Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20, 1 (1990), 75-82 Review of Research Faculty of Science Mathematics Series

DISTANCE PRESERVING MAPS ON ABELIAN LATTICE ORDERED GROUPS

E.Pap

Institute of Mathematics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Yugoslavia

Abstract

If f is a map from an Abelian lattice ordered group G_1 (endowed with a root function γ_2 of order two) onto an Archimedean Abelian lattice ordered group G_2 with f(0) = 0 and |f(x) - f(y)| depends functionally on |x - y|, then f is additive.

AMS Mathematics Subject Classification (1980): 46A06, 06F20 Key words and phrases: Abelian lattice ordered group, isometry, Archimedean order.

Mazur and Ulam [7] have proved that every isometry of a normed real vector space onto a normed vector space is linear up to translation. This result was extended in many different directions. Vogt [12] has replaced isometries by the more general maps with the property that the distance between image points depends functionally on the distance between domain points.

Swamy [10],[11] has defined an isometry in an Abelian lattice ordered group G as a bijection $f: G \to G$ with the property

$$|f(x)-f(y)|=|x-y| \quad (x,y\in G)$$

(without bijectivity by Jakubik [10] under the name weak isometry). Swamy [10] has proved that every isometry on a lattice ordered group G is of the

form T(x)+a where a is a fixed element of G and T is an involutory isometric group automorphism of G.

We shall investigate, in this paper, maps from Abelian lattice ordered group G_1 into an Archimedean Abelian lattice ordered group G_2 which preserves the equlity of distance in the sense of autometrized spaces. We shall prove that the surjective distance preserving map f with f(0) = 0 is additive.

1. Let G be an Abelian group written additively with a neutral element 0. G is an Abelian lattice order group if G is also a lattice under a partial ordered relation \leq with the property that $a \leq b$ implies $c+a \leq c+b$ for all $c \in G$. A partially ordered group G is said to be Archimedean if a > 0 and b > 0 than na > b for a suitable $n \geq 1$, where $na = \underbrace{a + \cdots + a}_{n}$. We extract the following known result (see [2], footnote on page 12).

Proposition 1. If G is an Archimedean Abelian lattice ordered group, then $na < b \ (n = 0, \pm 1, \pm 2, ...)$ implies a = 0.

Let $G^+ = \{x : x \in G, x \ge 0\}$. The absolute |a| of an element $a \in G$ is defined by $|a| = a \vee (-a)$. It has the following properties:

- (i) $|a| \in G^+$, i.e. $|a| \ge 0$, for all $a \in G$ and the equality holds if and only if a = 0;
 - (ii) |-a|=|a|;
 - (iii) $|a+b| \le |a| + |b|$;
 - (iv) |na| = n|a|.

Remark. The property (iii) holds only for Abelian groups. The properties (i), (ii) and (iv) hold also for the noncommutative case.

Let G_1 and G_2 be lattice ordered Abelian groups.

Definition 1. A map $f: G_1 \to G_2$, f(0) = 0 preserves the equality of distance if there exists a function $p: G_1^+ \to G_2^+$ such that for each x and y from G

$$|f(x) - f(y)| = p(|x - y|).$$

The function p is called the gauge function for f.

Theorem 1. Let G_1 and G_2 be Abelian lattice ordered groups. If f is a map from G_1 into G_2 with f(0) = 0 then the following statements are equivalent: a) f preserves the equality of distance;

b) whenever x, y, z and u are in G_1 and |x - y| = |z - u|, then

$$|f(x) - f(y)| = |f(z) - f(u)|;$$

If $G_1 = G_2$ then the above assertions are equivalent to the following one: c) there exists an integer n such that

$$| f(x) - f(y) | = n | x - y | \quad (x, y \in G_1).$$

Proof. a) implies b). Let x, y, z and u be from G_1 such that |x - y| = |z - u|. Then we have

$$|f(x) - f(y)| = p(|x - y|) = p(|z - u|) = |f(z) - f(u)|.$$

b) implies a). We define p(z) = |f(z)| $(z \in G_1^+)$. Then p is a gauge function for f. We have for any $x, y \in G_1$ and z = |x - y|,

$$|x-y|=z=|z|=|z-0|.$$

Therefore, by b) we obtain

$$p(|x-y|) = p(z) = |f(z)| = |f(x) - f(y)|.$$

Let $G_1 = G_2$. a) implies c). Let d(x,y) = p(|x-y|). Then d(x,y) is a translation invariant map, i.e. d(a,b) = d(a+c,b+c) = d(c+a,c+b) and symmetric map, i.e. d(a,b) = d(b,a). Hence d is an intrinsic metric in the sense of Holland [3]. By the corollary from [3], there exists an integer n such that

$$p(|x-y|)=d(x,y)=n|x-y|.$$

c) implies a). If a map f satisfies c) then a gauge function for f is p(z) = nz, $(z \in G_1^+)$.

