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ABSTRACT

In the paper some properties of o-Hausdorff sub-
sets and almost closed mappings are studied.

1. INTRODUCTION

No separation properties are assumed for spaces
vnless explicitly stated.

A subset A of a space X is regularly open iff
IntClA=A. A subset A of a space X is regularly closed iff
CiIntA = A, [9].

A subset A of a space X is a- paracompact (a-near-
ly paracompact) iff for every open (reqularly open) cover
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U of A there is an open X-locally finite family V which
refines U and covers A, [13],I[5].

A subset A of a space X is a-paracompact (a-near-
ly paracompact) with respect to a subset B iff for every
open (regularly open) cover U={Ui:ieI} of A there exists

an open family V={Vj:j€J} such that:

- V refines U,
- A euivy: jedd,

- V is locally finite at each point x€B, [6].

Subsets A and B of a space X are mutually o-para-
compact (mutually o-nearly paracompact) iff the subset A
is a-paracompact (a-nearly paracompact) with respect to
the subset B and the subset B is a-paracompact (a-nearly
paracompact) with respect to the subset A, [6].

A subset A of a space X is a-nearly compact or
N-closed iff every regularly open cover U={Ui:i€I} of A

has a finite subcover of A, [1].

A space X is nearly compact iff every regularly
open cover of has a finite subcover, [11].

A space X is locally nearly compact iff for each
point x€X, there exists an open neighbourhood U of x such
that ClU is. a-nearly compact, [1].

A subset A of a space X is a-Fausdorff iff for
any two points a,b of a space X, where a€A and bEX~\A, the-
re are disjoint open sets U and V containing a and b res-
pectively. A subset A of a space X is o -regular (a-almost
regular) iff for any point a€A and any open (regularly
open) subset U containing a there is an open subset
V such that aeveclveu,[7];[4].

A space X is almost regular iff for any regularly
closed set F and any point xgF, there are disjoint open
sets containing F and x respectively, [10].

A mapping f:X*Y is almost closed (almost open)iff
for any regularly closed (regularly open) set F of X,f(F)
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is closed (open) in Y, [9].

A mapping f£:X-+Y is almost continuous at a point
x€X iff for every open neighbourhood M of f(x) there is
an open neighbourhood N of X such that f(N)cIntClM. f is
almost continuous iff it is almost continuous at each po-
int of X, [9].

2. RESULTS

The following theorem was proved in [7]:
Theorem A. If A is an"a-regular a-paracompact

subset of a space X, then ClA is a-paracompact.
We can generalize this result with the following results:

Theorem 2.1. If A is an a-regular o-paracompact

subset with respect to a subset B, then ClA is a-paracom-
pact with respect to B.

Proof. It is similar to the proof of Theorem 2.4

in [7].

Theorem 2.2, If A is an a-almost regular o-near-
ly paracompact subset with respect to a subset B, then ClA
is a-nearly paracompact with respect to B.

Proof. It is similar to the proof of Theorem 3.2
in [4].

Lemma 2.1. Let
u ={Ui:1€I}

be a family of open a-regular subsets of a space X such
that:
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a) U is locally finite at each point of a subset B
b) Ui is o-paracompact with respect to B, for each i€I.
Then, U=U{Ui:ieI} is an open o-reqular subset which is

o-paracomrpact with respect to B.

Proof. By Lemma 2.1 in [2], the set U is o-re-
gular. Let V={Vj:j€J} be an open covering of U. Then,

{anUi:jeJ} is an open covering of Ui' for each i€I. Since
Uy is o-paracompact with respect to B, there is a family

vi={Dk:k€Ki} of open sets such that:
- D, refines {anUi:jeJ},
- UicU{Di:Die'Ui} ’
- Ui is locally finite at each point of B.

Consider the family
v=1{p, :kek®,ier}.
It follows that
- U refines V,
- ucU{D:DeV},
- Vis locally finite at each point of B.
Thus, U is o~-paracompact with respect to B.

Similarly, we can prove the next result:
Lemma 2.2. Let

l= g
{Ui.iGI}

be a famrily of regularly open oc-almost regular subset of a
space X such that:
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a) U is locally finite at each point of a subset B,
b) for each i€I, Ui is oa-nearly paracompact with respect

to B.
Then, U=U{Ui:ieI} is an open a-almost regular subset which

is o-nearly paracompact with respect to B.

Theorem 2.3. Let
u= {Ui:iGI}

be a family of open a-regular subsets of a space X such
that:

a) U is locally finite at each point of X\U#Q(U=U{Ui:iel}),
b) Uy is g-paracompact with respect to X\U, for each i€I.

Then, U is on open - and - closed a-regular subset which
is a-paracompact with respect to X\U.

Proof. By Lemma 2.1, U is an open a-regular sub-
set which is o—paracompact with respect to X\U. By Theorem
2.6. in [6] , it follows that there is an open set V such
that

Uc Ve ClVc U.
Thus ClU=U. Hence, the result.
In [12], Singal M.K. and Arya S.P. proved the next theorem:

Theorem B. Every nearly paracompact Hausdorff space is al-
most regular. In that theorem the Hausdorff property can
be weakened as is shown by following result:

Theorem 2.4. Let X be a paracompact (nearly pa-
racompact) space such that every closed (regularly closed)
set is o-Hausdorff. Then X is regular (almost regular).

