A NOTE ON SOME LATTICE CHARACTERIZATIONS OF HAMILTONIAN GROUPS

Branimir Šešelja, Gradimir Vojvodić

Institute of Mathematics, University of Novi Sad

Dr Ilije Djuričića 4,21000 Novi Sad, Yugoslavija

ABSTRACT

It is shown that the lattice of all the congruences on all the subgroups (i.e. the lattice of all weak congruences) of a group is modular if and only if the group is Hamiltonian (this is the solution of a problem stated in [4]). It is also proved that a group is Hamiltonian if and only if its diagonal relation is an exceptional element in the above-mentioned lattice.

A weak congruence relation ([3]) on an algebra A=(A,F) is a symmetric, transitive and compatible relation ρ on A, satisfying a weak reflexivity: if c is a constant in A, then

cpc.

For a given algebra A, let S(A), C(A), and $C_{tr}(A)$

AMS Mathematics Subject Clasification (1980): 08A30, 20E15

Key words and phrases: Hamiltonian groups, lattice of subgroups

be the lattices of subalgebras, congruences and weak congruences on A, respectively.

It is clear that $C_{\mathbf{w}}(A)$ is an algebraic lattice under set inclusion and that it coincides with the lattice of all the congruences on all the subalgebras of A.

C(A) is a sublattice of $C_{W}(A)$, namely, it is a filter [A), where $\Delta = \{(x,x) \mid x \in A\}$ (diagonal relation on A).

S(A) is isomorphic with the ideal (Δ), under the mapping B+d₂, where d₂={(x,x)|xeB}(a diagonal relation on Bes(A)).

Moreover, S(A) is a homomorphic image of $C_{\overline{W}}(A)$, under $\rho + B$, where $d_{\rho} = d_{\overline{B}2}$, and $d_{\rho} = d_{\overline{B}2}$ (a diagonal of ρ).

In the following, we shall identify the subalgebras of Å with the corresponding diagonal relations in $C_{\omega}(A)$.

A is said to have the congruence intersection property (CIP)([3]) if for all $\rho, \theta \in C_W^{(A)}$

$$(\rho \wedge \theta)_{A} = \rho_{A} \wedge \theta_{A}$$

where $\rho_{A}^{\text{def}} \cap (\sigma \in C(A) \mid \rho \in \sigma)$.

Obviously, $\rho_{\mbox{\scriptsize A}} \! = \! \rho \nu \Delta$, and thus CIP expresses a distributivity property of $\Delta.$

Recall that A satisfies the congruence extension property (CEP) if every congruence on an arbitrary subalgebra of A is a restriction of some congruence on A.

It was proved in [3] that:

(I) An algebra A has a modular lattice of weak congruences if and only if A satisfies CEP and CIP, and both S(A) and C(A) are modular lattices.

It was proved in [5] that:

(II) A satisfies CEP and CIP if and only if the mapping $\rho+(d\rho,\rho_A)$ is an embedding from $C_\omega(A)$ into $S(A)\times C(A)$.

If G is a group, then every $\rho \in C_{\widetilde{W}}(G)$ uniquely determines a pair (H,K) of subgroups of G, where KdH, K=[e]_{\rho} (an equivalence class containing a neutral element e - constant in G), and H is represented by a diagonal relation d_{\rho}, as mentioned before. Conversely, every pair (H,K) of subgroups of G, such that K is normal in H, determines one weak congruence of G, namely the congruence on H which corresponds to KdH. Thus, the lattice $C_{\widetilde{W}}(G)$ is isomorphic with the lattice of all pairs (H,K), where H runs over all the subgroups of G, and K over the normal subgroups of H.

Now let \overline{K} be a least normal subgroup of G containing a subgroup K i.e. let

$$\overline{K}$$
 $\overset{\text{def}}{=}$ $\cap (K_{i} \triangleleft G | K \triangleleft K_{i})$.

PROPOSTITION 1. A group G satisfies CEP and CIP if and only if $K \rightarrow \overline{K}$ is an embedding from S(G) into C(G) (the latter considered as a lattice of all the normal subgroups of G).

Proof.

By the above-mentioned isomorphism between $C_{\overline{W}}(G)$ and the lattice of ordered pairs of subgroups, the embedding from (II) can be given by $(H,\overline{K})+(H,\overline{K})$, $K \not \vdash H \hookrightarrow G$, and hence by $K \mapsto \overline{K}$.

COROLLARY 2. A group G satisfies CEP and CIP if and only if it is Hamiltonian.

Proof.

