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In this paper a generalization of a fjxed poi,nt 
theorem from [7] ;is proved for a class of Takahashi convex 
metric spaces. 

1. INTRODUCTION

In 1970 Takahashi [6] introduced the.definition 

of convexity in a metric space and generalized some imp-or� 

tant fixed point theorems previously proved for Banach 

spaces. Subsequently, Machado [4], Talman [7], Gauy and 

Singh [l] , Hadzic and Gajic [2], Gajic [3], among others 

have obtained additional results in this setting.This pa

per is a continuation of these investigations. 
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2. PRELIMINARIES

Deftrtftton l. Lei X be a metric space cind I be 

the cZosed unit interval,, A mapping W.:.XxX·xl:+X is said 

to be a convex structure on X iff for al,7, x,y€X,A€I, 

d(u,W(x,y,A}}�Ad(u,x}+(l-A}d(u,y}, for aii uex. 

X together with a convex structure is caZZed a 

Takahashi convex metric space. 

Any convex subset of a Banach space is a Takahashi convex 

space with W(x,y,A}=Ax+(l-A}y. 

D�ffnftfdrt 2. Let X be a convex m�tric space, 

A nonempty subset K of Xis convex iff W(x,y�}€K whenever, 

x,yeK and,iAeI. 

Takanashi has shown that open and closed balls are 
convex and that the arbitrary intersection of convex sets is 
convex ([SJ}. 

For arbitrary Cc: X Zet: 

W(C} := {W(x,y,A} :x,yec,Ae[o,1]}. ( 1) 

It is easy to see that W:P(X}+P(X} is a mapping 

with properties 

1. cs W(C} , for cep (X} ;

2. Cs B imp Lies W(C} s W(B}, for B,cep {X) ;
- - -

3, W(CO B} S:W(C} 0 W(B}, for any B,C€P(X}, 

Using this notation we can say that KS X is con

vex iff W(K} 5 K, 

A few additional definitions and propositions 
will be needed subsequently, 
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Definttfdn 3, A convex metric space Xis said 

to have Property CC) iff every decreasing net of nonempty, 

closed convex subsets of X has a nonempty intersection. 

Re'niark. Every weakly compact convex subset of 

a Banach space has Property (C). 

Definftiort 4. Let X be a convex �etFic space 

and A a nonempty aZosed convex bounded set in X. For x€X 

µ1e set: 

r
x

(A)= sup d(x,y), 

y€A 

r (A)= inf rx(A),
X 

x€A 

Ac
={xeA:r

x
(A)=r(A) }, (centre of A);

o(A/= sup {d(x,y) :x,yeA}; (diametar of A). 

Deftniti:dn 5. A point x€A is a diametraZ point 

of JI. iff sup d(x,y)=o(A). 
y€A 

Definition· 6. A convex metric space is said to 

have a normaZ structure iff for each closed bounded convex 

subset A of X, which contains at Zeast two points, there 

exists x€A which is not a diametraZ point for A.

Remark. Any compact convex metric space has a· 

normal structure ([1]). 

For sets K,H c X by cl
F

K we shall denote the boun

dary of K relative to H. If K is closed then: 
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3HK={zeKIB(z,r} n (H'l<.}i ·!1 for each r>O}

(B(z,r},;,_{x€X ld(x,z} <d}. 

Lj. Gajit 

Lemma 1. [l] Let H and K be two cZosed subset

of the Takahas-hi convex metric space X such that H n Ki !1 

If W:X KX x I+ X is continuous in A€! and H is

convex, then 3gK=!1<=>II5K. 

Lemma 2, The continuous image of the convex 

subset K ofa Takahashi convex metric space with a conti

nuous convex structure Wis a connected set,

Proof. Since K is conve:x and l� is continuous, K is 
�athwise connected, and since a €ontinuous image of a Fath
wise connected set is pathwise connected, it is connected too. 

Now, iet us recall that the convex hull of a set 
A, AcX is the intersection of all the conve.x sets in X con�. 
taining A., and it is denoted by eon.v A. 

It is obviouo that if A is a convex subset of a 
convex !l'etric space X, then 

w1(A}=W(W( ••• W(A}} •• )�A, for any ne N. 

For ne !\l we set 

The sequence {An} ne N is increasing so Zim inf

and Zim sup exist and 
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ProposiTfori l. [3] Let X be a Takahasl,i convex

met:t'ic space. 

Then, 

conv A= 1,im A = U
N 

A , (Ac X) , n ne. n (2) 
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In the remainder of the paper, (X,d) will denote 

a complete metric space with a convex structure W, 

Proposition 2. [3] For any subset A of (X,d) 

o(conv A)=o(A), 

Lemma 3. Let Kc H be two nonempty cfosed subsets 

in (X,d) ,iet H be con�ex and iet W be continuous in A, If

xeK and ye1t,.K then there exists A
0

e(O,l), such that

W(x,y, A
0

)€clHK.

