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Abgtract

A first order differential equation with a small perturbation parameter
is derived from a weakly coupled first order system. It 1is solved
numerically by the finite-difference method on a special discretization
mesh.

1. Introduction

Let us consider the following system of first order differential
equatlons:

(1.a) y'= f(‘x) ,

(1.b) eu' + alxu) =0, xeI = [0,1] ,
(1.¢) y0) + bou(O) =cy
(1.4) y(1) + biu(l) =c .

vhere ¢ is a small perturbation parameter, 0 < ¢ << 1; bl.cl €R, 1 =0,1,
b°b1<0; f and a are sufficlently smooth functions in I and xR, respectively,
and a“(x,u) >8>0, xelI, ueRr.
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The physical meaning of problem (1) can be found in ([7], where the
linear case was considered. An exponentially fitted higher order scheme was
introduced there and the convergence uniform in € was proved. Here we
propose a simpler approach which decouples y and u from (1) in the following

way.

Let g(x) be the solution to (1.a) satisfying the condition g(0)=0.
Then we have

(2) wx) = gx) +ad .,
where d = y(0). Then the boundary conditions (1.c,d) reduce to
(3) byu(0) =c - d,
blu(l) =c - 1) -ad.
By substracting these equations we eliminate d and get:
(4) w0) + bu(1) =c,

with the appropriate b > 0 and c. It is easy to evaluate g(1) and thus to
get c. Then problem (1.b), (4) can be solved numerically. By using the
numerical approximation of u(0) we can get d from (3) and find y(x) from
(2).

Thus we can consider prbblels of the type (1.b), (4) only. We shall
solve them numerically using the classical finlte-difference schemes on
speclal discretization meshes. By the standard technique we can prove the
first order convergence uniform in e (see [1,2,8,9,10] for instance).

The solution to problem (1.b), (4) has a layer of width O(e) at the
origin. Our discretization mesh is generated by a suitable function which
maps an equidistant mesh to the mesh which 1s dense in the layer. The
density changes autonatical_ly when ¢ does. Because of that we obtaln uniform
numerical r'esullbt.sl within the reglon where the continuous solution changes
abruptly. ‘

We note that the numerical methods for more general systems have been
considered in a number of papers, let us mention (6] and [11] only. However,
because of the special structure of system (1) we can construct here a very
simple and efficient method.

Throughout the paper we denote by M any positive constant which is
independent of £ and of the discretization mesh.
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2. The Continuous Problem

Thus, we consider the problem:
Tu:=eu’ + a(x,u) =0, xel,
(5)
Bbu:= u(0) + bu(l) =c,

O<ese, bz0, ace ci(1 x R), a(xu) > a0, (xu) elxR.

Let us denote by u e Ca( I) the solution to problem (5).

The case b=0 is well known. Operator (T, Bo) is inverse monotone and the
solution u, exists uniquely. Using the technique from [1,8] (cf.[2] as well)
we can prove (the details will be omitted):

Theorem 1. For the solution u, to problem (5) with b=0, we have
lui(n) | s M1 + e 'v(x) ,
lu (0| s Me™'+ (D),

where x € I and v(x) = exp (-a x/¢€).

Now we can prove

Theorem 2. The solution u, to problem (5) with b > 0 uniquely exists and its
derivatives satlsfy the same estimates as the derivatives of u, In Theorem 1.

Proof. let z € Cl(I) denote the unique solution to the reduced problem

a(x,z) =0
and let
|o(x)| s2Z2, xel.

Then, by the inverse monotonicity of (T, Bo) we can get that the solution u
to problem

Tu=0, Bou = g,
satisfies :
P:=min(s,-2Z) = u, s max(s,2) =:Q .
Let us consider two values of s :

s, < min(0,c-bZ) ,

s, > max(0, c+bZ) .
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We have the corresponding solutions u and constants Pl, Ql, i=1,2.

0,1
Thus we get
Tu = 0. 1-1.2 ’
0,1
Bbuo'1 E ] s1+ le =5 +bZ<c
and similarly
Bbuo,a >e.

Because of the fact that u, depends continuously on s, we can conclude that

there exists a unique value s,, such that the solution u, o, to problem

Tu =0, B°u=s. .
satisfies

B

u =c,
b o,* ’

Hence u, , = ub and we have the same estimates as in Theorem 1. The Theorem
is proved.

We can see that u, has a layer of width O(¢) at x=0. The estimates of
the derivatives of u are important for the proof of the convergence uniform
in €. '

3. The Discretization

Let us use mesh Ih from [9]1, cf. [1,2,8,10]:

xl-(Ih), i=0,1,...,n, M=1/n, ne€eN,

F(t):= Aet/(q-t) , t € [0,p]

t) =
Rp) + F/(p)(t-p) , t € Ip,1]

Here q € (0,1) and A € (O,q/co) are fixed numbers and p € (0,q) is the
abscissa of the contact point of tangent line from (1,1) to the curve F(t).
The point p can be found explicitly.

