Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20, 1 (1990), 17-26 Review of Research Faculty of Science Mathematics Series

A FAMILY OF EXPONENTIAL SPLINE DIFFERENCE SCHEMES

Katarina Surla, Dragoslav Herceg and Ljiljana Cvetković Institute of Mathematics, University of Novi Sad Trg Dositeja Obradovića 4, 21000 Novi Sad, Yugoslavia

Abstract

Using a spline in tension for the problem: $-\varepsilon y'' + p(x)y = f(x)$, 0 < x < 1, $y(0) = \alpha_0$, $y(1) = \alpha_1$, $0 < \varepsilon << 1$, a family of difference schemes is derived. The schemes have a second order of uniform convergence. Some of them converge with respect to ε .

AMS Mathematics Subject Classification (1980): 65L10 Key words and phrases: Singular perturbation, small parameter, uniform convergence, spline in tension, difference scheme.

1. Introduction

We shall consider the problem

(1)
$$\begin{cases} -\varepsilon y^n + p(x)y = f(x), \ 0 < x < 1, \\ y(0) = \alpha_0, \ y(1) = \alpha_1, \end{cases}$$

where 0 < x < 1, p(x) and f(x) are smooth functions and $p(x) \ge p > 0$.

It is known that problem (1) has a unique solution y, which in general displays boundary layers at x = 0 and x = 1. The following lemma describes some properties of the exact solution y = y(x).

This research was supported partly by NSF and SCI for Scientific Research of SAP Vojvodina through funds made available to the U.S.-Yugoslav Joint Board on Scientific and Technological Cooperation (Grant JF 799).

Lemma 1 ([1]). Let $y(x) \in C^4[0,1]$ and p'(0) = p'(1) = 0. The the solution of (1) can be written in the form

$$y(x) = u(x) + w(x) + g(x),$$

where

$$u(x) = q_0 \exp(-x(p(0)/\varepsilon)^{1/2})$$

$$w(x) = q_1 \exp(-(1-x)(p(1)/\varepsilon)^{1/2})$$

 q_0, q_1 are bounded functions of ε independent of x and

$$|q^{(i)}(x)| \le M(1+\varepsilon^{1-(1/2)i}), i=0(1)4,$$

M is a constant independent of ε .

According to Lemma 1 we have

$$y(x) = \begin{cases} u(x) + g_1(x), & 0 < x \le 1/2, \\ w(x) + g_2(x), & 1/2 < x \le 1, \end{cases}$$

where

$$|g_i^{(i)}(x)| \le M(1+\varepsilon^{1-(1/2)i}), i=0(1)4, j=1,2.$$

Taking into account this in [3] the collocation method via the spline in tension for problem (1) id derived. A boundary layer functions u(x) and w(x) are introduced into the base of the spline. The uniform convergence of the second order is achived. In [4] the corresponding difference scheme is analysed. The optimal order of the convergence in the sense of [1] is proved. In this paper we formed different difference schemes via a spline in tension which satisfies diffe

rent collocation conditions. They are consequence of a different approxiamation of functions p(x) and f(x) (piecewise constant and piecewise linear). Some of them heve the optimal error estimate in the sense of [1], i.e.

$$(2) |y_i - v_i| < Mh \min(h, \sqrt{\varepsilon}),$$

where $y_i = y(x_i)$, v_i is the approximate value for y_i , $x_i = ih$, i = 0(1)n + 1, h = 1/n + 1, M is a constant independent of ε and h.

The corresponding results for the cubic spline are given in [6].

Throughout the paper M denotes the positive constants that may take different values in different formulas, but are always independent of ε and h. All the constants in the asymptotic equalities are independent of ε and h.