Remark. By the preceding theorem the gauge function p for a map $f: G \to G$ which preserves the equality of distance has to be of the form p(z) = nz, for an integer n. We shall call n|x-y| an intrinsic n- metric. Jakubik [1] and [2] has defined an n-isometry on a lattice ordered group as a function from G onto G which preserves the intrinsic n-metric.1-isometries

are always n-isometries for every n. For Abelian lattice ordered group every n-isometry is also an 1-isometry.

2. Using the ideas from [1] and [12] we shall prove the following theorem.

Theorem 2. Let G be an Archimedean Abelian lattice ordered group. Let A be a bounded subset of G, i.e. there exists an element b from G such that $|x| \leq b$ for all x from A. Suppose there exists an element $a \in A$, a surjective isometry (congruence in the sense of Swamy [10]) $g: A \to A$ and a natural number m such that for all $x \in A$

$$(1) m|a-x| \leq |g(x)-x|.$$

Then, every surjective isometry $h: A \rightarrow A$ fixes a.

Proof. Since each isometry in an Abelian lattice ordered group G is an injection $(x \neq y \text{ implies } |x-y| \neq 0$, hence $|f(x)-f(y)| \neq 0$ and so $f(x) \neq f(y)$, h^{-1} and g^{-1} exist. We have that h, g, h^{-1} and g^{-1} are bijective isometries. Hence any finite composition of them is also a bijective isometry. We define a sequence $\{g_n\}$ of isometries on A in the following way:

$$g_1 = g, g_2 = hg_1h, \ldots, g_{n+1} = g_{n-1}g_n(g_{n-1})^{-1}.$$

We also define a sequence $\{a_n\}$ from G in the following way:

$$a_1 = a, a_2 = h(a), \dots, a_{n+1} = g_{n-1}(a_n) \quad (n \ge 2).$$

Starting from (1) we obtain, by induction,

$$(2) m|a-x| \leq |g_n(x)-x| (x \in A).$$

Taking $x = a_{n+1}$ in (2), we have

$$m|a_{n+1}-a_n|=m|a_n-a_{n+1}|\leq |g_n(a_{n+1})-a_{n+1}|=|a_{n+2}-a_{n+1}|.$$

Hence, by induction, we obtain

$$(3) m^n|a_2-a_1| \leq |a_{n+2}-a_{n+1}| \quad (n \in N).$$

Since A is ordered bouned, we have for all $n \in N$

$$|a_{n+2}-a_{n+1}| < |a_{n+2}| + |a_{n+1}| < 2b.$$

Hence by (3), we obtain

(4)
$$n|a_2-a_1| \leq m^n|a_2-a_1| \leq 2b$$
 for each $n \in N$.

Since G is an Archimedean lattice ordered group, (4) implies by Proposition 1. $|a_2 - a_1| = 0$. Hence,

$$a=a_1=a_2=h(a).$$

This completes the proof.

A function $\gamma_n: G \to G$ is a root function of order $n \in N \cup \{0\}$ on an Abelian group G if

(a)
$$\gamma_n(x+y) = \gamma_n(x) + \gamma_n(y)$$
;

(b)
$$n\gamma_n(x) = x$$
 (see [8]); hold.

Proposition 2. Let G be an Abelian lattice ordered group. Then, for each non-negative integer n there exists at most one root function γ_n on G.

Proof. Since every lattice ordered group is isolated (see E in 5.1 from [2]) it is also torsion-free. Hence, for any $n \in N \cup \{0\}$ there exists at most one root function γ_n of order n.

Now, we have the main result of this paper.

Theorem 3. Let G_1 and G_2 be Abelian lattice ordered groups such that (G_1) has a root function G_2 is Archimedean. Let $G_1 \to G_2$ with $G_2 \to G_2$ be a surjective map which preserves the equality of distance. Then, $G_2 \to G_2$ is additive.

Proof. Let x be an arbitrary but fixed element from G_1 . We define

$$A = \{y : y \in G_2 \text{ and } |y| = |2f(x) - y| \le 2|f(x)|\}$$

and $g: A \to A$ by g(y) = 2f(x) - y. It is obvious that g is an isometry from A onto A. Taking a = f(x), we have

$$2|a-y| = 2|f(x)-y| = |(2f(x)-y)-y| = |g(y)-y|.$$

Hence, g satisfies condition (1) for m=2 from Theorem 2. Since the set A is bounded, we can apply Theorem 2. Therefore, we obtain that every

surjective isometry of A fixes a. Now we can define an appropriate isometry h. Let $u = f^{-1}(2f(x))$. We define $h: A \to A$ by

$$h(y) = f(u - f^{-1}(y)).$$

Now, we can prove that h is well-defined. If $f(x_1) = f(x_2) = y$ then we have

$$|f(u-x_1)-f(u-x_2)|=p(|(u-x_1)-(u-x_2)|)=p(|x_2-x_1|)=$$

$$=|f(x_2)-f(x_1)|=|y-y|=0.$$

Hence $f(u-x_1)=f(u-x_2)$.

