Univ. u Novom Sadu Zb. Rad. Prirod.—Mat. Fak. Ser. Mat. 19,1,97—107 (1989)

THE NORMAL CONVERGENCE OF THE POWER SERIES IN THE n-DIMENSIONAL MIKUSINSKI DIFFERENTIATION OPERATOR

Marija Skendžić

Institute of Mathematics, University of Novi Sad Dr Ilije Djuričića 4, 21000 Novi Sad, Yugoslavia

ABSTRACT

Let $s^{(\alpha)}=s_1^{\alpha_1}\ldots s_n^{\alpha_n}$, $(\alpha_1\geq 0,\ i=1,\ldots,n)$ be the differentiation operator in the n-dimensional Mikusinski operational calculus and let $a_{(k)}$ be complex numbers depending on multi-orders $(k)\in \mathbb{N}_0^n$. The necessary and sufficient conditions for the normal convergence of power series

$$S = \sum_{(k)} a_{(k)} s^{(\alpha k)}, ((\alpha k) = (\alpha_1 k_1, \dots, \alpha_n, k_n)).$$

in the space of n-dimensional Mikusinski operators are given. It is shown that the convergence depends on the quasi-analyticity of certain Lelong-Carleman class, which contains the factor of convergence.

This completes the results of T.Boehme, J.Wloka, B.Stanković and the author ([1],[6],[9]).

AMS Mathematics Subject Classification (1980): 44A40

Key words and phrases: Mikusiński operators, power series, quasi-analycity

1. INTRODUCTION

Our terminology and notation for the n-dimensional Mikusinski operators will be as in Gutterman's paper [3], [For n=2 as in Mikusinski's book [5]), and for quasi-analytic classes of functions of n variables as in Roumieu's paper [7].

We shall give the necessary and sufficient conditions for the normal convergence of a power series in the Mikusinski differentiation operator $s^{(\alpha)}$, $S = \sum a_{(k)} s^{(\alpha k)}$. S is convergent in $M(R^n)$ if a special class $M_{(k)} = M_{(k)} (a_{(k)})$ is not quasi-analytic (Theorem 4.1, Theorem 4.1.). Application of Lelong's theorem yields criteria in terms of the coefficients $a_{(k)}$, which are sufficient for S to be normally convergent (Theorem 4.2.).

2. n-DIMENSIONAL MIKUSINSKI OPERATORS

Let $C_O(R^n)$ denote the convolution ring of all continuous functions defined in R^n (n-dimensional Euclidean space) with the support in R_O^n , $(R_O^n=(x_1,\ldots,x_n)\in R^n,\ x_i\geq 0$, $i=1,\ldots,n$). The addition is the pointwise addition of functions and the convolution of $u(x_1,\ldots,x_n)$ and $v(x_1,\ldots,x_n)$ is the function $w(x_1,\ldots,x_n)$ defined by the integral

$$w(x_1, \ldots, x_n) = \int_0^{x_1} \cdots \int_0^{x_n} u(x_1 - t_1, \ldots, x_n - t_n) v(t_1, \ldots, t_n) dt_1 \ldots dt_n.$$

 $c_{O}(R^{n})$ has no divisors of zero [2],[3].

The field $M(R^n)$ of n-dimensional Mikusinski operators is the quotient field of $C_O(R^n)$. For an operator $a \in M(R^n)$, we shall use the formal notation of a quotient (the inverse operation to convolution) $a = \frac{u}{v}$, $u, v \in C_O(R^n)$ and $v(x_1, \ldots, x_n) \neq 0$. Obviously, $\frac{u}{v}$ denotes the equivalence class a. To every function $u(x_1, \ldots, x_n) \in C_O(R^n)$ there corresponds an operator. Thus, the set of operators contains that of functions. Further, we shall write a function $u(x_1, \ldots, x_n)$ in the

form u or $\{u(x_1,\ldots,x_n)\}$. By $\{u(x_1,\ldots,x_n)\}\{v(x_1,\ldots,x_n)\}$, we denote the convolution and by $\{u(x_1,\ldots,x_n)v(x_1,\ldots,x_n)\}$ the ordinary product of two functions $u(x_1,\ldots,x_n)$ and $v(x_1,\ldots,x_n)$.

