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Abstract

Using a spline in tension for the problem: —cy” + p(z)y =
f(z), 0 <z <1, y(0) = ag, y(1) = a5, 0 < € << 1, a family
of difference schemes is derived. The schemes have a second order of
uniform convergence. Some of them converge with respect to «.
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1. Introduction

We shall consider the problem

(1) ~ey” +plz)y = f(z), 0<z < 1,
y(0) = a0, y(1) = a1,

where 0 < z < 1, p(z) and f(z) aresmooth functionsand p(z)>p > 0.

It is known that problem (1) has a unique solution y, which in
general displays boundary layers at 2 =0 and z = 1. The follownig
lemma describes some properties of the exact solution y = y(z).
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Lemma 1 ([1}). Let y(z) € C4[0,1] and p'(0) = p'l) = 0. The the
solution of (1) can be written in the form

¥(2) = u(z) + w(z) + 9(2),

where

wz) = goexp(~2(w0)/e)/?)
w(z) = g exp(~(1-z)(p(1)/€)/?)

go,q1 are bounded functions of ¢ independent of z and
| () | < M(1+-0/2), i =0(1)4,

M is a constant independent of «¢. 0

According to Lemma 1 we have

¥(z) = u(z) + qi(z), 0<z<1/2,
w(z) + g2(z), 1/2< 2z <1,

where . g
162(2) | < M1+, i=o(, j=1,2

Taking into account thisin (3] the collocation method via the spline in
tension for problem (1) id derived. A boundary layer functions u(z) and
w(z) are introduced into the base of the spline. The uniform convergence
of the second order is achived. In [4] the corresponding difference scheme
is analysed. The optimal order of the convergence in the sense of [1] is
proved. In this paper we formed differnt difference schemes via a spline in
tension which satisfies diffe

rent collocation conditions. They are consequence of a different approx-
iamation of functions p(z) and f(z) (piecewise constant and piecewise
linear). Some of them heve the optimal error estimate in the sense of [1],
ie.

(2) | Yi — o I < Mhmln(ha‘\/z)a

where y; = y(z;), v; is the approximate value for y;, z; = th, i =
0(1)n+1, h=1/n+1, M is a constant independent of ¢ and h.
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The corresponding results for the cubic spline are given in {6].

Throughout the paper M denotes the positive constants that may take
different values in different formulas, but are always independent of ¢ and
h. All the constants in the asymptotic equalities are independent of ¢ and
h. ,

2. Derivation of the schemes

We seek the solution of problem (1) in the form of the spline in tension
e(z), onthe mesh z;=1h, i=01)n+1, h=1/n+1. On each interval
[z;yzi4+1], e(z) has the form

djy1 shpt

(3) e(z) = ej(z) = vt +vi(1 - t) + p? " shu;

t)+

d; shy;(1 - 1)

-(1-1)),
Aoy 7Y

where pj = pjh, t = 52, z € [zj,z;41].

The function e(z) belong to C?[0,1] and
e;(z) € span {1,z,exp(—pjz), exp(p;z)}.
The values p; are tension paramenters wich will be detemined. The
unknown coefficients d; and d;;; will be determined so that the function
e(z) satisfies the "comparison” problem:

—ce”(z) + f(a)e(2) = f(2),
*) { e(0) = ao, €(1) = ax,

at the grid points. Here $(z) a f(z) are piecewise polinomial approxi-
mations to p(z) and f(z).

Let index j be fixed. Starting with piecewise constant approxiamtions
we denote the approximate value for p(z) by p* when =z € [zj,z;41]
and by p~ when z € [z;,z;_1]. Analogously we denote the approximation .
for f(z). According to (3) and (4) we put
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+ _ gty g ,
djiyr1: = d‘-*:—f—i;——"—+1 for z €[zj,zj41] and

for z € [zj_1,z;].

