^n) < 1$ it follows that z = Sz and so

$$z = Tz = Sz = A_m z$$
, for every $m \in \mathbb{N}$.

If z is in K then it is enough to suppose that $T, S : K \to M$ since from the relations $\lim_{k\to\infty} A_m p_{2n_k-1} = \lim_{k\to\infty} A_m p_{2n_k} = z$ it follows that there exists $k_0 \in \mathbb{N}$ such that

$$A_m p_{2n_k-1} \in K, \quad A_m p_{2n_k} \in K, \quad k \ge k_0$$

and every $m \in \mathbb{N}$.

References

- [1] Assad, N.A., Kirk, W.A.: Fixed point theorems for set-valued mappings of contractive type, Pacific J.Math., Vol. 43, No. 3(1972), 553-562.
- [2] Hadžić,O.: Some common fixed point theorems in convex metric spaces, Univ. u Novom Sadu, Zb. Rad. Prirod.- Mat.Fak.Ser.Mat., 15, 2(1985), 1-13.
- [3] Hadžić,O.: On coincidence points in convex metric spaces, Univ. u Novom Sadu, Zb. Rad. Prirod.- Mat.Fak.Ser.Mat., 19, 2 (1989), 233-240.
- [4] Itoh,S.: Multivalued generalized contractions and fixed point theorems, Comm.Math. Univ. Carolinae, 18(2)(1977), 247-258.
- [5] Jungck, G.: Compatible mappings and common fixed points, Internat. J.Math. Math.Sci., 9(4)(1986), 771-779.
- [6] Sessa, S.: On a weak commutativity condition of mappings in fixed point consideration, Publ.Inst.Math. (Beograd), 32(46)(1982), 147-153.
- [7] Takahashi, W.: A convexity in metric space and nonexpansive mappings I, Kodai Math. Sem. Rep., 22(1970), 142-149.
- [8] Talman, L.: Fixed points for condensing multifunctions in metric spaces with convex structure, Kodai Math. Sem. Rep., 29(1977), 62-70.

REZIME

TEOREMA O ZAJEDNIČKOJ NEPOKRETNOJ TAČKI ZA FAMILIJU PRESLIKAVANJA U KONVEKSNIM METRIČKIM PROSTORIMA

U ovom radu dokazano je uopštenje teoreme o zajedničkoj nepokretnoj tački iz rada [2].

Received by the editors August 15, 1990.