Proof. Let L={Ae[O,l]iw(x,y,A)€K}since L is 

bounded and nonempty (1€L), there exists inf L, Let A
0

= 

= inf L. If A €(0,1], then for every n€N there exist A , 
. o n 

A
0

<An<l,An+A
0 

and so that W(x,y,An)€K, Since w is con-

tinuous W(x,y,A
0

)eK, too, On the another hand, there exist 

{�n }o<�n<A
0

,ln+A
0 

so that W(x,y,�n)€H-...K and, then,

W(x,y, A )+W(x,y, A ) n o 

For A
0

=0, 

so we prove that W(x,y,A
0

)€clHK.

since d(y,W(x,y,A))=Ad(x,y), one can 

prove that y€K=K. Contradiction! 
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3. RC:SUL TS.

Theorem j, Let(X,d) be with a continuous con

vex structure and let H,K(K sH) be nonempty closed convex

subsets of (X,d). Further, let H be a normal subset and K

a bounded set with Property Cc).

If A:K+H,A{3HK)c K, and A is a mappin� which,

for all x,yeK satisf,es- ihe inequality: 

d(Ax,Ay)�ad(x,y)+b[d(x,Ax)+d(y,Ay) ]+c[d(x,Ay) + 

+ d(y,Ax)], (3) 

where a,b,� are nonnegative constants such that a+2b+2c� 
�l,a+b>O, the� A has a fixed point.

Poof. �e shall assmr� that a+2b+2c7i. For fix-
ed x0€K and arbitrary x€K we have from (3):

d(Ax,Ax
0

)�d(x,x
0

)+b[d(x,Ax)+d(x
0
,Ax

0
)] + 

+c[d(x,Ax
0

)+d(x
0

,Ax) ]�ad(x,x
0

)+bd(x,x
0

) +

+bd(xo,Axo)+bd(Axo,Ax)+bd(xo,AXO)+cd(x,xo) +

+cd (Axo, XO) +cd,(xo,Axo) +cd (AXO,Ax)

and further, 

This and the boundness of K means that A is bounden on K. 

Let, as in [7],F be the family of all the clo
sed convex subsets of H so that for Fef, Fn K;i ¢ and 
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A:FO K-+F. Since HSF,Ff �. Let{F.�} be a decreasing chain 

of sets of F and let F0
= n F

a
. Note that F0o K is nonempty

since {Fa
n K} is a decreasing chain of a nonempty closed

convex subset of a set with Property (Cl. Also, since 

A:F a
n K+F 

a
' for each a, clearly A:_F0n K+F0• Since Fo_ is a

closed convex, F0eF so it follows by Zorn's Lemma that
F has a minimal element. 

Let F be a minimal element and suppose clFK;F �

We shall prove that M ��! FO K has only one element. Sup

pose that M has more than one element. Then, center Mc is 

a nonempty closed convex set so that: 

o(Mcl"r(M) <oCM).

Furthermore, if coriv" N denote the cl0sed convex 
hull of set N, then we have 

and 

A (a'on'vA {M) 0 K) S A (F O K) =A (M) c a'on'vA (M) • 

From this two facts and from the minimality of 
the set F we get 

aonvA(M)=F. 

This and the boundedness of A give o(F)<+00• 

Let y€Mc. If Ay€M set x
0

=y. If Ay,M, then y �
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¢0FK and by Lenuna 3 there exists 0<A
0
<1 such that W(y,Ay,A

0
) 

eaFK. In this case put x
0

=W(y,Ay,A
0

). In any case,we have

x
0

,Ax
0

€M (since A: a,FK+K) and that 

Further, for all x€M we have: 

so, since we prove that F = aorivA(M), 

r g�£; sup { d (Ax
0

, z) I z€F} <· o(F) • (4) 

Now, we shall define a transfinite sequence of 
the set {Ma} setting

if a-1 does not exists. 

