Univ. u Novom Sadu Zb.Rad. Prirod.-Mat.Fak. Ser.Mat. 19,2, 93-104 (1989) REVIEW OF RESEARCH FACULTY OF SCIENCE NATHEMATICS SERIES

ON A CLASS OF BISEMILATTICES

Janez USan and Andreja Tepavčević

Institute of Mathematics, University of Novi Sad Dr Ilije Duricica 4, 21000 Novi Sad, Yugosiavia

Abstract. In the papers [1] and [2] a near-lattice was defined as a bisemilattice (Q, V, Δ) satisfying the identity:

 $x\Delta(y\nabla z\nabla x) = (x\Delta y)\nabla(x\Delta z)\nabla(x\Delta x).$

This structure is called here a (Λ, V) -weak-distributive bisemilattice, and the structure satisfying the dual identity is said here to be a (V, Λ) -weak-distributive bisemilattice.

In this paper a near-lattice is defined as a bisemilattice which satisfies the identity

 $x\nabla(y\Delta x) = (x\nabla y)\Delta x.$

70

Some properties of such structures are proved, and a necessary and sufficient condition for a bisemilattice to be a near-lattice is given.

A bisemilattice (Q,∇,Δ) is an algebra with two binary operations such that (Q,∇) and (Q,Δ) are commutative semigroups which satisfy the idempotent laws.

. We shall say that a bisemilattice (Q, ∇ , Δ) is a neariattice iff for all $x,y\in Q$

AMS Mathematics Subject Classification (1980): 20M99 Key words and phrases: bisemilattices, near-lattices

$$(SM) \qquad \qquad x\nabla(y\Delta x) = (x\nabla y)\Delta x.$$

(SM) is a self- dual law, and if (Q,∇,Δ) is a near-lattice, then (Q,Δ,∇) is also a near-lattice. Thus, the duality is satisfied in any near-lattice.

Example 1.

$$Q = \{a,b,c\}$$

۷	abc	Δ a b c	The bisemilattice (Q, ∇, Δ) is
a	a b c a b a b b b a b c	a bbb bbbb	not a near-lattice, since
С	abc	c b b c	$a\nabla(c\Delta a) = b \neq a = (a\nabla c)\Delta a$.

In a bisemilattice (Q, ∇, Δ) (SM) follows from the identity $x\Delta(y\nabla z\nabla x) = (x\Delta y)\nabla(x\Delta z)\nabla(x\Delta x)$ (replacing z by x). It also follows from the dual identity. Hence:

Proposition 1. $[1]^2$ Every (Δ, ∇) -weak-distributive bisemilattice (as a (∇, Δ) -weak-distributive bisemilattice) is a near-lattice.

Example 2.

$$Q = \{a, b, c\}$$

⊽	abc	∆ abc
a	a b c	aaaa
b	bbb	b abb
С	cbc	c abc

The bisemilattice (Q, ∇, Δ) is a (Δ, ∇) -weak-distributive bisemilattice, and so it is a near-lattice, but since

 $c\nabla(a\Delta b\Delta c)=c \neq b=(c\nabla a)\Delta(c\nabla b)\Delta c$, it is not a (∇,Δ) -weak-distributive bisemilattice.

If (Q, ∇, Δ) is a near-lattice, we define partial orders on the set Q by:

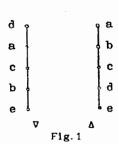
$$a \le_{\nabla} b$$
 iff $a\nabla b = b$ and $a \le_{\Lambda} b$ iff $a\Delta b = a$.

We represent a near-lattice (Q, ∇, Δ) by Hasse diagrams of the semilattices (Q, ∇) and (Q, Δ) . If $\mathbf{a} \leq_{\overline{V}} \mathbf{b}$, then in a Hasse diagram of (Q, ∇) , we draw \mathbf{b} above \mathbf{a} , and if $\mathbf{a} \leq_{\overline{\Delta}} \mathbf{b}$, then we do the same in a Hasse diagram of (Q, Δ) .

²This proposition gave the initial idea for this paper.

Example 3.

 $Q = \{a, b, c, d, e\}$



Since $b\Delta(c\nabla a\nabla b) \neq (b\Delta c)\nabla(b\Delta a)\nabla b$, and $c\nabla(e\Delta d\Delta c) \neq (c\nabla e)\Delta(c\nabla d)\Delta c$, the bisemilattice (Q, ∇, Δ) is neither a (∇, Δ) , nor a (Δ, ∇) -weak-distributive bisemilattice, but it is a near-lattice.