d = d- =1 —PUn
) £

Using pj=p = +/p Je for z € [J:,_l,:r,] and p; =p*t = /pt/e

for z € [z;,2j41], from equation

(8) ej-1(zj) = €j(z;)
and the boundary conditions, we obtain the scheme

(6) R‘Dj = Q~f15 .7 = l(l)nv

where

Rv; = R vj+ Rcvj + R+v_,-+1,
Qfi = Q[ +Q*ft,

- _ 1 p . p 1
B = 3+ 7o TR
1 pt pt 1
+ _ = _ —
RT = h + s(p+)2( shut t h)
IEEPPCSITT | pt 4 1, 2
¢ = t — thut — —)+ =
= _)2(/’ cthy h)+€(p+),(p cthu™ — 2)+ 4
Q- = —1—(p cthu~ - L)
(=) hp="
1 pt
+ _ +
Q - E(P+)2(p c h +)’
Y% = ao, Vnp1=o1, p=p h, pt=pth

The chose of approximation to p(z) and f(z) determines the par-
ticular scheme.

Let p* =p~ =p(z;) and [~ = ft = f(z;) = fJ Then scheme (6)
obtains the form
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(7) rTvjo1 + v +rteig = ¢°f,
where
- pj
rm=rt= _sth," ° =2 p;j cth pj, pj =1\[p;i/¢, pj=pjh,

2
sh p;

1
¢ = 2cth p; ~ .
q \/E_pj( can p; )

If we consider p; as a tension parameter independent of collocation
conditions and if p; — 0, the scheme (7) gets the form

(8) ~ e h™(vjo1 ~ 2v; + vj21) = f(z;).

Then the spline in tension becomes a cubic one and scheme (8) is derived
in [6] via the cubic spline.

Let f~ = f;1, f* = fi+1, P~ = pj-1, and p* = pj31. Now scheme
(6) has the form

(9) T vi-1 + v + v = ¢ fi-1 + ¢t fi,

\/PJ -1/¢ _\/Pj+1/€

rT = =
Sh Hi—-1 ’ sh Bi+1 ’
r® = \[pi-1/e cth iy +\[pis1/e cth pjp,
- p] 1/5
q = _1/e cth p;_q —
VP [€ eth pj1 =~ o
1 \/PJ+1/5
+
g7 = ——(\/pj+1/e cth pjpy — ——).
it VT / T shopjn

In the case f* = (fis1 + fi)/2, f~ = (fi-1 + fi)/2, p* = (i1 +
P;j)/2, p~ = (pj-1+p;)/2, the correspondong scheme is the derived in [2]:
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(10) r v+ v+ oo = ¢ fia 4+ i + 0t fin,
rT = —ﬁ_jlj, rt = —3’filj’ r° = pj-1¢cth pi_1 + pjcth p;,
pi = (Pi+1+ i)/ 2e, n;=hpj,
T = % Pi-1 (cth pj-1 = sh lllj-l)’
¢ = 5 ;1>,-+1 (cth pjp1 ~ & ;Hl), ¢©=q +q".

In [2] it is proved that scheme (10) has a second order of the uniform
convergence.

When p(z) = 8=t (z — zj_1) + pj-1 for z € [zj-1,2;] equation
(5) leads to the scheme derived in [5):

(11) rvjo + v+ rtvisy = ¢ fisi + ¢ fi + 4t fin,
- = __.“J.;l... + _ _ﬁi'_l._. ¢ — 2. cth u;
T sh i1 r sh s’ T u; cth pj,
- 1 Bi-1 + 1 Bji1
= - 1-— , = — 1-
1 Pi—1 ( sh l‘j-l) Pi+1 ( sh pjn”
. 2
¢ = - (=1+ pj cthp;), pj=h/pj/e.
J

For scheme (11) estimate (2) is valid ([5)]).

When ¢ isfixed and h — 0, the mentioned schemes become within
0(h*) the schemes derived in [6] via the spline without the fitting factors.

3. Convergence of the schemes

The following theorem gives sufficient conditions for the convergence of
schemes (6).
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Theorem 1 Let in (1) y(z) € ¢*[0,1] and p'(0) =p'(1) =0. Let v;
be the approxiamtion to y(z;) obtained using scheme (6) where

P~ = plz; —ak) +0(h?), p* = p(z; + ah) + O(h?),
fm = f(zj-ah) +0(h?), f*=f(z;+ah)+0(h?),0<a< 1.