2. Derivation of the schemes

We seek the solution of problem (1) in the form of the spline in tension e(x), on the mesh $x_i = ih$, i = 0(1)n + 1, h = 1/n + 1. On each interval $[x_j, x_{j+1}], e(x)$ has the form

(3)
$$e(x) = e_j(x) = v_{j+1}t + v_j(1-t) + \frac{d_{j+1}}{\rho_j^2} (\frac{sh\mu_j t}{sh\mu_j} - t) + \frac{d_j}{\rho_j^2} (\frac{sh\mu_j (1-t)}{sh\mu_j} - (1-t)),$$

where $\mu_j = \rho_j h, \ t = \frac{x - x_j}{h}, \ x \in [x_j, x_{j+1}].$

The function e(x) belong to $C^2[0,1]$ and $e_j(x) \in \text{span } \{1, x, \exp(-\rho_j x), \exp(\rho_j x)\}.$

The values ρ_j are tension parameters wich will be determined. The unknown coefficients d_j and d_{j+1} will be determined so that the function e(x) satisfies the "comparison" problem:

(4)
$$\begin{cases} -\varepsilon e^{n}(x) + \tilde{p}(x)e(x) = \tilde{f}(x), \\ e(0) = \alpha_{0}, e(1) = \alpha_{1}, \end{cases}$$

at the grid points. Here $\tilde{p}(x)$ a $\tilde{f}(x)$ are piecewise polinomial approximations to p(x) and f(x).

Let index j be fixed. Starting with piecewise constant approximations we denote the approximate value for p(x) by p^+ when $x \in [x_j, x_{j+1}]$ and by p^- when $x \in [x_j, x_{j-1}]$. Analogously we denote the approximation for f(x). According to (3) and (4) we put

$$d_{j+1}: = d_j^+ = -\frac{f^+ - p^+ v_{j+1}}{\varepsilon}$$
 for $x \in [x_j, x_{j+1}]$ and $d_i = d_j^- = -\frac{f^- - p^- v_{j+1}}{\varepsilon}$ for $x \in [x_{j-1}, x_j]$.

Using $\rho_j = \rho^- = \sqrt{p^-/\varepsilon}$ for $x \in [x_{j-1}, x_j]$ and $\rho_j = \rho^+ = \sqrt{p^+/\varepsilon}$ for $x \in [x_j, x_{j+1}]$, from equation

(5)
$$e'_{j-1}(x_j) = e'_j(x_j)$$

and the boundary conditions, we obtain the scheme

(6)
$$\tilde{R}v_j = \tilde{Q}f_j, \quad j = 1(1)n,$$

where

$$\begin{split} \tilde{R}v_{j} &= R^{-}v_{j-1} + R^{c}v_{j} + R^{+}v_{j+1}, \\ \tilde{Q}f_{j} &= Q^{-}f^{-} + Q^{+}f^{+}, \\ R^{-} &= \frac{1}{h} + \frac{p^{-}}{\varepsilon(\rho^{-})^{2}}(-\frac{\rho^{-}}{sh\mu^{-}} + \frac{1}{h}) \\ R^{+} &= \frac{1}{h} + \frac{p^{+}}{\varepsilon(\rho^{+})^{2}}(-\frac{\rho^{+}}{sh\mu^{+}} + \frac{1}{h}) \end{split}$$

$$R^{c} = \frac{p^{-}}{\varepsilon(\rho^{-})^{2}} (\rho^{-} cth\mu^{-} - \frac{1}{h}) + \frac{p^{+}}{\varepsilon(\rho^{+})^{2}} (\rho^{+} cth\mu^{+} - \frac{1}{h}) + \frac{2}{h}$$

$$Q^{-} = \frac{1}{\varepsilon(\rho^{-})^{2}} (\rho^{-} cth\mu^{-} - \frac{\rho^{-}}{sh\mu^{-}}),$$

$$Q^{+} = \frac{1}{\varepsilon(\rho^{+})^{2}} (\rho^{+} cth\mu^{+} - \frac{\rho^{+}}{sh\mu^{+}}),$$

The chose of approximation to p(x) and f(x) determines the particular scheme.

 $v_0 = \alpha_0, v_{n+1} = \alpha_1, \mu^- = \rho^- h, \mu^+ = \rho^+ h.$

Let $p^+ = p^- = p(x_j)$ and $f^- = f^+ = f(x_j) = f_j$. Then scheme (6) obtains the form

(7)
$$r^{-}v_{j-1} + r^{c}v_{j} + r^{+}v_{j-1} = q^{c}f_{j},$$

where

$$\begin{split} r^- &= r^+ = -\frac{\rho_j}{sh\;\mu_j}, \;\; r^c = 2\;\rho_j\;cth\;\mu_j, \;\; \rho_j = \sqrt{p_j/\varepsilon}, \;\; \mu_j = \rho_j h, \\ q^c &= \frac{1}{\sqrt{\varepsilon p_j}} (2\;cth\;\mu_j - \frac{2}{sh\;\mu_j}). \end{split}$$

If we consider ρ_j as a tension parameter independent of collocation conditions and if $\rho_j \to 0$, the scheme (7) gets the form

(8)
$$-\varepsilon h^{-2}(v_{j-1}-2v_j+v_{j-1})=f(x_j).$$

Then the spline in tension becomes a cubic one and scheme (8) is derived in [6] via the cubic spline.