If $f(x_1) = y_1$ and $f(x_2) = y_2$, then

$$|h(y_1) - h(y_2)| = |f(u - x_1) - f(u - x_2)| = p(|x_2 - x_1|) = |f(x_2) - f(x_1)| = |y_2 - y_1|,$$

i.e. h is an isometry. We shall prove that h is an isomerty from A into A. Namely, if $y_1 \in A$ and $y_1 = f(x_1)$, then

$$|2f(x) - h(y_1)| = |2f(x) - f(u - x_1)| = |f(u) - f(u - x_1)| =$$

$$p(|x_1 - 0|) = |f(x_1) - f(0)| = |y_1 - 0| = |y_1| = |2f(x) - y_1| =$$

$$|f(u) - f(x_1)| = p(|u - x_1|) = p(|(u - x_1) - 0|) =$$

$$|f(u - x_1) - f(0)| = |h(y_1) - 0| = |h(y_1)|,$$

i.e. $h(y_1) \in A$. Since h is its own inverse, h is a surjective isometry from from A onto A.

Now, we shall prove the following equality

(5)
$$f(2x) = 2f(x)$$
 $(x \in G_1)$. Since by Theorem 2 h fixes a and $f(x) = a = h(a) = f(u - f^{-1}(a)) = f(u - f^{-1}(f(x)))$

(we shall use also that $u = f^{-1}(2f(x))$ we obtain

$$|f(2x) - 2f(x)| = |f(2x) - f(u)| = p(|2x - u|) = p(|x - (u - x)|) = |f(x) - f(u - x)| = 0.$$

Hence (5).

We define for an arbitrary but fixed $y \in G_1$

$$F_{y}(x) = f(x+y) - f(y) \quad (x \in G_{1}).$$

It is obvious that $F_{\nu}(0) = 0$ and that F_{ν} is surjective. Since

$$|F_y(x_1) - F_y(x_2)| = |f(x_1 + y) - f(x_2 + y)| =$$

$$p(|(x_1 + y) - (x_2 + y)|) = p(|x_1 - x_2|).$$

 F_y preserves the equality of distance. By Proposition 2 there exists a root function γ_2 of order 2 on G_1 . Hence, by (5) it holds that

$$F_y(z) = 2F_y(\gamma_2(z)) \ (z \in G_1).$$

This equality implies that for any x and y from G_1 it holds that

$$f((x-y)+y) - f(y) = F_y(x-y) = 2F_y(\gamma_2(x-y)) = 2[f(\gamma_2(x-y)+y) - f(y)].$$

Hence,

$$f(x) + f(y) = 2f(\gamma_2(x+y)) = f(x+y).$$

References

- [1] Aronszajn, N., Caractérisation métrique de l'espace de Hilbert, des espaces vectoriels et de certains groupes metriques, Comptes Rendus Acad. Sci. Paris 201, 1935, 811-813.
- [2] Fuchs, L., Partially ordered algebraic systems, Pergamon Press, 1963.
- [3] Holland, W.C., Intrinsic metrics for lattice ordered groups, Algebra Univ. 19, 1984, 142-150.
- [4] Jakubik, J., Isometries of lattice ordered groups, Czechoslovak Mat.J.30,1980,142-152.
- [5] Jakubik, J., On isometries of non -Abelian lattice ordered group, Math.Slovaca 31,1981,171-175.

- [6] Jakubik, J. Weak isometries of lattice ordered groups, Math. Slovaca 38, 1988, 133-138.
- [7] Mazur,S. Ulam,S., Sur les transformations isométriques d'espaces vectoriels normés, Comptes Rendus Acad. Sci. Paris 194, 1932, 946-948.
- [8] Pap, E., n-convex functions on a semigroup with a root function, Univ. u Novom Sadu Zb. Rad. Prirod. Mat. Fak. Ser. Mat. 6, 1976, 7-13.
- [9] Swamy, K.L.N., Autometrized lattice ordered groups I, Math. Annalen 154, 1964, 406-412.
- [10] Swamy, K.L.N., Isometies in autometrized lattice ordered groups, Algebra Univ. 8, 1978, 59-64.
- [11] Swamy, K.L.N., Isometries in autometrized lattice ordered groups II, Math. Seminar Notes, Kobe Univ. 5, 1977, 211-214.
- [12] Vogt, A., Maps which preserve equality of distance, Studia Math. 45, 1973, 43-48.

REZIME

PRESLIKAVANJA KOJA OČUVAVAJU RASTOJANJE NAD ABELOVIM MREŽASTIM GRUPAMA

U radu je dokazano da je svako preslikavanje f sa komutativne mrežaste grupe G_1 na Arhimedovsku komutativnu mrežastu grupu G_2 sa osobinama da |f(x) - f(y)| funkcionalno zavisi od |x - y| i f(0) = 0 uvek aditivno.

Received by the editors June 19, 1989.