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ABSTRACT
a o
Let s(u)-slv1 ...snn, (oigo, i=1,...,n) be the dif-
ferentiation operator in the n-dimensional Mikusinski opera-
tional calculus and let a ) be complex numbers depending
on multi orders (k)ENs. The necessary and sufficient condi-

tions for the normal convergence of power series

s= ta,,.sk

E)200°% 0 = (agky e o k),

in the space of n-dimensional Mikusinski oberators/are given.
it is shown that the convergence depends on the quasi-analy-
ticity of rtain Lelong-Carleman class, which contains the

factor of convergence.

This completes the results of T.Boehme, J.Wloka,
B.Stankovié and the author ([1],[6],[9]).
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1. INTRODUCTION

Our terminology and notation for the n-dimensional
Mikusinski operators will be as in Gutterman’s paper 3],
\Zor n=2 as in Mikusinski’s book [5]), and for quasi-analytic
classes of functions of n variables as in Roumieu’s paper
7).

We shall give the necessary and sufficlent condi-
tions for the normal convergence of a power series in the Mi-

kusinski differentiation operator s(a), S= I a (ak). s

00
is convergent in M(R®) 1f a special class M(k) = (k)(a{k))is

not quasi-analytic (Theorem 4.1, Theorem 4.1.). Application
of Lelong’s theorem ylelds criteria in terms of the coeffici-
ents a(k), which are sufficient for S to be normally conver-
gent (Theorem 4.2,).

2. n~DIMENSIONAL MIKUSINSKI OPERATORS

Let Co(Rn) denote the convolution ring of all con-
tinuous functions defined in R? (n-dimensional Euclidean
"space) with the support in Rg, (Rg = (xl,...,xn) €r®, x,20,
i=1,...,n). The addition is the pointwise addition of funct-
ions and the convolution of u(xl,...,k ) and v(xl,...,xn) is
the function w(xl,...,x ) defined by the integral

x)

n
x
w(xll .o -'xn)’g . -g U(xl-tl’ . .,xn"tn)V(tly s 'tn)dtl .o .dtn.

co(Rn} has no divisors of zero [2],[3].

The field M(R®) of n-dimensional Mikusinski
operators is the quotient field of Co (R™). For an operator
a€M (R ), we shall use the formal notation of a quotient (the
inverse operation to convolution) a =—, u,v ECO(R ) and
v(xl,...,x )%0. Obviously, Y denotes the aquivalence class a.
To every function u(xl,...,x )€c (R") there corresponds an
operator. Thus, the set of operators contains that of funct-
ions. Further, we shall write a function.u(xl,...,xn) in the
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form u or {u(xl,...,x“)}. By {u(xl,...,xn)}{v(xl,...,xn)}.‘
we denote the convolution and by {u(xl,...,xn)v(xl,...,xn)}
the ordinary product of two functions u(xl,...,xn) and
v(xl,...,xn).

We define the operator £ as function {1}, £=(1},

' a .

and the operator Li by £i = ——%IQL, a>0, 1=1,...,n.

Let c be an arbitrary constant function. We define
the numerical operator [c] by [cl= {c} . Accordingly, the
operator I=[1]= i%l is the unity operator. '

The inverse operators of £ and Li, a>0, i=1,...,n,
are denoted, respectively, by s and si , and are referred
to as differentiation operators.

In Lemma 1. of ({3], p.473) Gutterman proved that

L=£1...Ln and s=sg L

1

For the differentiation operators s, and the dif-
ferentiable function u(xl,...,xn), we have the formuia ([3],
p.472):

si{u(xl, s X,) }={uxi(x1f.A. crX.) 1+
+ s lulx ,eex, 000X, reeix ),
and in general for |r|= Iy+e.otr, rizo; i=1,...,n,

(r) alrl r X

u _ 1 n
D u=Tl-——r——— s, ...Sn {‘,1("1"°"xn)}'d
ax ...3xn ’
1 n
where -
r. r
i n k k
(2.1) a=( ¥ ... I sll...snn aiil x )—aig] 0))'
k,=0 k,=0 17°°°"n reene
aqudu(x ceesX )
alrl ={ 1’ ‘n

— ——}
(kl,...,kn) r, k1 r, kn

xl ...xn
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k k
at the point (xlﬂjV'“"ﬁﬁon)' (Gi ias Kronecker’s delta).

In Theorem 1. of ([3], p.474) Gutterman gives the
conditions for an operator to be a function. The only function
represented by operator (2.1.) is equal to zero.

In M(R") we use the convergence of a»leqhence in the
sense of the first Mikusinski convergence.

DEFINITION 2.1, A sequence of operators Wyes k=1,
2,..., convergee to the operator w, if there exiet a function
g(xl,...,x )40 from Co (R") and a sequence of funotione gk(xl,
ceerXy )EC (R™ ), k=1, 2,..., suoch that

(1) wg = £, £(X;,.00X )ECHRM
(11) Wg =gy, k=1,2,...
(111) The sequence gk(xl,...,xn), k=1,2,..., converges

uniformly on every finite n-dimensional interval
IT=[°"I..1]"°°‘[°'-TII] to f(xllo-o'xn) -

For the series I w, ,, where w are operators
(k) (k) (k)
which depend on multi order, we shall consider the normal con-

vergence.