We define the operator ℓ as function $\{1\}$, $\ell=\{1\}$,

and the operator
$$\ell_1^{\alpha}$$
 by $\ell_1^{\alpha} = \{\frac{\mathbf{x}_1^{\alpha}}{\frac{\Gamma(\alpha+1)}{\ell}}, \alpha > 0, i=1,...,n.$

Let c be an arbitrary constant function. We define the numerical operator [c] by [c]= $\frac{\{c\}}{\ell}$. Accordingly, the operator I=[1]= $\frac{\{1\}}{\ell}$ is the unity operator.

The inverse operators of ℓ and ℓ_1^{α} , a>0, i=1,...,n, are denoted, respectively, by s and s_1^{α} , and are referred to as differentiation operators.

In Lemma 1. of ([3], p.473) Gutterman proved that $\ell=\ell_1\ldots\ell_n$ and $\mathbf{s}=\mathbf{s}_1\ldots\mathbf{s}_n$.

For the differentiation operators s_i and the differentiable function $u(x_1, \ldots, x_n)$, we have the formula ([3], p.472):

$$s_{i} \{u(x_{1},...,x_{n})\} = \{u_{x_{i}}(x_{1},...,x_{n})\} +$$
+ $s_{i} \{u(x_{1},...,x_{i-1},0,x_{i+1},...,x_{n})\},$

and in general for $|\mathbf{r}| = \mathbf{r}_1 + \ldots + \mathbf{r}_n$, $\mathbf{r}_1 \ge 0$, $i=1,\ldots,n$,

$$D^{(r)}u = \frac{\frac{\partial |r|_{u}}{r_{1}}}{\frac{\partial x_{1} \cdot ... \partial x_{n}}{r_{n}}} = s_{1}^{r_{1}}...s_{n}^{r_{n}} \{u(x_{1},...,x_{n})\} - d$$

where

(2.1)
$$d = \begin{pmatrix} r_1 & r_n & k_1 & k_n & a & |r| \\ k_1 = 0 & k_n = 0 & k_n & k_n & a & k_n & a & k_n & k_n \end{pmatrix} - a \begin{pmatrix} r & k_1 & k_1 & k_2 & k_2 \\ k_1 & k_1 & k_2 & k_2 & k_2 & k_2 \end{pmatrix}$$

$$a_{(k_1, \dots, k_n)}^{|r|} = \{\frac{e^{|r-k|_{u(x_1, \dots, x_n)}}}{x_1^{-k_1} \dots x_n^{-k_n}}\}$$

at the point $(x_1^{\delta_1}, \dots, x_n^{\delta_n})$, $(\delta_1^j$ is Kronecker's delta).

In Theorem 1. of ([3], p.474) Gutterman gives the conditions for an operator to be a function. The only function represented by operator (2.1.) is equal to zero.

In $M(\mathbb{R}^n)$ we use the convergence of a sequence in the sense of the first Mikusinski convergence.

DEFINITION 2.1. A sequence of operators \mathbf{w}_k , $\mathbf{k} = 1$, 2,..., converges to the operator \mathbf{w}_i , if there exist a function $\mathbf{g}(\mathbf{x}_1, \dots, \mathbf{x}_n) \neq 0$ from $\mathbf{C}_0(\mathbf{R}^n)$ and a sequence of functions $\mathbf{g}_k(\mathbf{x}_1, \dots, \mathbf{x}_n) \in \mathbf{C}_0(\mathbf{R}^n)$, $\mathbf{k} = 1, 2, \dots$, such that

(i)
$$\omega g = f, f(x_1, ..., x_n) \in C_0(\mathbb{R}^n)$$

(11)
$$\omega_k g = g_k, k=1,2,...$$

(111) The sequence $g_k(x_1,...,x_n)$, k=1,2,..., converges uniformly on every finite n-dimensional interval $I_T=[0,T_1]\times...\times[0,T_n]$ to $f(x_1,...,x_n)$.