Let $f^- = f_{j-1}$, $f^+ = f_{j+1}$, $p^- = p_{j-1}$, and $p^+ = p_{j+1}$. Now scheme (6) has the form

(9)
$$r^{-}v_{j-1} + r^{c}v_{j} + r^{+}v_{j-1} = q^{-}f_{j-1} + q^{+}f_{j+1},$$

$$\begin{split} r^{-} &= -\frac{\sqrt{p_{j-1}/\varepsilon}}{sh\;\mu_{j-1}}\,,\;\; r^{+} = -\frac{\sqrt{p_{j+1}/\varepsilon}}{sh\;\mu_{j+1}},\\ r^{c} &= \sqrt{p_{j-1}/\varepsilon}\;cth\;\mu_{j-1} + \sqrt{p_{j+1}/\varepsilon}\;cth\;\mu_{j+1},\\ q^{-} &= \frac{1}{p_{j-1}}(\sqrt{p_{j-1}/\varepsilon}\;cth\;\mu_{j-1} - \frac{\sqrt{p_{j-1}/\varepsilon}}{sh\;\mu_{j-1}}),\\ q^{+} &= \frac{1}{p_{j+1}}(\sqrt{p_{j+1}/\varepsilon}\;cth\;\mu_{j+1} - \frac{\sqrt{p_{j+1}/\varepsilon}}{sh\;\mu_{j+1}}). \end{split}$$

In the case $f^+ = (f_{j+1} + f_j)/2$, $f^- = (f_{j-1} + f_j)/2$, $p^+ = (p_{j+1} + p_j)/2$, $p^- = (p_{j-1} + p_j)/2$, the corresponding scheme is the derived in [2]:

(10)
$$r^{-}v_{j-1} + r^{c}v_{j} + r^{+}v_{j-1} = q^{-}f_{j-1} + q^{c}f_{j} + q^{+}f_{j+1},$$

$$r^{-} = -\frac{\rho_{j-1}}{sh \mu_{j-1}}, \quad r^{+} = -\frac{\rho_{j}}{sh \mu_{j}}, \quad r^{c} = \rho_{j-1}cth \mu_{j-1} + \rho_{j}cth \mu_{j},$$

$$\rho_{j} = \sqrt{(p_{j+1} + p_{j})/2\varepsilon}, \quad \mu_{j} = h \rho_{j},$$

$$q^{-} = \frac{1}{2\varepsilon \rho_{j-1}} \left(cth \mu_{j-1} - \frac{1}{sh \mu_{j-1}}\right),$$

$$q^{+} = \frac{1}{2\varepsilon \rho_{j+1}} \left(cth \mu_{j+1} - \frac{1}{sh \mu_{j+1}}\right), \quad q^{c} = q^{-} + q^{+}.$$

In [2] it is proved that scheme (10) has a second order of the uniform convergence.

When $\tilde{p}(x) = \frac{p_j - p_{j-1}}{h} (x - x_{j-1}) + p_{j-1}$ for $x \in [x_{j-1}, x_j]$ equation (5) leads to the scheme derived in [5]:

(11)
$$r^{-}v_{j-1} + r^{c}v_{j} + r^{+}v_{j-1} = q^{-}f_{j-1} + q^{c}f_{j} + q^{+}f_{j+1},$$

$$r^{-} = -\frac{\mu_{j-1}}{sh \mu_{j-1}}, \ r^{+} = -\frac{\mu_{j+1}}{sh \mu_{j-1}}, \ r^{c} = 2\mu_{j} \ cth \ \mu_{j},$$

$$q^{-} = -\frac{1}{p_{j-1}} \left(1 - \frac{\mu_{j-1}}{sh \mu_{j-1}}\right), \ q^{+} = -\frac{1}{p_{j+1}} \left(1 - \frac{\mu_{j+1}}{sh \mu_{j+1}}\right),$$

$$q^{c} = -\frac{2}{p_{j}} \left(-1 + \mu_{j} \ cth \mu_{j}\right), \ \mu_{j} = h \sqrt{p_{j}/\varepsilon}.$$

For scheme (11) estimate (2) is valid ([5]).

