Univ. u Novom Sadu Zb.Rad. Prirod.-Mat.Fak. Ser.Mat. 19,2, 61-66 (1989)

REVIEW OF RESEARCH FACULTY OF SCIENCE MATHEMATICS SERIES

ON UNAVOIDABLE SUBGRAPHS O下 STRONG TOURNAMENTS

Vojislav Petrović

Institute of Mathematics, University of Novi Sad, Dr lije Duričica 4, 21000 Novi Sad, P.O.B. 224, Yugoslavia

Abstract

If C(n,1) denotes a simple n-cycle $v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_n \rightarrow v_1$ with an additional arc $v_j v_{j+1-1}$ for some $j \in \{1,2,\ldots,n\}$ and $3 \le i \le n-1$ it is proved that every strong n-tournament T_n contains copies of $C(n, \lceil (n+2)/2 \rceil)$ and C(n,n-2) for each $n \ (n \ge 4)$.

The terminology and notation is that of [1] except as noted.

 T_n denotes an arbitrary n-tournament. C(n,1) denotes a simple cycle $v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_n \rightarrow v_1$ with an additional arc $v_j v_{j+1-1}$ for some $j \in \{1,2,\ldots,n\}$ and $3 \le i \le n-1$. $T_n - v$ denotes the subtournament of T_n obtained by deleting the vertex v and all incident arcs. For vertices u and $v,u \rightarrow v$ will be used to denote the phrase "u dominates v" and an arc from u to v in T_n . For two disjoint subsets A and B of $V(T_n)$, $A \rightarrow B$ denotes that every vertex of A dominates every vertex of B.

The following theorem will be of use.

Theorem 1. ([2]) Every strong n-tournament T_n contains a copy of C(n,1) for each $n \ (n \ge 4)$ and $1, 3 \le 1 \le (n+2)/2$.

This paper will present some results on digraphs C(n, 1) for those 1's not covered by Theorem 1.

AMS Mathematics Subject Classification: 05C20 Key words: tournament, unavoidable subgraph.

Theorem 2. Every strong n-tournament T_n contains a copy $C(n, \lfloor n+2 \rfloor/2 \rfloor)$ for each $n \ (n \ge 4)$.

Proof. For n even or $n \le 5$ the statement follows immediately by Theorem 1. So, we may assume that n = 2k + 1 $(k \ge 3)$ and look for C(2k+1, k+2) in strong (2k+1)-tournaments. We shall suppose that there is a strong (2k+1)-tournament T_{2k+1} containing no copy of C(2k+1, k+2) and show that it leads to a contradiction.

Let T_n , n=2k+1 ($k \ge 3$) be a strong tournament which contains no copy of C(2k+1, k+2). Let v be a vertex of T_n such that the tournament T_n-v is strong. (For the existence of such a vertex see [1] p.6.) By Theorem 1 the tournament T_n-v contains a copy of C(2k,k+1). Label vertices of T_n-v so that

$$v_1 {\longrightarrow}\ v_2 {\longrightarrow}\ \dots\ v_k\ {\longrightarrow}\ v_{k+1} {\longrightarrow}\ \dots\ {\longrightarrow}\ v_{2k} {\longrightarrow}\ v_1$$

is a copy of C(2k, k+1). (The underlined pair of vertices denotes that the first one dominates the second.) The proof falls in to three cases.

Case 1. $v_1 \rightarrow v$. This implies

(1)
$$\{v_2, v_3, \dots, v_{k+1}\} \to v$$
.