For the series $\sum_{(k)}^{\infty} \omega_{(k)}$, where $\omega_{(k)}$ are operators which depend on multi order, we shall consider the normal convergence.

DEFINITION 2.2. A series $\Sigma \omega_{(k)}$ of n-dimensional (k) operators depending on multi-orders converges normally to the operator ω , if there exist a function $g(x_1, \ldots, x_n) \neq 0$ from $C_0(\mathbb{R}^n)$ and a sequence of functions $g_{(k)}(x_1, \ldots, x_n) \in C_0(\mathbb{R}^n)$, $(k) \in \mathbb{N}_0^n$, such that

(1)
$$\omega_{(k)} g = g_{(k)}, \quad (k) \in N_0^n$$

(ii) $\sum_{\mathbf{k}} \max_{\mathbf{k}} |g_{(\mathbf{k})}(\mathbf{x}_1, \dots, \mathbf{x}_n)| \text{ converges for every finite } \\ n-\text{dimensional interval } \mathbf{I}_{\mathbf{m}} = [0, \mathbf{T}_1] \times \dots \times [0, \mathbf{T}_n].$

Obviously, condition (ii) implies that $\sum_{(k)} g_{(k)}$ exists and is independent of the order of summation. The sum $u(x_1,\ldots,x_n) = \sum_{(k)} g_{(k)}(x_1,\ldots,x_n)$ is in $C_o(\mathbb{R}^n)$ and $\omega = \frac{u}{g}$.

3. QUASI-ANALYTIC CLASS

Let $M_{(p)}$ be a sequence of positive real numbers depending on multi orders $(p) \in \mathbb{N}_0^n$ and K a regular compact set in \mathbb{R}^n . We always suppose $M_{(0)}^{=1}$, $0 < M_{(p)}^{\leq \infty}$ for each (p), $M_{(p)}^{<\infty}$ for infinitely many (p).

By $\epsilon(K,M_{(p)})$, we mean the class of all the infinitely-differentiable functions on K, such that there are constants $\beta_f>0$, and h_f depending on f and

(3.1.)
$$\max_{y \in K} |D^{(p)}f| \leq f h_f^{|p|} M_{(p)}$$

for each $(p) \in \mathbb{N}_{0}^{n}$, $(p) = (p_{1}, \dots, p_{n}), |p| = p_{1} + \dots + p_{n}$

$$\mathbf{p^{(p)}_f} = \frac{\mathbf{a^{|p|}_f}}{\mathbf{a_{x_1}^{p_1} \dots a_{x_n}^{p_n}}}.$$

 $\epsilon(\mathtt{K},\mathtt{M}_{\{p\}}) \text{ is a vector space under the pointwise addition of functions. If K_1 and K are compact sets in R^n and (a), (b) n-tuples of real numbers such that (x) ϵK_1 implies (ax+b) $^{(*)} \epsilon K$, then for f in \$\epsilon (K,M_{(p)})\$ we have \$\psi = f(ax+b) \epsilon (K_1,M_{(p)})\$.

For an open set $\Omega \subseteq \mathbb{R}^n$, by $\varepsilon(\Omega, M_{\{p\}})$ we mean the class of all functions f, such that $f \in \varepsilon(K, M_p)$ for each compact set $K \subseteq \Omega$.

 $\mathcal{D}\left(\Omega,M_{(p)}\right)$ is the set of all $f\varepsilon\epsilon(\Omega,M_{(p)})$ which have a compact support.

A sequence $M_{(p)}$ is said to be logarithmically convex if

^(*) $(ax+b) = (a_1x_1+b_1, ..., a_nx_n+b_n)$

(3.2) $M_{(p)}^2 \leq M_{(p-q)}M_{(p+q)}$, for each (p), $(q) \in \mathbb{N}_0^n$.

In Theorem 4. of ([7], p.158) Roumieu proved the following:

THEOREM 3.1. If there exist constants ${\bf A}$ and ${\bf H}$ such that

(3.3.) $M_{(p)}M_{(q)} \leq AH^{|p+q|}M_{(p+q)}$, for each (p), $(q) \in \mathbb{N}_0^n$, the vector space $\varepsilon(\Omega, M_{(p)})$ is an algebra under the pointwise multiplication of functions.