When ε is fixed and $h \to 0$, the mentioned schemes become within $0(h^4)$ the schemes derived in [6] via the spline without the fitting factors.

3. Convergence of the schemes

The following theorem gives sufficient conditions for the convergence of schemes (6).

Theorem 1 Let in (1) $y(x) \in c^4[0,1]$ and p'(0) = p'(1) = 0. Let v_j be the approximation to $y(x_j)$ obtained using scheme (6) where

$$p^{-} = p(x_{j} - \alpha h) + 0(h^{2}), \quad p^{+} = p(x_{j} + \alpha h) + 0(h^{2}),$$

$$f^{-} = f(x_{j} - \alpha h) + 0(h^{2}), \quad f^{+} = f(x_{j} + \alpha h) + 0(h^{2}), \quad 0 \le \alpha \le 1.$$

Then, the estimate

$$|y(x_j) - v_j| \leq Mh^2$$

holds.

Proof. Let A be a matrix corresponding to scheme (6). Then

(13)
$$|y(x_j) - v_j| \leq ||A^{-1}|| \max_j |\tilde{\tau}_j(y)|$$

where

$$\tilde{\tau}_{j}(y) = \tilde{R}y_{j} - \tilde{R}v_{j} = \tilde{R}y_{j} - \tilde{Q}f_{j} = \tilde{R}y_{j} - Qf_{j} + Qf_{j} - \tilde{Q}f_{j},
Qf_{j} = q^{+}(-\varepsilon y^{n}_{j} + p^{+}y_{j}) + q^{-}(-\varepsilon y^{n}_{j} + p^{-}y_{j}).$$

After some Taylor developments, we obtain that

$$(14) |Qf_j - \tilde{Q}f_j| \le \begin{cases} Mh^3/\varepsilon & \text{for } h^2 \le \varepsilon \\ Mh^2/\sqrt{\varepsilon} & \text{for } \varepsilon \le h^2. \end{cases}$$

According to Lemma 1, we have

(13)
$$\tau_j(y) = \tilde{R}y_j - Qf_j = \tau_j(u) + \tau_j(w) + \tau_j(g),$$

Now, we shall estimate separately the contribution to the error from functions u, w and g. Let $\varepsilon \leq h^2$. Then

$$\tau_j(g) = T_0 g_j + T_1 g_{j'} + T_2 g_{j''} + T_3 g_{j'''} + R^- g^{iv}(\sigma_1) + R^+ g^{iv}(\sigma_2),$$

where $x_{j-1} < \sigma_1 < x_j < \sigma_2 < x_{j+1}$,

$$T_0 = R^- + R^c + R^+ - Q^- p^- - Q^+ p^+ = 0, T_1 = -hR^- + hR^+,$$

 $T_2 = h^2/2(R^- + R^+) + \varepsilon(Q^- + Q^+), T_3 = h^3/3! (-R^- + R^+).$

By Taylor developments and Lemma 1 we obtain

$$|\tau_j(g)| \leq Mh^3/\varepsilon.$$

One can check that $\tau_j(u) = 0$ for p(x) = p(0) = const. Thus, if denote

$$\tau_j(u) = \tau_j(u, p^-, p^+),$$

we have $\tau_j(u, p(0), p(0)) = 0$ and $\tau_j(u) = \tau_j(u, p^-, p^+) - \tau_j(u, p(0), p(0))$. Using Taylor expansions about p(0) we obtain

$$|\tau_i(u)| \leq Mh^3/\varepsilon.$$

Further, $\tau_j(w, p(1), p(1)) = 0$ where $\tau_j(w) = \tau_j(w, p^+, p^-)$. In a similar way as for $\tau_j(u)$, we can prove than