Otherwise, if $v \to v_j$ for some $j \in \{2,3,\ldots,k+1\}$, v can be inserted in the path $v_1 \to v_2 \to \ldots \to v_{k+1}$ obtaining a copy of C(2k+1, k+2) given by $v_1 \to \ldots \to v \to \ldots \to v_{k+1} \to v_{k+2} \to \ldots \to v_k \to v_1$. So, (1) holds and as $v \to v_1 \to v_2 \to \ldots \to v_k \to v_1$. So, (1) holds and as that $v \to v_1 \to v_2 \to \ldots \to v_k \to v_1$. Let $v \to v_1 \to v_2 \to v_2 \to v_3$ such that $v \to v_1 \to v_2 \to v_3 \to v_3 \to v_4$. Then,

$$\frac{v_{i_0-k-1}}{0} \rightarrow v_{i_0-k} \rightarrow \dots \rightarrow v_{i_0-1} \rightarrow v_{i_0} \rightarrow v_{i_0+1} \rightarrow \dots \rightarrow v_{i_0-k-2}$$

$$\rightarrow v_{i_0-k-2} \rightarrow v_{i_0-k-1}$$

is a copy of C(2k+1, k+2) as $1 \le i_0 - k - 1 \le k - 1$ and by (1) $v_{i_0 - k - 1} \to v$. Case 1 is settled.

Case 2. $v \to v_{k+1}$. Before discussing this case observe the following property of digraphs C(n,1). Reversing all the arcs of C(n,1) results in a digraph isomorphic to C(n,1). Thus, after reversing all the arcs of T_n we get the tournament T_n which satysfies conditions of case 1 and contains a copy of C(2k+1, k+2). Reversing now all the arcs of T_n we get the former tournament T_n and C(2k+1, k+2) in it. In fact, case 2 is the dual of case 1.

Case 3. $v \rightarrow v_1$ and $v_{k+1} \rightarrow v$. We claim that now there exists $i_0, k+2 \le i_0 \le 2k$ such that

(2)
$$v \to \{v_{i_0+1}, v_{i_0+2}, \dots, v_{i_0+k}\}$$

(3)
$$\{v_{i_0+k+1}, v_{i_0+k+2}, \dots, v_{i_0}\} \rightarrow v$$

(All incides are reduced modulo 2k.)

First notice if $v \to v_j$ for some $j \in \{1, 2, \dots, k\}$, then $v \to \{v_1, v_2, \dots, v_j\}$. Indeed, if $v_m \to v$ for some $m \in \{2, 3, \dots, j-1\}$ then v can be inserted in the path $v_1 \to v_2 \to \dots v_j$ producing a copy of C(2k+1, k+2) given by $v_1 \to \dots \to v \to \dots \to v_j \to v_{j+1} \to \dots \to v_{k+1} \to v_{k+2} \to \dots \to v_{2k} \to v_1$.

It follows that there exists j_0 , $2 \le j_0 \le k$ such that

$$\begin{split} v &\to \{v_1, v_2, \dots, v_{j_0}\} \\ \{v_{j_0+1}, v_{j_0+2}, \dots, v_{k+1}\} &\to v \end{split}.$$

Further, denote by i the maximum of k+1, k+2,...,2k, so that

$$\{v_{k+1},v_{k+2},\ldots,v_{i_0}\}\to v.$$

We shall show that $i_0 - j_0 \ge k$. (All computations will be done modulo 2k.) Indeed, if $i_0 - j_0 < k$, then $v \to v_1 \to \cdots \to v_{10+1} \to \cdots \to v_{10+k+1} \to v_{10+k+2} \to \cdots \to v_{10} \to v_{10}$ is a copy of C(2k+1, k+2). (Notice that $v \to v_{10+k+1}$ as $1 \le i_0 + k + 1 \le j_0$.) Thus, $i_0 - j_0 \ge k$.

Using the same argument we derive that there exists l_0 , $k+2 \le l_0 \le 2k$ such that $j_0-l_0+\ge k$ and $v\to \{v_1,v_{l_0+1},\ldots,v_{l_0}\}$. Since $|V(T_n-v)|=2k$, it follows that

$$i_0 - j_0 = j_0 - l_0 + 1 = k \pmod{2k}$$

i.e. $I_0 = I_0 + 1$. Obviously, this implies (2) and (3).