DEFINITION 2,2, A series X ® (1) of n-dimensional
(k)
operators depending on multi orders comnverges normally to the

operator w, Tf there exiet .a funetion g(xl,...,x )40 from
Co (R™) and a sequence of functions q(k)(x geeesX )EC ®rY,
(k)€N ¢ 8uch that

. ) n
11 x - ; ;
(11) (k)m%; ]g(k)(xl, ,xn)l eonvergesa for every finite

n-dimengional interval IT=[0,T1]:...:[0,Tn].
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Obviously, condition (ii) implies that I 9 (k)
(k)

exists and is independent of the order of summation. The sum

= . n _u
u(xl,...,xn) = (i)q(k)(xl,...,xn) is in CO(R ) and w= g

3. QUASI-ANALYTIC CLASS

Let u( ) be a sequence of pdsitive real numbers de-~
pending on multi orders (p) ENg and K a reqular«compuct set in K. ve
always suppose M(o)=1, 0<M(p)5¢ for each (p), H(p)<n for in-~
finitely many (p).

By e(x,n(p)), we mean the class of all the 1nf;nite-
ly-differentiable functions on K, such that there are con-
stants Bf>0, and hf depending on f and

(P g1 8 plPly
(3.1.) max [D'F'f]|< £he
XEK "(p)

for each (p)€Ng, (p)-(pl,...,pn),Iplipl+...+pn,

pP g = ___Elflz___

ax, 1 it
3 ...axn

n

e(K,M( )) is a vector space under the pointwise ad-
dition of functions. If x and K are compact sets in R" and
(a), (b) n-tuples of real numbers such that (x)ex implies

*
(ax+b)( )€K, then for f in €€(K,M(p)) we have w=f(ax+b)€
G(KI.H(p)).

For an open set ﬁERn, by s(n,M( )) we mean the class
of all functions £, such that fee(K,Mp) for each compact
set Kb,

D(Q,H(p)) is the set of all fEe(n,M(p)) which have
a compact support.

A segquence M(p) is said to be logarithmically con-
vex 1if

(*) (ax+b)=(a1x1+b1,...,;nxn+bn)
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‘ 2 : n
(3.2? H(p) < M(p_q)M(p+q), for each (p)f (q)ENo.

In Theorem 4. of ([7), p.158) Roumieu proved the
following:

THEOREM 3.1. If there exiet constanta A and H such
that

(3.3 M canlPaly o gor sach ), @end,

M@
the vector apace e(ﬂ,M(p,) i8 an algebra under the
pointwige multiplication of functions,

REMARK. If n=1, condition (3.3.) follows from
(3.2.), but for n>2 this is not always true ([7], p.159).

DEFINITION 3.1. A4 class M(P) i8 said to be quasi-
~analytie, if D(Rn,M(p)) ={0}, ‘

For n=1, a necessary and sufficient condition for
the quasi-analyticity of a class Mp is known.

THEOREM 3.2. ([8), p.375) Let Mp be a logarithmic-
ally convexr eequence. The clase M_ ie8 quasi-analytiec if and
only if £€e(R,M ), X €R and Dpf(xo)ao'for each p=0,1,...,
implies £(x)=0 on R. '

In the proof, we shall use that €(R,M_ ) is an al-
gebra under the pointwise multiplication of functiona. In
view of the remark in case n>l, we must suppose that the
sequénce M) satisfies (3.3.).

Now, we shall prove a similar characterization for
the quasi-analyticity of a class M(p), for mxl.

THEOREM 3.3. Let the Bequence M(p)
satisfy inequality (3.3.). The class M(p) 18 not quasi—-analy-
tic if and only if there exist a function w(xl,...,xn)+0,
w€e(Rn,M(p)) and some point (al,...,an)ERn such that
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D(p)W(x)=0 for each (x)=(x1,...,xn) with X =a, for some
i=1l,...,n, and each (p)ENg.

‘ PROOF. If the class M'P) is not quasi-anal;tic,
then by Definition 3.1, U(Rn,M(p)) contains a nontrivial func-
tion which evidently satisfies the hypotheses of the theorem.

Conversely, let ¥ (X)#0. We may assume (X)>(a). If
g(x)=¢(x) for (x)>(a) and g{(x)=0 otherwise, then g(x)Ee(Rn,

M(p)).

Put h(x)=g(x+a)g(2x-a-x) . By Theorem 3.1. h(x)€D(Rn,
M(p)) h(i—a)=w2(§)#0 and h(x) has a compact support. Thus
h(x) is a nontrivial member of D(Rn,M(p)).

There is a simple characterization due to Lelong,
of the quasi-analytic classes in terms of the sequences Mp.

THEQREM 3.4. (Lelong, Theorem 1. {7], p.155.) Let
M_ be the rectified sequence of the sequence inf M(
sense of ([{7], p.154.), lel=p
The class M(p) 18 not quasi-aralytiec if and only if

p) in the

o M

b Pl .