Proof. Let X be a paracompact (nearly paracompact)
space and let F be any closed (regularly closed) subset of
a space X and let x@F. Since every closed (regularly closed)
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subset of a paracompact (nearly paracompact) space is o-para-
compact (a-nearly paracompact) and F is o-Hausdorff, it fo-
llows that there are open (regularly open) sets U and V such
that

x€U,F €V,U N V=4.

It follows that X is regqular (almost regular).
Similarly, we have

Corollary 2.1. Let X be a compact (nearly compact) space

such that every closed (regularly closed) subset is oa-Haus-
dorff. Then, X is regqular (almost regular).

Theorem 2.5. Let £ X*Y¥ be a closed almost conti-

nuous mapping of a space X onto a locally compact space Y
such that for each y€Y f-l(y) is a-Hausdorff a-nearly com-
pact. Then X is locally nearly compact,

Proof. By Theorem 2.3 in [4] Y is Hausdorff. Sin-
ce Y is locally compact and Hausdorff it follows that, for
each point x€X there is a closed compact neighbourhood V
of f(x). Since f is almost continuous, the set U=f ! (IntvV)
is open in X. By Theorem 1in [8], the set f-l(V) is a-near-

ly compact in X. Since for each point yGY,f-l{y) is a-Haus-
dorff and the union of o-Hausdorff sets is oa-Hausdorff, it

follows that f-l(v) is oa-Hausdorff. By Theorem 2.1 in [4]

£71(v) is closed. Now, we have

1

X€UcClU cf (V).

Since every regqularly closed subset of an o-near-
ly compact set is o-nearly compact, it follows that ClU is
o-nearly compact. Now, U is an open neighbourhood of x such
that ClU is a-nearly compact, hence X is locally nearly
compact.
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Corollary 2.2. ([8]) Let f:X»Y be a closed almost contin-
uous surjection with N-closed point inverses. If X is Haus-
dorff and Y is locally compact, then X is locally nearly
compact.

Theorem 2.6. Let £ be an almost closed mapping
of a space X onto a space Y. Let B be a closed subset of

X such that for each x€X~B the set £ 1(£(x)) is a-regular
and o-paracompact with respect to B. Then, f(B) is closed.

Proof. Let

y€Y~f (B) .
Then

£71(y) ¢ x~B.

By Theorem 2.6 in [6],

there is an open neighbourhood of f_l(y) such that
f_l(y) c VcClv cX\B.

Since f is almost closed, then there is an open set W in Y
such that yew and £ 1(y) c£™1(W) cIntClv cX~B. Thus, we ha-

ve yEWEY~Nf (B) . Hence the statement,

Theorem 2.7. Let X be an R, space such that for
each x€X IntCl(x)#¢. If f:X*Y is an almost closed mapping
of the space X onto a space Y such that the family

{f_l(y):er} consists of a-Hausdorff subsets which are mu-
tually o-nearly paracompact, then f is continuous.

Proof ., Suppose that £ is not continuous at some

point x€X. Let U(x) denote the family of all the open neig-
hbourhoods of x. Let y=f(x). Since f is not continuous at
x, there is an open neighbourhood V of y such that
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£(U) N (Y~\V) #¢
for every Ueli(x). Thus,
A={f (C1U) n (Y~V):U€l(x)}
is a family of closed subsets of Y such that
n {£(C1U) n (Y\V) :UU (x) }#¢

(X is R, such that IntCl(x)#¢, for each x€X. Thus,
U =n {v:veli(x)} is an open set containing x and hence a

member of U(x). So (Y\WV) nE(U)#¢. i.e.
n {A:AeA}=f(01U°) n (YNV)#¢) .
Thus, there is a point y_e n {A:A€A}. Hence we have Y EYV

and ng-l(yo). Since the family {f-l(y):er} consists of

o-Hausdorff subsets which are mutually o-nearly paracom—
pact, there are disjoint regularly open sets U, and Uo

such that

=1
€U, and £ (yo)c Uge

From

-1
Clu, n£” (y ) eClu, nU_=¢

we have

y°¢f(ClUx).
On the other hand, since UX belongs to l(x), we have
yOEf(ClUx) n (Y~\v) cf(ClUx) ¢

This is a contradiction. Hence, f must be continuous at x.
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Thus,

f is continuous.
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REZIME

NEKE 0SOBINE PODSKUPOVA I SKORO
ZATVORENIH PRESLIKAVANJA

U radu se ispituju neke osobine a-Hausdorfovih,
a-regularnih { a-skoro regularnih podskupova topoloskog
prostora X. Daju se i uslovi kada je blizu parakompaktan
prostor skoro regularan u prostoru koji ne mora da bude
Hausdorfov. Daju se takodje i uslovi kada je skoro zatvo-
reno preslikavanje neprekidno nad prostorom koji ne mora
da bude Hausdorfov.
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