We form the discretization of problem (5) using finite difference sche-
me on mesh Ih:

(6a) v +bv =c¢c,
] n
(6b) Thwl:- cD_w! + a(x!,w!) =0, i=1,2,...,n,

where {wl} denotes a mesh function on Ih and

D_wl = (wI - wl_l)/hI ,
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h‘ =x - x"_l , 1=1,2,...,n.

The existence and uniqueness of the solution to the discrete problem (3)
can be established in the same way as in the continuous case.

Theorem 3. Let {vl} be the solution to the discrete problem (6) on the mesh
Ih with n > 2/q and let u, be the solution to the contimious problem (5).
Then we have

|wl - ub(xl)l sMh.

Proof. By using the technique from [8,1] we can easily prove the consistency
uniform in €, i.e.:
1T, (x) - T, | =
IT u(x) - (Tu)(x)] =
c|D_ub(xl) -u (xl)| sMh, i=1,2,...,n.
There remains to prove the stability uniform in £. Let us first
consider the linear case, 1.e. problem (5) when a(x,u) = &({x)u- r(x),

a(x) >a>0 xe€ 1. Its discretization on mesh Ih reads:

w +bwv =c¢,
(4] n

v = Aw +B8 , 1:1,2,...,n,
1 1 1-1 i
where
A1 =e/(e + a(x‘)h‘) . Bl = A‘r(x‘)h‘/s .
We shall prove the stabllity inequality:
A |vl|sa(|c|+R),

where |r(xl)| s R, i=1,2,...n. For the technique cf. [4]. We have

wl = Krvo + 1..l , 1=:1,2,....n,
Kl = Alxl_l , 1=1,2,...,n, K°= 1,
Ll = AlLl_l + Bl , I=1,2,...,n, L°= o,

Vo = (c - bLn)/(l - bKn) .
Since 0 < Kl <1, i=1,2,...,n, inequality (7) follows if we show
(8) jt,| s®#R, i=1.2,....n.

It holds that
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(9} |L | =L, i=1,2,...,n,
1 1
where

L= AL+ B, 1=1,2,....n, L=0,

A; = e/(c + a‘hl) z A .

B, = A/Rh /e = |B | .

By induction we can prove :

(10) L; s R/a i=1,2,...,n,

- »
and because of (8) we get (8), and (7) as well. Indeed, it is easy to verify
that (10) holds for i=1. Now suppose that (10} is valid for some 1. We have

L,y = 4iRa, + B =
= A;Klla‘ + h’/c) = R/a,
In the nonlinear case we have
Thub(xl) - ‘I'hwl =
ed (u(x) -w) +Qu(x)-w),
where

1

Ql =I Aslu(x’,wl + s(ub(x’) - vl))ds >a, >0 .

o
Hence, the linear convergence uniform in € follows in the same way as in the

linear case. The Theorem is proved.

4. Numericel Examples

We shall consider two problems from [3], modified to the form of our
problem (5). The first problem is linear:

(11) eu’ +u=r(x) +er'(x) , w0 +u(1) =c,

where
r(x) = 10 - (10 + x) exp(-x) ,

c =1r(1) + 10(1 + exp(-1/€)) .,
so that the solution reads u = r(x) + 10 exp(-x/g€) .

The second problem is
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eu’ +u" =0,

(12)
u(0) + u(1) = 10 + 1/0.1 + 1/¢) .

Its solution reads u = 1/(0.1 + x/¢) .

In all the numerical experiments we use the mesh generating function =
with parameters A=1, ¢=0.8, thus obtaining about 45 % of the mesh points in
the interval [0,e] which represents the layer.

Let us denote by E the maximum pointwise error. We have achlieved the
same values of E for all ‘s which were considered: € = 107>, 10°%, 1079,
the case of problem (11), we have E=0.126 for n=50 and E=0.0642 for r=100.
In the case of problem (12), we have E=0.199 for n=100 and E=0.102 for
m=200.

The nonlinear system (6) was solved by the Newton-Kantorovich method
(see [5) for instance). The Initial approximation was a constant

In

mesh-function ¢/(1 + b). The iterations were carried on until the maximal
pointwise difference between two succesive iterations became less than 0.01.

Nine iteratlons were needed.
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Rezime

NUMERICKO RESAVANJE SINGULARNO PERTURBOVANOG PROBLEMA KOJI PROIZILAZI 12

JEDNOG SLABO POVEZANOG SISTEMA

Diferenci jalna Jednatine prvog reda sa malim parametrom je izvedena 1z

Jednog slabo povezanog sistema prvog reda. Zatim Je resavana numericki
. pomoc¢u metoda konacnih razlika na specljalnoj mre2l diskretizacije.
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