In a near-lattice (Q, ∇, Δ) , $a\nabla b = b$ implies $a\nabla(a\Delta b) = a\Delta(a\nabla b) = a\Delta b$, and $b\nabla(a\Delta b) = (b\nabla a)\Delta b = b$.

Thus, we have:

Lemma 2. Let (Q, ∇, Δ) be a near-lattice. If for $a, b \in Q$, $a \leq_{\overline{V}} b$, then $a\nabla(a\Delta b) = a\Delta b$ and $b\nabla(a\Delta b) = b$.

Dually, we have:

Lemma 2'. Let (Q, ∇, Δ) be a near-lattice. If for a, beQ, b \leq_{Δ} a, then $a\Delta(a\nabla b) = a\nabla b$ and $b\Delta(a\nabla b) = b$.

Corollary 3. If (Q, ∇, Δ) is a near-lattice and $b \leq_{\nabla} a$, then $b \leq_{\nabla} a\Delta b \leq_{\nabla} a.$

Corollary 3'. If (Q, ∇, Δ) is a near-lattice and $b \leq_{\Delta} a$, then $b \leq_{\Delta} a \nabla b \leq_{\Delta} a$.

Corollary 4. If (Q, ∇, Δ) is a near-lattice, then

- (a) $a \leq_{\nabla} a\Delta(a\nabla b) \leq_{\nabla} a\nabla b$,
- (b) $b \leq_{\nabla} b\Delta(a\nabla b) \leq_{\nabla} a\nabla b$,
- (c) $a\Delta b \leq_{\Lambda} a\nabla(a\Delta b) \leq_{\Lambda} a$,
- (d) $a\Delta b \leq_{\Lambda} b\nabla(a\Delta b) \leq_{\Lambda} b$.

Proposition 5. Let (Q, ∇, Δ) be a near-lattice. If for $a, b \in Q$ (*) $a\Delta(b\nabla a) = b\Delta(a\nabla b)$, then

(**)
$$a\Delta b = a\nabla b = a\Delta(b\nabla a) = b\Delta(a\nabla b) = (a\Delta b)\nabla a = (b\Delta a)\nabla b$$
.

Proof. Let a and b be comparable in any of two semilattices, for instance let $a\nabla b = b$. Then, using (*), $a\Delta b = b$, and hence we have (**).

Let a and b be incomparable. By Corollaries 3 and 3', since a $\Delta b <_\Delta a$ and a $\Delta b <_\Delta b$,

aΔb ≤ (aΔb)Vb ≤ b.

Since $(a\Delta b)\nabla a = (a\Delta b)\nabla b$, we have

 $(a\Delta b)\nabla a = (a\Delta b)\nabla b = a\Delta b$. Dually,

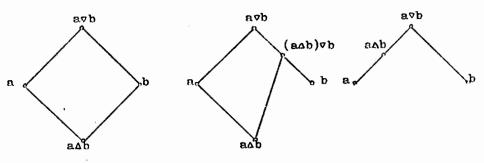
 $(a\nabla b)\Delta a = (a\nabla b)\Delta b = a\nabla b$, hence, we have (**).

Lemma 6. If (Q, ∇, Δ) is a near-lattice, then

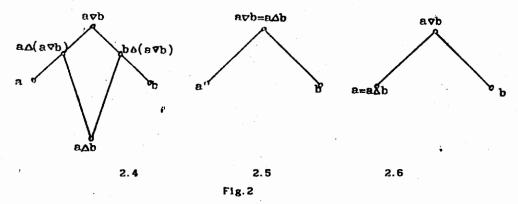
- (a) For all a,beQ, if aAb \leq_{∇} a and b ∇ (aAb) = a ∇ b, then aAb =a.
- (b) For all a,beQ, if $(a\Delta b)\nabla b = a\nabla b$ and a $\leq_{\nabla} (a\Delta b)\nabla a \leq_{\nabla} a\nabla b$, then $(a\Delta b)\nabla a = a\Delta b$.
- (c) For all a,beQ if a ∇ b = (a Δ b) ∇ a = (a Δ b) ∇ b, then a ∇ b = a Δ b.

Proof.