$$(16) |\tau_j(w)| \leq Mh^3/\varepsilon.$$

Since

(17)
$$\|A^{-1}\| \leq \begin{cases} Mh^3/\varepsilon & \text{for } h^2 \leq \varepsilon \\ Mh^2/\sqrt{\varepsilon} & \text{for } \varepsilon \leq h^2, \end{cases}$$

from (11) - (17) we obtain the statement of Theorem 1 when $h^2 \le \varepsilon$. Let $h^2 \ge \varepsilon$. Since $|R^-|, |R^+| \le M/h, |q^-|, |q^+| \le M/\sqrt{\varepsilon}$, from the

expression

$$\tau_j(g) = T_0 g_j + T_1 g_{j'} + R^- h^2 g_{j''}(\xi_1) + R^+ h^2 g_{j''}(\xi_2) + \varepsilon (Q^- + Q^+) g_{j'}'',$$

we obtain

$$|\tau_j(g)| \leq Mh.$$

Further,

$$\tau_j(u) = \tau_j(u, p, p) - \tau_j(u, p(0), p(0)) = (R^- - R^-(p(0)))u_{j-1} + (R^c - R^c(p(0), p(0)))u_j + (R^+ - R^+(p(0)))u_{j+1}$$

where $R^- = R^-(p^-)$, $R^+ = R^+(p^+)$, $R^c = R^c(p^-, p^+)$. Using the known properties of exponential functions [1], we have

$$(19) |\tau_j(u)| \leq M\varepsilon/h.$$

Similarly $|\tau_j(w)| \leq M\varepsilon/h$ and from (13), (18), (19) and (20) we obtain the statement of Theorem 1.

Theorem 2 Let the assumptions of Theorem 1 be fulfilled. Let v_j be the approximate value for $y(x_j)$ obtained using scheme (7). Then

$$|y(x_j) - v_j| \le M \min(h^2, \varepsilon), \quad j = 0(1)n + 1.$$

Proof. In the case $h^2 \leq \varepsilon$ the statement follows from Theorem 1 ($\alpha = 0$ and the constant in the asymptotic member is equal to zero). For $\varepsilon \leq h^2$ we have that $Qf_j - \tilde{Q}f_j = 0$. Since $|r^-|$, $|r^+| \leq M\sqrt{\varepsilon}$ and $|\tau_j(g)| \leq M\sqrt{\varepsilon}$, following the proof of the Theorem 1 we obtain that Theorem 2 holds.

References

- Doolan, P.E., Miller, H.J.J., Schilders, Uniform Numerical Methods for Problems with Initial and Boundary Layers, Boole Press, Dublin, 1980.
- [2] Hegarty, F.A., Miller, H.J.J., O'Riordan, E., Uniform second order difference schemes for singular perturbation problems, Boundary and Interior Layer-Computational and Asymptotic Methods (J.J.H. Miller, ed.), Boole Press, Dublin, 1980, 301-305.
- [3] Surla, K., A collocation by spline in tension, Approx. Theory and its Appl. 6:2 (1990) 101-110.
- [4] Surla, K., Herceg, D., Exponential spline difference scheme for singular perturbation problem, Proceedings of the Conference ISAM'89, Spline in Numerical Analysis, Weissig 1989, 171-180.
- [5] Surla, K., Stojanović, M., Solving a singularly perturbed boundary value problem by spline in tension, J. Comput. Appl. Math. 24 (1988) 355-363.
- [6] Uzelac, Z., Surla, K., A family of uniformly convergent spline difference schemes for self-adjoint problems, Proceedings of the VI-th Seminar on Applied Mathematics, Tara 1988, B.S. Jovanović, ed. 243-249.

REZIME

FAMILIJA EKSPONENCIJALNIH SPLAJN DIFERENCNIH ŠEMA

Koristeći splajn u tenziji za problem $-\varepsilon y^n + p(x)y = f(x)$, 0 < x < 1, $y(0) = \alpha_0$, $y(1) = \alpha_1$, $0 < \varepsilon << 1$, izvedena je familija diferencnih šema. Šeme imaju drugi red uniformne konvergencije. Neke od njih konvergiraju u odnosu na ε .

Received by the editors November 7, 1988.