REMARK. If n=1, condition (3.3.) follows from (3.2.), but for n>2 this is not always true ([7], p.159).

DEFINITION 3.1. A class $M_{(p)}$ is said to be quasi-analytic, if $D(R^n, M_{(p)}) = \{0\}$.

For n=1, a necessary and sufficient condition for the quasi-analyticity of a class $\mathbf{M}_{\mathbf{D}}$ is known.

THEOREM 3.2. ([8], p.375) Let M_p be a logarithmically convex sequence. The class M_p is quasi-analytic if and only if $f \in (R,M_p)$, $x \in R$ and $D^p f(x_0) = 0$ for each p = 0,1,..., implies f(x) = 0 on R.

In the proof, we shall use that $\epsilon(R,M_p)$ is an algebra under the pointwise multiplication of functions. In view of the remark in case n>1, we must suppose that the sequence $M_{(p)}$ satisfies (3.3.).

Now, we shall prove a similar characterization for the quasi-analyticity of a class $M_{(p)}$, for $n\geq 1$.

THEOREM 3.3. Let the sequence $M_{(p)}$ satisfy inequality (3.3.). The class $M_{(p)}$ is not quasi-analytic if and only if there exist a function $\psi(x_1,\ldots,x_n) \neq 0$, $\psi \in (\mathbb{R}^n,M_{(p)})$ and some point $(a_1,\ldots,a_n) \in \mathbb{R}^n$ such that

 $D^{(p)}\psi(x)=0$ for each $(x)=(x_1,\ldots,x_n)$ with $x_i=a_i$ for some $i=1,\ldots,n$, and each $(p)\in N_0^n$.

PROOF. If the class $M_{(p)}$ is not quasi-analytic, then by Definition 3.1, $\mathcal{D}(\mathbb{R}^n, M_{(p)})$ contains a nontrivial function which evidently satisfies the hypotheses of the theorem.

Conversely, let $\psi(\bar{x}) \neq 0$. We may assume $(\bar{x}) > (a)$. If $g(x) = \psi(x)$ for $(x) \geq (a)$ and g(x) = 0 otherwise, then $g(x) \in \epsilon(R^n, M_{(p)})$.

Put $h(x) = g(x+a)g(2\bar{x}-a-x)$. By Theorem 3.1. $h(x) \in \mathcal{D}(\mathbb{R}^n, M_{(p)})$ $h(\bar{x}-a) = \psi^2(\bar{x}) \neq 0$ and h(x) has a compact support. Thus h(x) is a nontrivial member of $\mathcal{D}(\mathbb{R}^n, M_{(p)})$.

There is a simple characterization due to Lelong, of the quasi-analytic classes in terms of the sequences $\mathbf{M}_{_{\mathrm{D}}}$.

THEOREM 3.4. (Lelong, Theorem 1. [7], p.155.) Let M_p be the rectified sequence of the sequence inf $M_{(p)}$ in the sense of ([7], p.154.).

The class M_(p) is not quasi-analytic if and only if

$$\begin{array}{ccc}
\infty & \frac{M}{p-1} & < \infty \\
p=1 & Mp & < \infty
\end{array}$$

$$\begin{array}{ccc}
\infty & \frac{1}{p} \\
\Sigma & (M_p) & < \infty.
\end{array}$$

4. THE CONVERGENCE OF POWER SERIES IN THE OPERATOR $s^{(\alpha)}$

The normal convergence of the power series

(4.1.)
$$S = \sum_{(k)} a_{(k)} s^{(\alpha k)}$$

where $\alpha=(\alpha_1,\ldots,\alpha_n)\in\mathbb{R}_0^n$, $a_{(k)}$ are complex numbers depending on multi orders (k) N_0^n and $s^{(\alpha k)}=s_1^{n}^{k_1}\ldots s_n^{n}$, can be characterized in terms of the quasi analyticity of Lelong-Carleman class.

