Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 19,1,129-142 (1989) **REVIEW OF RESEARCH** FACULTY OF SCIENCE MATHEMATICS SERIES

FIXED POINT THEOREMS IN TAKAHASHI CONVEX METRIC SPACES

Ljiljana Gajić

Institute of Mathematics, University of Novi Sad Dr Ilije Djuričića 4,21000 Novi Sad, Yugoslavia

ABSTRACT

In this paper a generalization of a fixed point theorem from [7] is proved for a class of Takahashi convex metric spaces.

1. INTRODUCTION

In 1970 Takahashi [6] introduced the definition of convexity in a metric space and generalized some important fixed point theorems previously proved for Banach spaces. Subsequently, Machado [4], Talman [7], Gauy and Singh [1], Hadžić and Gajić [2], Gajić [3], among others have obtained additional results in this setting. This paper is a continuation of these investigations.

AMS (MOS) Mathematics Subject Classification (1980): 47H10. Key words and phrases:convex structure, fixed point.

2. PRELIMINARIES

<u>Definition 1.</u> Let X be a metric space and I be the closed unit interval. A mapping $W \ge X \times X \times I \rightarrow X$ is said to be a convex structure on X iff for all $x, y \in X, \lambda \in I$,

 $d(u, W(x, y, \lambda)) \leq \lambda d(u, x) + (1 - \lambda) d(u, y)$, for all uex.

X together with a convex structure is called a Takahashi convex metric space. Any convex subset of a Banach space is a Takahashi convex space with $W(x,y,\lambda)=\lambda x+(1-\lambda)y$.

Definition 2. Let X be a convex metric space. A nonempty subset K of X is convex iff $W(x,y,\lambda) \in K$ whenever, x,y \in K and $\lambda \in I$.

Takahashi has shown that open and closed balls are convex and that the arbitrary intersection of convex sets is convex ([5]).

> For arbitrary $C \subseteq X$ let: $\tilde{W}(C) := \{W(x,y,\lambda) : x, y \in C, \lambda \in [0,1]\}.$ (1)

It is easy to see that $\widetilde{W}:P(X) \rightarrow P(X)$ is a mapping with properties

1. $C \subseteq \widetilde{W}(C)$, for $C \in P(X)$;

2. $C \subseteq B$ implies $\tilde{W}(C) \subseteq \tilde{W}(B)$, for $B, C \in P(X)$:

3. $\widetilde{W}(C \cap B) \subseteq \widetilde{W}(C) \cap \widetilde{W}(B)$, for any $B, C \in P(X)$.

Using this notation we can say that $K \subseteq X$ is convex iff $\widetilde{W}(K) \subseteq K$.

A few additional definitions and propositions will be needed subsequently.

Fixed point theorems in Takahashi convex metric spaces

Definition 3. A convex metric space X is said to have <u>Property</u> (C) iff every decreasing net of nonempty, closed convex subsets of X has a nonempty intersection.

Remark. Every weakly compact convex subset of a Banach space has Property (C).

<u>Definition 4.</u> Let X be a convex metric space and A a nonempty closed convex bounded set in X. For xEX we set:

 $r_{x}(A) = \sup_{y \in A} d(x,y),$

 $r_{x}(A) = inf r_{x}(A),$ xeA

 $A_{c} = \{x \in A: r_{v}(A) = r(A)\}, (centre of A);$

 $\delta(A) = \sup \{d(x,y): x, y \in A\}; (diametar of A).$

Definition 5. A point xeA is a diametral point of A iff sup $d(x,y) = \delta(A)$. yeA

Definition 6. A convex metric space is said to have a <u>normal structure</u> iff for each closed bounded convex subset A of X, which contains at least two points, there exists xEA which is not a diametral point for A.

<u>Remark.</u> Any compact convex metric space has a normal structure ([1]).

For sets K,H \subset X by $\vartheta_{\rm F}^{\rm K}$ we shall denote the boundary of K relative to H. If K is closed then:

 $\partial_H K = \{z \in K \mid B(z,r) \cap (H \setminus K) \neq \emptyset \text{ for each } r > 0\}$ (B(z,r)={x \in X \mid d(x,z) < r}).

Lemma 1. [1] Let H and K be two closed subset of the Takahashi convex metric space X such that $H \cap K \neq \emptyset$

If W:X x X x I + X is continuous in λ EI and H is convex, then $\partial_{tr} K = \emptyset <=>H \subseteq K$.