- (a) If $a\Delta b \leq_{\Delta} a$, then $a = (a\Delta b)\nabla a = a\Delta(b\nabla a)$. Since $a\nabla b = b\nabla(a\Delta b) = (b\nabla a)\Delta b$, we have that $a\Delta b = (a\Delta(b\nabla a))\Delta b = a\Delta((b\nabla a)\Delta b) = a\Delta(a\nabla b) = a$.
- (b) From $a\nabla b = (a\Delta b)\nabla b = b\Delta(a\nabla b)$, it follows that $a\nabla b \leq_{\tilde{\Delta}} b$. By Corollary 4(c), since $a\Delta b \leq_{\tilde{\Delta}} a\Delta(a\nabla b) \leq_{\tilde{\Delta}} a$, it follows that $a\Delta b \leq_{\tilde{\Delta}} a\Delta(a\nabla b) \leq_{\tilde{\Delta}} a\Delta b$, hence $(a\Delta b)\nabla a = a\Delta(a\nabla b) = a\Delta b$.
- (c) From $a\nabla b = (a\Delta b)\nabla a = a\Delta(b\nabla a)$, and $a\nabla b = (a\Delta b)\nabla b = b\Delta(a\nabla b)$, it follows that $a\nabla b \leq_{\Delta} a$, and $a\nabla b \leq_{\Delta} b$, hence $a\nabla b \leq_{\Delta} a\Delta b$. By Corollary 4(c) $a\Delta b \leq_{\Delta} a\nabla b$, hence $a\nabla b = a\Delta b$.
- Lemma 7. Let (Q, ∇, Δ) be a near-lattice, and $a, b \in Q$. If a and b are incomparable under s_{∇} , then there are 6 up to the isomorphism different subsemilattices generated by a, b and $a\Delta b$ in the semilattice (Q, ∇) . (See the diagrams in Figures 2.1-2.6).



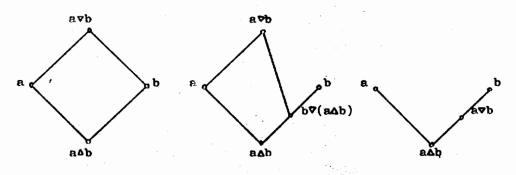
2. 1



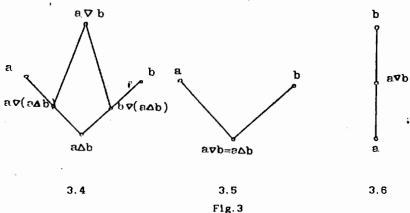
Proof.

By Corollaries 4(a) and 4(b), a \leq_{∇} (a Δ b) ∇ a \leq_{∇} a ∇ b, and b \leq_{∇} b ∇ (a Δ b) \leq_{∇} a ∇ b. There are nine cases: a ∇ (a Δ b) = a, a $<_{\nabla}$ a ∇ (a Δ b) $<_{\nabla}$ a ∇ b and a ∇ (a Δ b) = a ∇ b, combined with cases b ∇ (a Δ b) = b, b $<_{\nabla}$ b ∇ (a Δ b) $<_{\nabla}$ a ∇ b and b ∇ (a Δ b) = a ∇ b. Also, we differ cases when a ∇ (a Δ b) = a Δ b, and a ∇ (a Δ b) \neq a Δ b. Using Lemma 6 we have that subsemilattices represented in Figures 2.1-2.6 are the only, up to the isomorphism, subsemilattices generated by a,b and a Δ b in the semilattice (Q, ∇).

Lemma 8. Let (Q, ∇, Δ) be a near-lattice and $a, b \in Q$. If a, b and $a\Delta b$ generate subsemblattices of the semilattice (Q, ∇) represented in Figures 2.1-2.6, respectively, then a, b and $a\nabla b$ generate subsemblattices of the semilattice (Q, Δ) represented in Figures 3.1-3.6, respectively.



3.1



Proof.

-The case in Fig. 2.14

From $a=aV(a\Delta b)=a\Delta(aVb)$ and $b=bV(a\Delta b)=b\Delta(aVb)$, it follows that $a\leq_{\hat{\Lambda}}aVb$ and $b\leq_{\hat{\Lambda}}aVb$. Since a and b are incomparable under $\leq_{\hat{\Lambda}}$ (otherwise we would have $a\Delta b=a$ or $a\Delta b=b$, which is not case), the only suitable subsemilattice is the one in Fig. 3.1.