Put

$$C_{(p)} = \begin{cases} \max_{([\alpha k])=(p)}^{\max_{(a,b)}} |a_{(k)}| & \text{if such } a_{(k)} \text{ exists, } (p) \in \mathbb{N}_{0}^{n} \\ & & \text{otherwise,} \end{cases}$$

 $([\alpha k]) = ([\alpha_1 k_1], \dots, [\alpha_n k_n]), [y]$ denotes the biggest integer $\leq y$.

THEOREM 4.1. If the class $C_{(p)}^{-1}$ is not quasi-analytic, the series (4.1.) is normally convergent.

THEOREM 4.1* If the sequence $C_{(p)}^{-1}$ satisfies (3.3.) and S is normally convergent in $M(R^n)$, then the class $C_{(p)}^{-1}$ is not quasi-analytic.

PROOF of Theorem 4.1. Let $I_{T_n^*}=[0,T_1^*]\times\dots[0,T_n^*]$ be some finite interval. Since the class $C_{(p)}^{-1}$ is not quasi-analytic by Corollary 1. [7], p.156, there is a nontrivial non-negative function $\phi(x)\in\mathcal{D}(\mathbb{R}^n,C_{(p)}^{-1})$ with the support in the interior of I_T^* . If h_{ϕ} is a constant, such that (3.1.) holds and $f(x)=\phi(\frac{x}{2h_{\phi}})$ for $\frac{x}{2h_{\phi}}\in I_T^*$, f(x)=0 otherwise, then $\ell^2f^{\phi}0$ and by Theorem 1. $\ell^2f^{\phi}0$ of [3], f(x)=0 for each $f(x)\in\mathbb{N}_0^n$ and f(x)=0.

For each compact interval $\mathbf{I}_{\underline{\mathbf{T}}}$ there is some constant C such that

$$\max_{\mathbf{x} \in \mathbf{I}_{\mathbf{T}}} |\mathbf{a}_{(\mathbf{k})} \mathbf{s}^{(\alpha \mathbf{k})} \ell^{2} \mathbf{f}| \leq \max_{\mathbf{x} \in \mathbf{I}_{\mathbf{T}}^{*}} |\mathbf{a}_{(\mathbf{k})} \ell^{([\alpha \mathbf{k}]) - (\alpha \mathbf{k})} \ell^{2} \mathbf{D}^{([\alpha \mathbf{k}])} \phi \mathbf{x}$$

$$\times \frac{1}{(2h_{\phi})|([\alpha k])|} \leq C \frac{1}{2|[\alpha k]|}$$

 $(|([\alpha k])| = [\alpha_1 k_1] + ... + [\alpha_n k_n])$. Thus $\sum_{(k)} a_{(k)} s^{(\alpha k)}$ is normally convergent in $M(\mathbb{R}^n)$.

PROOF of Theorem 4.1*. If S is normally convergent in $M(R^n)$, there is a factor of convergence $g \in C_0(R^n)$ which must be a nontrivial infinitely differentiable function such

that $D^{(p)}g(x)=0$ for every $(x)=(x_1,\ldots,x_n)$ with $x_i=0$ for some $i=1,\ldots,n$ (Theorem 1. of [3] and Definition 2.2.). Let I_T be some compact interval which contains the support number of g. By condition (ii) of Definition 2.2, there is a constant β_g such that

(4.3.)
$$\max_{\mathbf{x} \in \mathbf{I}_{\mathbf{m}}} |\mathbf{a}_{(\mathbf{k})} \mathbf{s}^{(\alpha \mathbf{k})} \mathbf{g}| \leq \beta_{\mathbf{g}}, \quad (\mathbf{k}) \in \mathbb{N}_{\mathbf{0}}^{\mathbf{n}}.$$