Lemma 2. The continuous image of the convex subset K of a Takahashi convex metric space with a continuous convex structure W is a connected set.

<u>Proof.</u> Since K is convex and W is continuous, K is pathwise connected, and since a continuous image of a pathwise connected set is pathwise connected, it is connected too.

Now, let us recall that the convex hull of a set A, A \subset X is the intersection of all the convex sets in X con+taining A, and it is denoted by *conv* A.

It is obvious that if A is a convex subset of a convex metric space X, then

 $\tilde{W}^{n}(A) = \tilde{W}(W(\ldots \tilde{W}(A))\ldots) \subseteq A$, for any ne N.

For nEN we set

$$A_n = W^n(A)$$
.

The sequence $\left\{A_n\right\}_{n\in\,N}$ is increasing so lim inf and $\textit{lim sup}\ exist and$

$$\lim \sup A_n = \lim \inf A_n = \lim A_n = \lim A_n = \bigcup_{n \in \mathbb{N}} A_n .$$

Proposition 1. [3] Let X be a Takahashi convex metric space. Then.

$$conv A = \lim_{n \to \infty} A_n , \quad (A \subset X).$$
(2)

In the remainder of the paper, (X,d) will denote a complete metric space with a convex structure W.

> Proposition 2. [3] For any subset A of (X,d) $\delta(conv A) = \delta(A)$.

Lemma 3. Let $K \subset H$ be two nonempty closed subsets in (X,d), let H be convex and let W be continuous in λ . If xeK and yeH-K then there exists $\lambda_0 \in (0,1]$, such that $W(x,y,\lambda_0) \in \partial_H K$.

<u>Proof.</u> Let $L=\{\lambda \in [0,1] | W(x,y,\lambda) \in K\}$ since L is bounded and nonempty (16L), there exists *inf* L. Let $\lambda_0 =$ = *inf* L. If $\lambda_0 \in (0,1]$, then for every nEN there exist λ_n , $\lambda_0 \leq \lambda_n \leq 1, \lambda_n + \lambda_0$ and so that $W(x,y,\lambda_n) \in K$. Since W is continuous $W(x,y,\lambda_0) \in K$, too. On the another hand, there exist $\{\tilde{\lambda}_n\}_0 \leq \tilde{\lambda}_n < \lambda_0, \tilde{\lambda}_n + \lambda_0$ so that $W(x,y,\tilde{\lambda}_n) \in H \setminus K$ and, then, $W(x,y,\tilde{\lambda}_n) + W(x,y,\lambda_0)$ so we prove that $W(x,y,\lambda_0) \in \partial_H K$.

For $\lambda_0=0$, since $d(y,W(x,y,\lambda))=\lambda d(x,y)$, one can prove that $y\in K=K$. Contradiction! 3. RESULTS

<u>Theorem 1.</u> Let (X,d) be with a continuous convex structure and let $H, K(K \subseteq H)$ be nonempty closed convex subsets of (X,d). Further, let H be a normal subset and K a bounded set with Property (C).

If $A:K+H, A(\partial_H K) \subset K$, and A is a mapping which, for all x,yEK satisfies the inequality:

 $d(Ax,Ay) \le ad(x,y) + b[d(x,Ax) + d(y,Ay)] + c[d(x,Ay) + d(y,Ax)],$ (3)

where a,b,c are nonnegative constants such that a+2b+2c≤ ≤1,a+b>0, then A has a fixed point.

Poof. We shall assume that a+2b+2c=1. For fixed $\tilde{x}_c \in K$ and arbitrary x $\in K$ we have from (3):

$$d(Ax, A\tilde{x}_{o}) \leq ad(x, \tilde{x}_{o}) + b[d(x, Ax) + d(\tilde{x}_{o}, A\tilde{x}_{o})] + c[d(x, A\tilde{x}_{o}) + d(\tilde{x}_{o}, Ax)] \leq ad(x, \tilde{x}_{o}) + bd(x, \tilde{x}_{o}) + bd(\tilde{x}_{o}, A\tilde{x}_{o}) + bd(\tilde{x}_{o}, A\tilde{x}_{o}) + bd(\tilde{x}_{o}, A\tilde{x}_{o}) + cd(x, \tilde{x}_{o}) + cd(x, \tilde{x}_{o}) + cd(x, \tilde{x}_{o}) + cd(A\tilde{x}_{o}, A\tilde{x}_{o}) + cd(A\tilde{x}_{o}, Ax)$$

and further,

$$d(Ax, A\tilde{x}_{o}) \leq \frac{a+b+c}{1-b-c} d(x, \tilde{x}_{o}) + \frac{2(b+c)}{1-b-c} d(\tilde{x}_{o}, A\tilde{x}_{o}).$$

This and the boundness of K means that A is bounden on K.