Obviously, the sets Ma are nonempty convex (W

is continuous) and closed subsets of the set F for which 

Man K� f.J. For a<a' it is Mac Ma, • Taking an ordinal num

ber a* greater than the cardinal number of the power set 

of F, we see that in the sequence {MajO<a<a*} there nru.st

be repetitions. If a
0 

is an ordinal number for which 

M +l
=M (O<a <a*), then we havea0 a

0 
o 
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A(Ma. n M) caonv((M n M) U A(M n M) )=
0 

-
a.O CXO 

= M
ex 

+l
= M� • (5) 

0 0 

We shall prove for all (O<a.<cx
0

) that

For a=0,(6) is true. Let 0<cx<cx
0 

and suppose

that for all 6, O<B<a. 

and 

d(x,Ay)<r for x,yeM
6 

nM, 

Suppose that a-1 exists. Taking a sequence 

o(M )-e: <d(x ,y ), n=l,2, ••• •
a n n n 

(7) 

(8) 

(9) 

Further, we may assume that one of the following is true: 

n=l, 2,... ; 

n=l, 2,, •• 
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If .i) or iii) is true, then from (7), (8), (9) 

it follows immediately that o(Ma)<r. If ii) is true then 

(3), (7), (8) and (9) give o(Ma) <r, so inequality (7) · is 

proved for a=6. 

Let xeM. n M. Then for a x8M n M and a given 
a . a 

e:>O we may take x'e conv · { {M 1 n M) u A(M 1 n M)} for which
a- a-

.d(x,Ax)<e:+d(x',Ax). 

Using Proposition l we have that there exists 
-k

k
0

eN, so th.at x'ew 0 c (Ma-l n M) u A·(Ma-l n M)). By (3), (7),

(8) we get as·in [7] that:

d(x,�)<e;+ I wid(ui,Ax)+{a+b+c) (1-w)r+
1eI1 

+b(l-w}d(x,Ax) + c I wi�(ui,Ax)
i€I2 

ko Il UI2=I, card I<2 ,wi>o, i€I, E wi
=

l 
i€I 

w= E w 

i€I i
1 

(10) 

This means that the set S of all 6, O<B<a for 
which 

d(x,Ax)<e:+ E y1d(vi,AX)+y(a+b+c)r +
ieI 

+ybd(x,Ax) ( 11) 

for some vieM6n M and some real nunbers y,yi>O .<I-finit

set) for which 
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Now, in a si�ilar way, using (12) one can prove that (8) 

is true for B=a. 

In the case that a..-J. does not exist, from (7) 

for B<a it follows i::rrrrnediately that ·{'.7) holds for S=a. 

Inequality (8), for B=a, may be proved in a similar way 

as i1Lthe case when a-1 exists, so we have that (.7) and 

(8) are valid for all a, O<a<a
0

• 

Finally, we have that M is a nonempty closedao 
convex subset of the set F with properties that 

a) o(M )<r<o(F)ao 

b) M n K=11 · n Mf !1ao ao 

But this is a contradiction to the minimality of 

the set F, therefore M=F n K has only one point. 

Let {x*} =F n K. From aFK 'f !1. we have {x*} =clFK.

Then, Ax*€F n K=x* and x* is the fixed point o:t: A. 

If aFK=!1 then, by Lemma 1, F cK and A:F n K-+F

would imply A:F+F. If F has more than one point, from the 

fact that H has a normal structure, one can see that there 

exist x
0

€F, for which 

sup {d(x
0

,y)Jy€F}< �F).

We can now construct the sequence {Ma}, with

M
0

= £x
0

} and repeating the above procedure, with some sim

plifications, we again get a contradiction. Hence, F has 

only one element. This and A:F-+F imply that A has a fixed 

point. 
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Theorem 2. Let (X,d) be with�a eontinuous con
vex structure, H. and K $ K cH, nonempty closed convex sub.., 
set of X. Further, Zet H be a bounded normaZ subset and 

K with PI'operty ( c). If A:K+H,A(cl
li

K) cK and if A satis
fies (3), where a,b,c;;;.O and a+2b+2c<l, then A has a fixed 

\ 

point. 

Proof. Let F, F, M have the same meaning as in 

the proof of Theorem .l. 
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Suppose that M=F fl K has more than one element 
and aFK;# rJ. Since F cH and H has a normal structure, there

exists x0€F for which

r0 '= sup{d(.x0, y) :y€F}<o (F).

Define x
0
€M in the following way 

(Note that in the case x
0
·tM we have that M--clFM1 rJ because

in the opposite case clFM=M and therefore A:M+M. From the

n�nirnality of the set F, we now have M=F so x0• €M).

It is easy to see that in any case we have 

sup{d(x 0,y) Jx€F}< oiF).

Now, we can construct the sequence {M
a

}' starting with 

M0 ={x0 } and so on.
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REZIME 

TEOREME O NEPOKRETNOJ TACKI U TAKAHASIJEVIM 

KONVEKSNIM METRICKIM PROSTORIMA 

U ovom radu dokazane su teoreme o nepokretnoj 

tacRi u klasi Takahasijevih konveksnih metrickih prosto

ra koje uopstavaju rezultate za normirane prostore iz ra

da [7]. 
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