The function $\psi=\ell g$ satisfies (3.1.). Thus if $(p)=([\alpha k])$ for some $(k)\in\mathbb{N}^n_0$ we have

$$\max_{\mathbf{x} \in \mathbf{I}_{\mathbf{T}}} |\mathbf{D}^{(\mathbf{p})} \ell \mathbf{g}| = \max_{\mathbf{I}_{\mathbf{T}}} |\ell^{(\mathbf{k}) - (\mathbf{p})} \mathbf{s}^{(\mathbf{k})} \ell \mathbf{g}| \leq \gamma C_{(\mathbf{p})}^{-1},$$

where γ is a constant. For other $(p) \in \mathbb{N}_{0}^{n}$, (3.1.) is obviously satisfied. Therefore, the function $\psi = \ell g \in (\mathbb{R}^{n}, C_{(p)}^{-1})$. The function ψ and the sequence $C_{(p)}^{-1}$ satisfy the requirements of Theorem 3., which proves that the class $C_{(p)}^{-1}$ is not quasi-analytic.

From Theorem 4.1. and Lelong's Theorem 3.4, we have another simple criteria, in terms of coefficients a (k), for S to be normally convergent.

THEOREM 4.2. Let $C_{(p)}$, $(p) \in N_0^n$ be given by (4.2.). If M_p is the rectified sequence of the sequence $\inf_{|p|=p} C_{(p)}^{-1}$ in the sense of ([7], p.154.), the series S is normally convergent if one of the following conditions is satisfied:

a)
$$\sum_{p=1}^{\infty} \frac{M_{p-1}}{M_p}$$
, B) $\sum_{p=1}^{\infty} M_p$

REMARK. Conversely, if the sequence $C_{(p)}^{-1}$ satisfies (3.3.) and S is normally convergent, then, by Theroem 4.1. and Theorem 3.4, conditions A and B are satisfied.

REFERENCES

- 1 Boehme, T.K., On Power Series in the Differentiation Operator, Studia Math. 45(1973), 309-317.
- 2 Boehme, T.K., The Support of Mikusinski Operators, Trans.

 Amer. Math. Soc. 176(1973), 319-334.
- 3 Gutterman, M., An Operational Method in Partial Differential Equations, SIAMJ. Appl. Math. 17(1969), 468-493.
- 4 Lelong, P., Sur une propriété de quasi-analycité des functions de plusieurs variables, C.R. Acad. Sci. Paris, 232(1951), 1178-1180.
- 5 Mikusinski, J., Operational Calculus, New York, 1959.
- 6 Skendžić, M. and Stanković, B., On Power Series in the Operators sa. Studia Math. 57(1976), 229-239.
- 7 Roumieu,C., Ultra-distributions définies sur Rⁿ et sur certaines classes des variétés différentiables, J.
 Anal. Math. 10(1962/63), 153-192.
- 8 Rudin, W., Real and Complex Analysis, New York, 1966.
- 9 Wloka, J., Uber die Einbettung von Belfand Roumieuchen Distributionen in den Mikusinskichen Operatorenkörper, Math. Annalen, 164(1966), 324-335.

REZIME

NORMALNA KONVERGENCIJA STEPENIH REDOVA n-DIMENZIONALNOG OPERATORA DIFERENCIRANJA MIKUSINSKOG

Pitanje konvergencije operatorskog reda I a_(k) s^(ak) čiji članovi zavise od uredjenih n-torki, a_(k) su kompleksni brojevi a s^(ak) je n-dimenzionalni operator diferenciranja Mi-kusinskog, doveđeno je u vezu sa osobinom ne kvazi-analitičnosti klase Carleman-Lelonga. Ovo je prirodna veza jer se u toj klasi u slučaju konvergencije nalazi funkcija koja predstavlja takozvani faktor konvergencije. Dati su dovoljni uslovi za konvergenciju Teorema 4.1. i Teorema 4.2, kao i potreban i dovoljan uslov za konvergenciju uz dodatno ograničenje (3.3.) Teorema 4.1. Ovo ograničenje je prirodno u slučaju

dimenzije n>1, jer (3.3) nije više posledica logaritamske konveksnosti niza kao u slučaju n=1. Data je i jedna karakterizacija ne kvazi-analitičke klase u više dimenzionalnom slučaju (Teorema 3.3.) koja je pogodna za ovu problematiku operatorskog računa.

Received by the editors February 28, 1986.