-The case in Fig. 2.2

 $a = (a\Delta b)\nabla a = a\Delta(b\nabla a)$, and $(a\Delta b)\nabla b = (a\nabla b)\Delta b$, and the element $(a\Delta b)\nabla b$ differs from $a\Delta b$ and from b, hence the only suitable subsemilattice is the one in Fig. 3.2.

-The case in Fig. 2.3

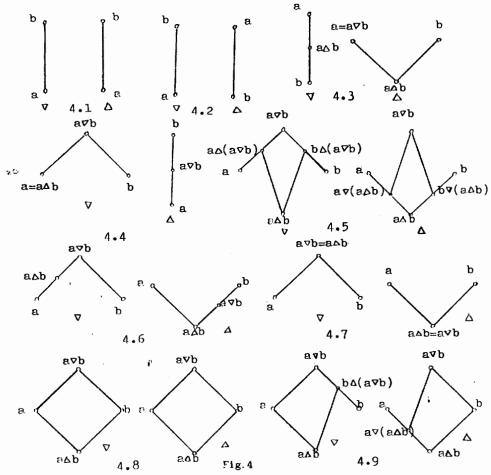
From $a\Delta b = a\nabla(a\Delta b) = a\Delta(a\nabla b) = a\Delta b\Delta(a\nabla b)$ it follows that $a\Delta b <_{\Delta} a\nabla b$, and from $a\nabla b = (a\Delta b)\nabla b = b\Delta(a\nabla b)$, we have that $a\nabla b <_{\Delta} b$, hence the only suitable subsemilattice is the one in Fig. 3.3.

-The case in Fig. 2.4

Elements $(a\Delta b)Va = a\Delta(bVa)$ and $(b\Delta a)Vb = b\Delta(aVb)$ differ from a, b, aVb and a\Delta b, hence the only suitable subsemilattice is the one in Fig. 3.4.

-The case in Fig.2.5 follows from $a\Delta b=aVb$, and the case in Fig.2.6 follows from Lemma 2.

Theorem 9. Necessary and sufficient condition under which a bisemilattice (Q, ∇, Δ) is a near-lattice is that each pair a,b of elements of Q determines two related subsemilattices in the semilattices (Q, ∇) and (Q, Δ) , the pairs of related subsemilattices being represented in figures 4.1-4.9.

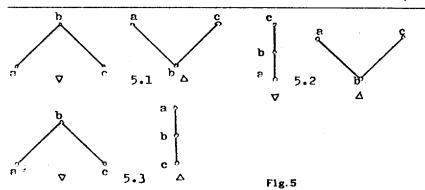


Proof. By Lemmas 2,6,7 and 8 we have that if (Q, ∇, Δ) is a near-lattice, then all $a, b \in Q$ generate a pair of related subsemilattices from Figures 4.1-4.9.

Conversely, since identity (SM) has only two variables and every pair of elements generates two related subsemilattices, we have that every pair satisfies (SM), hence (Q, ∇, Δ) is a near-lattice.

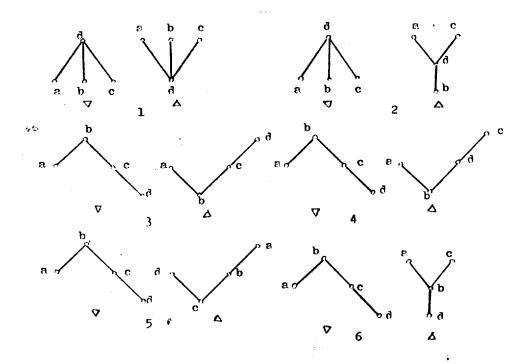
Corollary 10. If semilattices (Q, ∇) and (Q, Δ) are chains, then (Q, ∇, Δ) is a near-lattice.