If G satisfies CEP and CIP, then the embedding K+K from S(G) into C(G) maps the normal subgroup into itself. Thus, S(G)=C(G), and G is Hamiltonian. The converse follows from Proposition 1. G

Corollary 2., together with (I), yields the following.

THEOREM 3. A group is Hamiltonian if and only if its lattice of weak congruences is modular.

PROBLEM . Characterize groups satisfying CIP, which in this case has the following form for any two subgroups H,K of G,

 $\overline{HOK} = \overline{HOK}$.

(If G is finite, then CIP is equivalent with being Hamiltonian, see [4]).

Some other characterization of Hamiltonian groups can be given by means of the neutral and exceptional elements of the lattice $C_{\omega}(G)$.

Recall that an element a of a bounded lattice L (with 0 and 1) is said to be neutral if it satisfies the identity

 $(a \wedge x) \vee (x \wedge y) \vee (y \wedge a) = (a \vee x) \wedge (x \vee y) \wedge (y \vee a)$

for all x,yeL.

One can prove that:

a) a is neutral in L if and only if the mappings

 $m_a:x+x/a$ and $n_a:x+x/a$ (xeL)

are homomorphisms and

 $f_a:x\rightarrow(x\wedge a,x\vee a)$

is an embedding from L into (alx[a).

An element a of a bounded lattice L is exceptional if it is neutral and the classes of the congruence induced by m_a have maximum elements which form a sublattice of L(see[2]).

Now, if we consider the bounded lattice $C_w(A)$ of an algebra A, and the diagonal relation $\Delta C_w(A)$, then

we have the following statements, the proofs of which are straightforward:

- a) $m_{\Delta}: \rho + \rho \wedge \Delta$ ($\rho \in C_{W}(A)$) is a lattice homomorphism (a homomorphic image is S(A), as already stated).
- 2) $n_{\Delta}: \rho \to \rho v \Delta$ ($\rho \in C_{W}(A)$) is a lattice homomorphism if and only if A satisfies CIP.
- 3) Δ is a neutral element of the lattice $C_{W}(A)$ if and only if A satisfies CEP and CIP (see[4]).
- 4) The classes induced by the congruence m_{Δ} in $C_w(A)$ have maximal elements; the set of such elements is $M_A = \{B^2 \mid B \le A\}$.

 $(M_A$ is not necessarily a sublattice of $C_w(A)$).

In the case of groups, this yields the following: LEMMA 4. If G is a group, then $M_{\Delta}=\{H^2\mid H\leq G\}$ is a sublattice of $C_{\omega}(G)$.

Proof.

Since $H^2 \cap K^2 = (H \cap K)^2$, for the subgroups H,K of G, all we have to prove is that in the lattice $C_w(G)$ $(H \vee K)^2 \leq H^2 \vee K^2$

(since obviously $H^2 \vee K^2 \leq (H \vee K)^2$).

If e is a neutral element of G, then $(HvK)^{2}=([e]_{(HvK)}^{2})^{2}\leqslant ([e]_{H^{2}vK}^{2})^{2}=H^{2}vK^{2}. \Box$

THEOREM 5. A group G is Hamiltonian if and only if Δ is a neutral element of the lattice $C_{_{\!W}}(G)$.

Proof.

By 3) and Corollary 2. 0

COROLLARY 6. A group G is Hamiltonian if and only if Δ is an exceptional element of the lottice $C_{\widetilde{W}}(G)$.

Proof.

By Lemma 4 and Theorem 5.

REFERENCES

- [1] Bîro B., Kîss E.W., Palfy P.P., On the Congruence Extension Property, Colloquia Mathematica Societatis Janos Bolyai, 29 Universal Algebra, Esstergom (Hungary), 1977, 120-151.
- [2] Reilly N.R., Representations of Lattices via Neutral Elements, Aglebra Universalis, 19 (1984) 341-354.
- [3] Vojvodić G., Šešelja B., On the Lattice of Weak Congruence Relations, Algebra Universalis, 25, 1988, 121-130.
- [4] Vojvodić G., Sešelja B., A note on the modularity of the lattice of weak congruences on the finite group, Contributions to General Algebra 5, Wien, 1986, 415-419.
- [5] Vojvodić G., Šešelja B., On CEP and CIP in the lattice of weak congruences, Proceedings of the Symposium "Algebra and Logic", Cetinje, YU, 1986, 221-227.

REZIME

O NEKIM MREŽNIM KARAKTERIZACIJAMA HAMILTONOVIH GRUPA

U radu je dokazano da je proizvoljna grupa Hamiltonova ako i samo ako je mreža njenih slabih kongruencija modularna.

Received by the editors May 15, 1988.