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ABSTRACT

It is shown that the lattice of all the congruen-
ces on all the subgroups (i.e. the lattice of all weak con-
gruences) of a group is modular if and only if the group
is Hamiltonian (this is the solution of a problem stated i
in [4])] ). It is also proved that a group is Hamiltonian-if
and only if its diagonal relation is an exceptional element
in the above-mentioned lattice.

A weak congruence relation ([31) on an algebra
A=(A,F) is a symmetric, transitive and compatible relation
p on A, satisfying a weak reflexivity: if ¢ is a constant
in A, then

cpe.

For a given algebra A, let S(A), C(A), and Cw(A)
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be the lattices of subalgebras, congruences and weak con-
gruences on A, respectively. ‘
It is clear that Cw(A) is an algebraic lattice

under set inclusjon and that it coincides with the lattice
of all the congruences on all the subalgebras of A.
Cc(A) is a sublattice of ngA), namely, it is a

filter [4), where A={(x,x)| xeA} (diagonal relation on A).
S(A) is isomorphic with the ideal (Al, under the

mapping B*d ,, where d 2={(x,x)lxeB}(a diagonal relation on
Bes(A)). B B .

Moreover, S(A) is a homomorphic image of Cw(A)’

£

under p+8, where dp=d o¢ and dpdg paA (a dtagonal of p).
B

1n the following, we shall identify the subalge-
bras of A with the corresponding diagonal relations in
LA
Cw( ).
A is said to have the congruence intersection
property (CIP)([3]) if for all p,eecw(A)

(DAB)A=pAz\BA.

d

where p, gfn(oec(A)lpcc).

Obviously, =pvA, and thus CIP expresses a dis-

9\
tributivity property of A.

Recall that A satisfies the eongruence extension
property- (CEP) if every congruence on an arbitrary subal-
gebra of A is a restriction of some congruence on A.

It was proved in [3] that:

(I) An algebra A has a modular lattice of weak congruences
if and only if A satisfies CEP and CIP, and both S(A) and
C(A) are modular lattices.

It was proved in [5] that:

(IT) A satisfies CEP and CIP if and only if the mapping

p*(dp,p,) is an embedding from Cw(A) into S(A)xC(A).
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If G is a group, then every peCw(G) uniquely de-
termines a pair (H,K) of subgroups of G, where KaH, K=[e]p

(an equivalence class confaining a neutral element e - cons-
tant in G), and H is represented by a diagonal relation dp,

as mentioned before. Conversely, every pair (H,K) of sub-
groups of G, such that K is normal in H, determines one
weak congruence of G, namely the congruence on H which cor-
responds to K¢H. Thus, the lattice Cw(G) is isomorphic with

the lattice of all pairs (H,K), where H runs over all the
subgroups of G, and K over the normal subgroups of H.
Now let K be a least normal subgroup of G con-

taining a subgroup K i.e. let

- def
K "=°n (K;qG|K<K,).

PROPOSTITION 1. A group G 8atisfiee CEP and CIP
if and only if KK is an embedding from S(G) into C(G) (the

latter considered as a lattice of all the normal subgroups
of G).

Proof.

By the above-mentioned isomorphism between Cw(G)
and the lattice of ordered pairs of subgroups, the embed-
&ing from (II) can be given by (ﬁ,i)+(H,i), K¢H<G, and hen-
ce by K+K.o

COROLLARY 2. 4 group G satisfiee CEP and CIP
if and only if it is Hamiltonian. :

Proof.

If G satisfies CEP and CIP, then the embedding
K+K from S(G) into C(G) maps the normal subgroup into it-
self. Thus, S(G)=C(G), and G is Hamiltonian. The converse
follows from Proposition 1. o
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Corollary 2., together with (I), yields the following.

THEQREM 3. A group ts Hamiltonian if and only if
ites lattice of weak congruences t8& modular.u
PROBLEM . Characterize groups catisfying CIP,

which in this case has the following form for any two sub-
groups H,K of G,

R = AR .

(If G is finite, then CIP is equivalent with being Hamil-
tonian, see [4]).

Some other characterization of Hamiltonian groups
can be given by means of the neutral and exceptional ele-
ments of the lattice C_(G).

‘ Recall that an element a of a bounded lattice L
(with 0 and 1) is said to be neutral if it satisfies the
identity

(aax) v(xAy)y (yaa)=(avx)a (xvy)a(yva),

for all x,yeL.

One can prove that:
a) a is neutral in L if and only if the mappings

m :x*xAa and n :xsxva (x€L)
are homomorpgisms and

fa:x+(an,xva)
is an embedding from L into (alx[a).

An element a of a bounded lattice L is excepti-
onal if it is neutral and the classes of the congruence
induced by m, have maximum elements which form a sublattice

of L(see[2]}).
Now, if we consider the bounded lattice c,, ()

S/
of an algebra A, and the diagonal relation Aecw(A), then
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we have the following statements, the proofs of which are
straightforward:

a) mA:O*pﬁA (PGCW(A)) is a lattice homoﬁorphism
(a homomorphic image is S(A), as already stated).

2) np:prpva (pecw(A)) is a lattice homomorphism
if and only if A satisfies CIP.

3) A is a neutral element og the lattice cw(A)
if and only if A satisfies CEP and CIP (seeld]).

4) The classes induced by the congruence m, in
Cw(A) have maximal elements; the set of such elements is

M,={B%|B<A}.

(M, is not necessarily a sublattice of C_(A)).

In the case of groups, this yields the following:

LEMMA 4. If G ie a group, then MA={H2|H<G}_is a

sublattice of Cw(G).

Proof.

2

Since H nK2=(HnK)2, for the subgroups H,K of G,

all we have to prove is that in the lattice Cw(Gj

(HvK)2<H2vK2

(since obviously szK2<(HvK)2 ).
If e is a neutral element cof G, then

(HvK) 2= (Le] (1) 2) 26 (Te] 2, 2) 2=0?vk? | o

THEOREM 5. 24 group G is Hamiltonian if and only
if A is a neutral element of the lattice C_(G).

Proof.
By 3) and Corollary 2. o
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COROLLARY 6. A group G is Hamilionian if and

only 1{f A i8 an exceptional element of the lottice CW(G).

- proaf.

By Lemma 4 and Theorem 5. @
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0 NEKIM MREZNIM KARAKTERIZACIJAMA
HAMILTONQVIH GRUPA

U radu je dokazano da je proizvoljna grupa Hamil-

tonova ako i1 samo ako je mreZa njenih slabih kongruencija
modularna.
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