Relabel now the vertex set of T_n as follows. The vertex v_{i_0+1} is labelled w_1 , v_{i_0+2} is labelled w_2 ,..., v_{i_0} is labelled w_{2k} and v is labelled w_{2k+1} . According to this labelling and having in mind (2) and (3), we find that

$$(4) w_1 \rightarrow w_2 \rightarrow \dots \rightarrow w_{2k} \rightarrow w_{2k+1} \rightarrow w_1$$

is a Hamiltonian cycle of T_{α} where

V. Petrovic

(5)
$$\begin{aligned} w_{2k+1} &\to \{w_1, w_2, \dots, w_k\} \\ \{w_{k+1}, w_{k+2}, \dots, w_{2k}\} &\to w_{2k+1} \end{aligned}$$

This implies that

$$(6) \qquad \qquad w_{i} \rightarrow w_{i+k}$$

holds for each $l \in \{1,2,\ldots,2k+1\}$. (All computations which follow will be done modulo 2k+1.) For l=k+1 and l=2k+1 (6) follows by (5). Suppose that $w_{l+k} \to w_l$ for some $l \in \{1,2,\ldots,k,k+2,k+3,\ldots,2k\}$. Then, $w_{l+k} \to w_{l+k+1} \to \ldots$ $\cdots \to w_l \to w_{l+1} \to \cdots \to w_{l+k-1} \to w_{l+k}$ is a copy of C(2k+1, k+2) in T_n . This contradiction proves (6).

Consider now a copy of C(2k, k+1) in $T_n - w_{2k}$ given by $w_{2k+1} \longrightarrow w_1 \longrightarrow w_2 \longrightarrow \ldots \longrightarrow w_k \longrightarrow w_{k+1} \longrightarrow \ldots \longrightarrow w_{2k-1} \longrightarrow w_{2k+1} \longrightarrow w_{k}$ by (4).) As, by (4) and (6), $w_{2k} \longrightarrow w_{2k+1}$, $w_k \longrightarrow w_{2k} \longrightarrow w_{k+1} \longrightarrow w_k$ we conclude, using the same arguments as for (5), that

$$w_{2k} \rightarrow \{w_{2k+1}, w_1, w_2, \dots, w_{k-1}\}$$
 $\{w_k, w_{k+1}, \dots, w_{2k-1}\} \rightarrow w_{2k}$

Continuing this procedure we obtain that

holds for each $i \in \{1,2,\ldots,2k+1\}$. So, T_n is the regular tournament with an arc set given by (7). But such a tournament contains a copy of C(2k+1,k+2) given by

$$\underbrace{w_1}_1 \rightarrow w_3 \rightarrow w_5 \rightarrow \dots \rightarrow \underbrace{w_{2k+1}}_2 \rightarrow \underbrace{w_2}_4 \rightarrow \dots \leftarrow \underbrace{w_{2k}}_1 \rightarrow \underbrace{w_1}_1$$

This contradiction settles case 3 and completes the proof of the theorem.

Theorem 3. Every strong n-tournament T_n contains a copy of C(n, n-2) for each $n(n \ge 4)$.

Proof. By induction on n. For $n \le 7$ the statement follows by Theorem 1. So, assume that $n \ge 8$. Let T_{n+1} $(n \ge 7)$ be an arbitrary strong (n+1)-tournament and let v be a vertex of T_{n+1} such that $T_{n+1} - v$ is strong too. By the induction hypothesis, $T_{n+1} - v$ contains a copy of C(n, n-2) given by

(8)
$$\underbrace{v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_{n-2}}_{1} \rightarrow v_{n-1} \rightarrow v_n \rightarrow v_1$$

Now we suppose that T_n does not contain a copy of C(n+1,n-1) and show that it leads to a contradiction.

We shall consider three characteristic cases.

Case 1. $v \rightarrow v$. Applying the same argument as in case 1 of Theorem 2 we obtain that

$$\{v_2, v_3, \dots, v_{n-2}\} \rightarrow v$$

Also, since T_{n+1} is strong, some of the vertices v_{n-1} and v_n dominate v. Let i be the maximum of n-1 and n so that $v_i \rightarrow v$. Combining this with (7) and (8), we get a copy of C(n+1,n-1) given by

$$v \rightarrow v_{1+1} \rightarrow v_{1+2} \rightarrow \dots \rightarrow v_{1-2} \rightarrow v_{1-1} \rightarrow v_{1} \rightarrow v$$

(Observe that $1 < i-2 \le n-2$ and $v \to v_{i-2}$) This contradiction settles case 1.