Let, as in [7], F be the family of all the closed convex subsets of H so that for $F \in F$, $F \cap K \neq \emptyset$ and A:FN K+F. Since HeF, $F \neq \emptyset$. Let $\{F_{\alpha}\}$ be a decreasing chain of sets of F and let $F_0 = \cap F_{\alpha}$. Note that $F_0 \cap K$ is nonempty since $\{F_{\alpha} \cap K\}$ is a decreasing chain of a nonempty closed convex subset of a set with Property (C). Also, since A: $F_{\alpha} \cap K + F_{\alpha}$, for each α , clearly A: $F_0 \cap K + F_0$. Since F_0 is a closed convex, $F_0 \in F$ so it follows by Zorn's Lemma that F has a minimal element.

Let F be a minimal element and suppose $\partial_F K \neq \emptyset$. We shall prove that $M \stackrel{\text{def}}{=} F \cap K$ has only one element. Suppose that M has more than one element. Then, center M_C is a nonempty closed convex set so that:

 $\delta(M_{\alpha}) \leq r(M) < \delta(M)$.

Furthermore, if \overline{conv} N denote the closed convex hull of set N, then we have

 $(convA(M)) \cap K \supseteq A(M) \cap K \supseteq A(\partial_{r}K) \cap K = A(\partial_{r}K) \neq \emptyset$

and

$$A(\overline{conv}A(M) \cap K) \subseteq A(F \cap K) = A(M) \subset \overline{conv}A(M)$$
.

From this two facts and from the minimality of the set F we get

convA(M) = F.

This and the boundedness of A give $\delta(F) < +\infty$.

Let $y \in M_c$. If Ay $\in M$ set $x_c = y$. If Ay $\notin M$, then $y \notin f$

 $\notin \partial_F K$ and by Lemma 3 there exists $0 < \lambda_0 < 1$ such that $W(y, Ay, \lambda_0) \in \partial_F K$. In this case put $x_0 = W(y, Ay, \lambda_0)$. In any case, we have $x_0, Ax_0 \in M$ (since A: $\partial_F K \rightarrow K$) and that

$$r_0 \stackrel{\text{def}}{=} \sup \{d(x_0, z) | z \in M\} < \delta(F).$$

Further, for all x@M we have:

$$d(Ax,Ax_{o}) \leq ad(x,x_{o})+bd(x_{o},Ax_{o})+bd(x,Ax) + cd(x_{o},Ax) \leq (a+b)r_{o}+(b+2c)\delta(F),$$

so, since we prove that $F = \overline{conv}A(M)$,

$$r \stackrel{\text{def}}{=} \sup \{ d(Ax_{o}, z) \mid z \in F \} < \delta(F) \}.$$
(4)

Now, we shall define a transfinite sequence of the set $\{{\rm M}_{\alpha}\}$ setting

 $M_0 = \{Ax_0\}$

$$\begin{split} \mathbf{M}_{\alpha} &= \overline{conv} \left(\left(\mathbf{M}_{\alpha-1} \cap \mathbf{M} \right) \cup \mathbf{A} \left(\mathbf{M}_{\alpha-1} \cap \mathbf{M} \right) \right) & \text{if } \alpha-1 \text{ exists,} \\ \mathbf{M}_{\alpha} &= \overline{\bigcup \mathbf{M}_{\beta}} & \text{if } \alpha-1 \text{ does not exists.} \end{split}$$

Obviously, the sets M_{α} are nonempty convex (W is continuous) and closed subsets of the set F for which $M_{\alpha} \cap K \neq \emptyset$. For $\alpha < \alpha'$ it is $M_{\alpha} \subset M_{\alpha'}$. Taking an ordinal number α^* greater than the cardinal number of the power set of F, we see that in the sequence $\{M_{\alpha} \mid 0 \le \alpha \le \alpha^*\}$ there must be repetitions. If α_0 is an ordinal number for which $M_{\alpha_0} + 1 = M_{\alpha_0} (0 \le \alpha_0 \le \alpha^*)$, then we have

$$A(M_{\alpha_{O}} \cap M) \subseteq \overline{conv}((M_{\alpha_{O}} \cap M) \cup A(M_{\alpha_{O}} \cap M)) =$$
$$= M_{\alpha_{O}} + 1^{=} M_{\alpha_{O}}.$$
(5)