- M

=1 P

or 1

w P

I M) < =,
p=1 P

L. THE CONVERGENCE OF POWER SERIES IN THE OPERATOR s(®)

The normal convergence of the power series

(ak)
(4.1.) s= I a s
(X) (k)

where a=(a1,...,an)€R2, a( are complax numbers depending

k)
a. k o_k

(ak) sl1 1...snn N, can be cha-

racterized in terms of the quasi analyticity of Lelong-Carle-~

man class.

on multi orders (k) Ng and s
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Put

la ) !

max :
(lak])=(p) if such a exists,(p)ENg

k)
C@"
0 otherwise ,
([ak])‘([alkll,...,[ankn]), [y] denotes the biggest irteger

<y.

THEOREM 4.1, If the clase C(p
tio, the series (¢4.1.) i8 normally oconvergent.

) t8 not quasi-analy-

THEOREM & .1% If the sequence Czl) satiafies (3.3.)
and S 18 normally convergent in M(Rn), then the olass C;;) i8
not quast—analytic.

PROOF .of Theorem 4.1. Let IT.=[0,T;]:...[0,T;] be
some finite interval. Since the class C?;) is not quasi-analy-
tic by Corollary 1. [7}, p.156, there is a nontrivial non-nega-
tive function ¢(x)€D(Rn,C?;))vdthtme surort in the interior of
I;. If h¢ i8 a constant, such that (3. 1 ) holds and f(x)=¢(7——)
for TE- € I*, £(x)=0 otherwise, then 2?2 £f40 and by Theoxem 1. ¢

of [317s “k?fGC (R") for each (k)END and (a)2(0).

For each compact interval IT there is some constant
C such that

maxla(k)s(“k)tzf|< max |a t([ak]) (ak)LZ ([ak])

*
x€IT EI

(k)

1

1
ngy 1T =€ ZTTGRTT

(|([uk])|-[u1k1]+...+[unkn]). Thus I a

)s(ak) is normally
(k)

(x
convergent in M(R™) .

PROOF of Theorem 4.1% If S is normally convergent
in M(Rn), there 1s a factor of convergence gECo(Rn) which
must be a nontrivial infinitely differentiable function such
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that D(p)g(x)=0 for every (x)=(x1,...,xn) with xi=0 for some
i=1,...,n (Theorem 1. of [3] and Definition 2.2.). Let IT be
some compact interval which contains the support number of g.
By condition (ii) of Definition 2.2, there is a cons.ant Bg

such that

(4.3.)  maxla s (*k)

n
gl<p (k) €N
X€L, g’ °

(x)®

The function y={g satisfies (3.1.). Thus if (p)=([ak]) for
same (k)ENn we have

’
er IT ( )

where Yy is a constant., For other (p)€N (3.1.) 1s obviously
satisfied. Therefore, the function w-LgEE(R ,C( )) The function ¥
and the gequence C( ) satisfy the requirements of Theorem 3.,
which proves that the class C( y is not quasi-analytic.

From Theorem 4.1. and Lelong’s Theorem 3.4, we have
another simple criteria, in terms of coefficients a{k),
for S to be normally convergent.

THEOREM k.2. Let Ci ),

If MP ie the rectified sequence of the sequence inf C -1
lpl=p P
in the sense of (7], p.154.), the series S ie normally con-

(p)t'.:l‘l‘r:,1 be given by (4.2.).

vergent if one of the following conditions is satisfied:

1
oo - Lo P

a) I Mgl , B) I MPP
p=1

P P=1

REMARK. Conversely, if the sequence CI;) satisfies
(3.3.) and S is normally convergent, then, by Theroem 4.1.
and Theorem 3.4, conditions A and B are satisfied.
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REZ IME

NORMALNA KONVERGENCIJA STEPENIH REDOVA n-DIMENZIONALNOG
OPERATORA DIFERENC IRANJA MIKUSINSKOG

Pitanje konvergencije operatorskog reda L a(k)s(ak)
(k)
¢iji &lanovi zavise od uredjenih n-torki, su kompleksni

a
(k)
brojevi a s(uk)

je n-dimenzionalni operator diferenciranja Mi-
kusinskog, dovedeno je u vezu sa osobinom ne kvazi-analiti&-
nosti klase Carleman-Lelonga. Ovo je prirodna veza jer se u
toj klasi u slufaju konvergencije nalazi funkcija koja pred-
stavlja takozvani faktor konvergasncije. Dati su dovoljni uslo-
vi za konvergenciju Teorema 4.1. i Teorema 4.2, kao i1 potre-
ban i dovoljan uslov za konvergenciju uz dodatno ograni&enje
{(3.3.) Teorema 4.1? Ovo ograni&enje je prirodno u slu&aju
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dimenzije n>1, jer (3.3) nije viZ%e posledica logaritamske

konveksnosti niza kao u slu&aju n=1, Data je i jedna karakte-
rizacija ne kvazi-analitilke klase u vife dimenzionalnom slu-

¢aju (Teorema 3.3.) koja je pogodrn.a za ovu problematiku ope-
ratorskog racuna.
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