Case 2. $v \rightarrow v_{n-2}$. This case is the dual of case 1. Compare this with case 2 of Theorem 2.

Case 3. $v \to v_1$ and $v_{n-2} \to v$. As for the arcs connecting the vertex v with vetrices v_{n-1} and v_n , there are the four possible cases:

a)
$$V \rightarrow \{v_{n-1}, v_n\}$$

b)
$$v \rightarrow v_{n-1}, v_n \rightarrow v$$

c)
$$\{v_1, v_1\} \rightarrow v$$

d)
$$v_{n-1} \rightarrow v$$
, $v \rightarrow v_n$

It is easy to see that (a) and (c) and also (b) and (d) are dual. So, we shall examine (a) and (b) only.

a) $v \to \{v_{n-1}, v_n\}$. First notice that $v_{n-4} \to v$. (If on the contrary, $v \to v_{n-4}$, then there is a copy of C(n+1, n-1) given by $\underline{v} \to v_{n-1} \to v_n \to v_{n-1} \to v_n \to v_{n-2} \to v_{n-2} \to v$.) This implies

$$(10) v_{n-2} \rightarrow v$$

Otherwise, we obtain a copy of C(n+1,n-1) given by $\underbrace{v_1}_{n-2} \rightarrow v_2 \rightarrow \ldots \rightarrow v_{n-4} \rightarrow v_{n-2} \rightarrow v_{n-1} \rightarrow v_n \rightarrow v_1$. Furthermore,

$$v_{n-1} \rightarrow v_n$$

V. Petrović

In view of a copy of C(n+1, n-1) given by $v_2 \rightarrow v_3 \rightarrow \ldots \rightarrow v_{n-2} \rightarrow v \rightarrow v_{n-1} \rightarrow v_n \rightarrow v_1 \rightarrow v_2$.

Finally, using (10) and (11) we still obtain a copy of C(n+1,n-1) given by

$$v_{n-1} \rightarrow v_2 \rightarrow v_3 \rightarrow \dots \quad v_{n-3} \rightarrow v \rightarrow v_n \rightarrow v_1 \rightarrow v_{n-2} \rightarrow v_{n-1}$$

This contradiction settles (a).

(b) $v \to v_{n-1}$, $v \to v$. By the same argument as in (a) (10) and (11) holds. Furthermore,

$$(12) v_2 \rightarrow v$$

because of the eventual copy of C(n+1,n-1) given by $v_2 \rightarrow v_3 \rightarrow \ldots \rightarrow v_n \rightarrow v_1 \rightarrow v_2$. But, now, using (11) and (12) we obtain a copy of C(n+1,n-1) given by

$$\underbrace{v}_{n} \rightarrow v_{2} \rightarrow v_{3} \rightarrow \ldots \rightarrow v_{n-3} \rightarrow v \rightarrow \underbrace{v}_{1} \rightarrow v_{n-2} \rightarrow v_{n-1} \rightarrow v_{n}$$

contradicting the assumption.

The proof of the theorem is completed.

This paper and [2] partially confirm following, may be true,

Conjecture. Every strong n-tournament T_n contains a copy of C(n, i) for each $n(n \ge 4)$ and $i(3 \le i \le n-1)$.

References

- J. W. Moon: Topics on tournaments, Holt, Rinehart and Winston New York 1968.
- 2. V. Petrovic: Some unavoidable subgraphs of strong tournamets (to appear)

Rezime

NEIZBEŹNI PODGRAFOVI JAKO POVEZANIH TURNIRA

U radu se pokazuje da svaki jako povezan turnir sa n čvorova sadrži kao podgraf C(n,i), gde je C(n,i) orjentisana kontura $v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_n \rightarrow v_1$ sa jednom dodatnim lukom $v_j v_{j+1-1}, j \in \{1,2,\ldots,n\},$ $i = \lceil (n+2)/2 \rceil, i = n-2, n \ge 4.$

Received by the editors May 17, 1988.