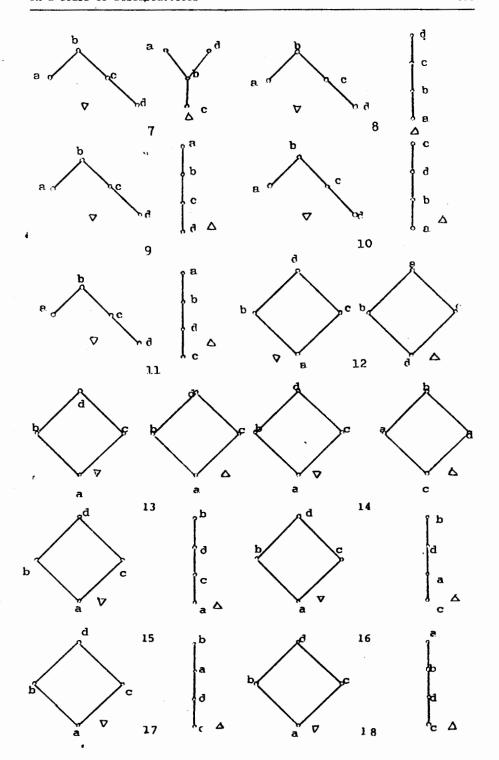
In Examples 4 and 5 we give all, up to the isomorphism, different near-lattices with 3 and 4 elements.

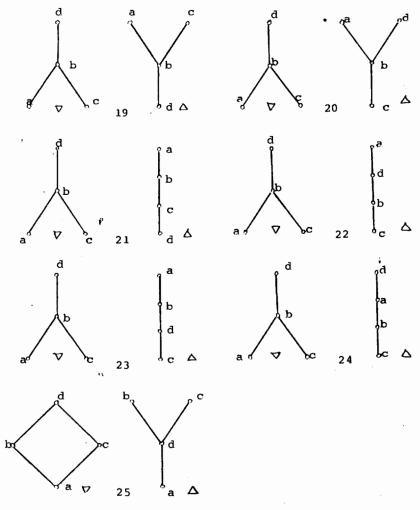


Including near-lattices consisting of two chains, there are 9 nonisomorphic near-lattices with 3 elements.

Example 5. All nonisomorphic near-lattices with four elements, except these consisting of two chains, are presented in Fig. 6.







F1g.6

Including near-lattices dual to the ones denoted by 2,6,7,8,9,10,11,15,16,17,18,21,22,23,24 and 25, and those consisting of two chains, there are 65 nonisomorphic near-lattices with 4 elements.

Near-lattices and some other classes of bisemilattices are related as in Fig. 7.

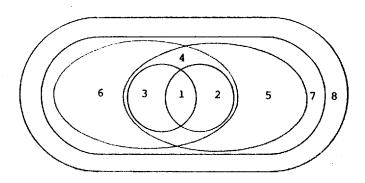


Fig.7

- 1. distributive lattices
- 2. lattices
- 3. distributive bisemilattices
- 4. bisemilattices which are both, (∇, Δ) -weak-distributive,
- and (Δ, ∇) -weak-distributive
 - (∇, Δ)-weak-distributive bisemilattices
 - (Δ,∇)-weak-distributive bisemilattices
 - 7. near-lattices
 - 8. bisemilattices.

REFERENCES

- [1] Я. Ушан, Об одном обобщению решеток, Review of Research, Fac. of Sci. Univ. of Novi Sad, 17-2 (1988), 57-63
- [2] Я. Ушан, О некоторых построениях почти-решеток, proc. of the Conf. "Algebra and Logic", Sarajevo 1987, 161-167.
- 20 [3] В.Н. Салий, Частично упорядоченные множества. Полурешетки. Обобщения решеток: Упорядоченные множества и решетки, Univerzita Komenskeho, 1985, 245-301.
 - [4] В.Н. Салий, Частично упорядоченные множества. Полурешетки. Обобщения решеток; Упорядоченные множества и решетки II, Univerzita Komenskeho, 1988, 323-381.

O JEDNOJ KLASI BIPOLUMREŽA REZIME

U radovima [1] i [2] je uveden pojam skoro-mreže, kao bipolumreže (Q, ∇, Δ) u kojoj važi zakon $x\Delta(y\nabla z\nabla x) = (x\Delta y)\nabla(x\Delta z)\nabla(x\Delta x)$. Na ovom mestu takva struktura nazvana je (Δ, ∇) -slabo-distributivna bipolumreža, a struktura u kojoj važi dualni zakon (∇, Δ) -slabo-distributivna bipolumreža. U ovom radu definisan je pojam skoro-mreže kao bipolumreže u kojoj važi zakon $x\nabla(y\Delta x) = (x\nabla y)\Delta x$, dokazana su neka svojstva takvih skoro-mreža i utvrđen jedan potreban i dovoljan uslov da bipolumreža bude skoro-mreža.

Received by the editors November 22, 1989.