We shall prove for all $(0 \le \alpha \le \alpha_0)$ that

$$\delta(\mathbf{M}_{\alpha}) \leq \mathbf{r}.$$
 (6)

For $\alpha=0$,(6) is true. Let $0 < \alpha \le \alpha$ and suppose that for all β , $0 \le \beta \le \alpha$

$$S(M_{\rho}) \leq r$$
 (7)

and

Suppose that α -l exists. Taking a sequence $\{\varepsilon_n\}, \varepsilon_n > 0, \varepsilon_n \to 0$ we can find $x_n, y_n \in M_\alpha$, so that

$$\delta(\mathbf{M}_{\alpha}) - \varepsilon_{n} \leq d(\tilde{\mathbf{x}}_{n}, \tilde{\mathbf{y}}_{n}), \quad n=1, 2, \dots$$
(9)

Further, we may assume that one of the following is true:

i)
$$x_n, y_n \in M_{n-1} \cap M, n=1, 2, ...;$$

ii)
$$\tilde{x}_n = Ax_n, \tilde{y}_n = Ay_n, x_n, y_n \in M_{\alpha-1} \cap M,$$

 $n = 1, 2, \dots;$
iii) $\tilde{x}_n \in M_{\alpha-1} \cap M, \tilde{y}_n = Ay_n, y_n \in M_{\alpha-1} \cap M,$

n=1,2,...

If i) or iii) is true, then from (7), (8), (9) it follows immediately that $\delta(M_{\alpha}) \le r$. If ii) is true then (3), (7), (8) and (9) give $\delta(M_{\alpha}) \le r$, so inequality (7) is proved for $\alpha = \beta$.

Let $x \in M_{\alpha} \cap M$. Then for a $x \in M_{\alpha} \cap M$ and a given $\varepsilon > 0$ we may take $x' \in conv \{ (M_{\alpha-1} \cap M) \cup A(M_{\alpha-1} \cap M) \}$ for which

 $d(x,Ax) < \varepsilon + d(x',Ax)$.

Using Proposition 1 we have that there exists $k_0 \in \mathbb{N}$, so that $x' \in \widetilde{W}^{k_0}((M_{\alpha-1} \cap M) \cup A(M_{\alpha-1} \cap M))$. By (3), (7), (8) we get as in [7] that:

 $d(x,Ax) < \varepsilon + \sum_{i \in I_1}^{\omega_i} \omega_i d(u_i,Ax) + (a+b+c)(1-\omega)r + i \in I_1$

+b(1-
$$\omega$$
)d(x,Ax) + c $\sum_{i=1}^{\infty} \omega_{i} d(u_{i},Ax)$ (10)
iEI₂

 $I_1 \cup I_2 = I$, card $I \le 2^{k_0}, \omega_i \ge 0$, ieI, $\sum_{i \in I} \omega_i = 1$

 $\underset{i \in I_1}{\overset{\omega}{\underset{1} = }} \sum_{i \in I_1}^{\omega} and u_i \in M_{\alpha-1} \cap M, \text{ for all } i \in I.$

This means that the set S of all $\beta, \ 0{<}\beta{<}\alpha$ for which

$$+\gamma bd(x,Ax)$$
 (11)

for some $v_i e_{\beta} \cap M$ and some real numbers $\gamma, \gamma_i > 0$ (I-finit set)for which

Now, in a similar way, using (12) one can prove that (8) is true for $\beta = \alpha$.

In the case that α -l does not exist, from (7) for $\beta < \alpha$ it follows immediately that (7) holds for $\beta = \alpha$. Inequality (8), for $\beta = \alpha$, may be proved in a similar way as in the case when α -l exists, so we have that (7) and (8) are valid for all α , $0 \le \alpha \le \alpha_{\alpha}$.