Then, the estimate
(12) | | y(z;) — v; | < MA?

holds.

Proof. Let A be a matrix corresponding to scheme (6). Then
(13) ly(zj) = vi| < [[A7]] max | 7(y) |
where

7i(y) = Ry;—Rvj=Ry;-Qf;=Ry; —Qf; +Qf; - Qf;,
Qf; gt (~ey”; +p¥y;) + a7 (—€y”; + P y;).

After some Taylor developments, we obtain that

= Mh3fe for K2 <¢
(14) [Qfi—-Qfil < { MR2)\JE for € < h2.
According to Lemma 1, we have
(13) 7i(y) = Ry; — Qf; = 5(u) + m5(w) + 75(9),

Now, we shall estimate sgparately the contribution to the error from func-
tions u,w and g. Let & < h2. Then

75(9) = Tog; + Tigj + Tagjn + Tagjm + R™g™(01) + R*g"(ay),
where Z;-1 <01 <2 <02 <Zj4,

To = R +R°+R*-Q p~ -Q*p* =0, Ty = —hR™ + hR*,
T; = h*/2(R™ + R*)+e(Q™ +Q*), Ts =h3/3! (~R™ + R*).
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By Taylor developments and Lemma 1 we obtain

(14) | 7i(g) | < Mh?/e.

One can check that 7;(u) =0 for p(z) = p(0) = const. Thus, if denote
7i(u) = (w07, p*),

we have 7;(u,p(0),p(0)) =0 and 7;(u) = 7;(u,p™,p*) — 7;(u,p(0), p(0)).
Using Taylor expansions about p(0) we obtain

(15) | 75(w) | < Mh[e.

Further, 7;(w,p(1),p(1)) =0 where 7j(w)= rj(w,p*,p”). In asimilar
way as for 7;(u), we can prove than

(16) | Ti(w) | € MR3e.
Since . \

-1 Mh3[e for h*<¢
(17) "A " S { MhZ/\/E fOl‘ € S h2,

from (11)- (17) we obtain the statement of Theorem 1 when AZ<e.
Let A% > ¢. Since |R™|,|R*| < M/h, |¢7|,l¢t| < M/\/e, from the

expression
75(9) = Tog; + Tagj + R™h’gin(&1) + R*h%gjn(&2) +€(Q + Q*)g?,
we obtain
(18) | 7i(9) | < Mh.
Further,

7j(¢) = 75(2, p,p) — 7j(%, §(0), p(0)) = (R™ - R™(p(0)))u;-1+

H(R - B°(2(0), HO))y; + (R — R*(2(0)))41

where R~ = R™(p~), Rt = R*(p*), R° = R(p~,p*). Using the known
properties of exponential functions [1], we have

(19) | 7i(u) | < Me/h.

Similarly |7j(w)| < Me/h and from (13), (18), (19) and (20) we
obtain the statement of Theorem 1.
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Theorem 2 Let the assumptions of Theorem 1 be fulfilled. Let v; be
the approzimate value for y(z;) obtained using scheme (7). Then

| y(z5) - v;] <M min(h%e), j=0()n+ 1.

Proof. In the case h? < ¢ the statement follows from Theorem 1 (
a =0 and the constant in the asymptotic member is equal to zero). For
€ < h? we have that Qf; ~ @f; = 0. Since |r~|, |rt| < M\ and
| 75(9) | £ M+/e, following the proof of the Theorem 1 we obtain that
Theorem 2 holds.
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REZIME
FAMILIJA EKSPONENCIJALNIH SPLAJN DIFERENCNIH SEMA

Koristeéi splajn u tenziji za problem —ey” + p(z)y = f(z), 0 < z <
1, ¥(0) = ag, y(1) = a1, 0 < € << 1, izvedena je familija diferencnih
fema. Seme imaju drugi red uniformne konvergencije. Neke od njih konver-
giraju u odnosu na ¢.
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