Finally, we have that M_{α_0} is a nonempty closed convex subset of the set F with properties that

a) $\delta(M_{\alpha_0}) \le r \le \delta(F)$ b) $M_{\alpha_0} \cap K = M_{\alpha_0} \cap M \ne \emptyset$ c) $A(M_{\alpha_0} \cap K) \subset M_{\alpha_0}$.

But this is a contradiction to the minimality of the set F, therefore $M=F\cap K$ has only one point.

Let $\{x^*\} = F \cap K$. From $\partial_F K \neq \emptyset$. We have $\{x^*\} = \partial_F K$. Then, $Ax^* \in F \cap K = x^*$ and x^* is the fixed point of A.

If $\partial_F K = \emptyset$ then, by Lemma 1, $F \subset K$ and $A: F \cap K + F$ would imply A: F + F. If F has more than one point, from the fact that H has a normal structure, one can see that there exist $\dot{x}_0 \in F$, for which

 $sup \{d(x_y) | y \in F\} < \delta(F)$.

We can now construct the sequence $\{M_{\alpha}\}$, with $M_0=\{x_0\}$ and repeating the above procedure, with some simplifications, we again get a contradiction. Hence, F has only one element. This and A:F+F imply that A has a fixed point.

<u>Theorem 2.</u> Let (X,d) be with a continuous convex structure, H and K, K \subset H, nonempty closed convex subset of X. Further, let H be a bounded normal subset and K with Property (C). If A:K+H,A($\partial_{H}K$) \subset K and if A satisfies (3), where a,b, \otimes 0 and a+2b+2 \ll 1, then A has a fixed point.

<u>Proof.</u> Let F, F, M have the same meaning as in the proof of Theorem 1.

Suppose that M=F \cap K has more than one element and $\partial_F K \neq \emptyset$. Since F \subset H and H has a normal structure, there exists $x_0 \in F$ for which

$$r_0 = sup\{d(x_0, y): y \in F\} < \delta(F)$$
.

Define x CM in the following way :

1) if $x_0 \in M$ put $x_0 = x_0$

2) if $x_0 \notin M$ take $x_0 \in M \setminus \partial_{\mathbf{F}} M$, chose $\lambda \in (0, 1)$

such that $W(x_0^{"}, x_0^{'}, \lambda) \in \partial_{\mathbf{E}} \mathbb{M} = \partial_{\mathbf{E}} K$ and $x_0 = W(x_0^{"}, x_0^{'}, \lambda)$

(Note that in the case $x_0 \notin M$ we have that $M > \partial_F M \neq \emptyset$ because in the opposite case $\partial_F M=M$ and therefore $A: M \rightarrow M$. From the minimality of the set F, we now have M=F so $x_0 \in M$). It is easy to see that in any case we have

 $\sup\{d(x_0, y) | x \in F\} < \delta(F).$

Now, we can construct the sequence $\{\mathtt{M}_{\alpha}\}$, starting with $\mathtt{M}_0{=}\{\mathtt{x}_0\}$ and so on.

REFERENCES

- M.D. Gauy and K.L.Singh: Fixed point of set valued mappings of convex metric spaces, Jnanabha, Vol.16, (1986), 13-22.
- [2] O. Hadžić and Lj. Gajić: Coincidence points for set--valued mappings in convex metric spaces, Zb. Rad. Prir.-Mat. Fak., Ser.Mat., 16, (1986), 11-25.
- [3] Lj. Gajić: On convexity in convex metric spaces with application, (to appear: Journal of Natural and Physical Sciences).
- [4] H.V. Machado: A characterization of convex subset of normal spaces, Kodai Math. Sem. Rep., 25, (1973), 307-320.
- [5] W. Takahashi: A convexity in metric space and nonexpansive mappings I, Kodai Math. Sem. Rep., 22, (1970), 142-149.
- [6] L. A. Talman: Fixed points for condensing multifunctions in metric space with convex structure, Kodai Math. Sem. Rep., 29, (1977), 62-70.
- [7] F. Vajezović: Fixed point theorems for nonlinear mappings in Banach space, Radovi ANUBiH, LXIX, 1982, No. 20, 71-78.

REZIME

TEOREME O NEPOKRETNOJ TAČKI U TAKAHAŠIJEVIM KONVEKSNIM METRIČKIM PROSTORIMA

U ovom radu dokazane su teoreme o nepokretnoj tački u klasi Takahašijevih konveksnih metričkih prostora koje uopštavaju rezultate za normirane prostore iz rada [7].

Recived by the Editors December 20, 1988.