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Abstract
The paper includes a construction of all t_he non-isoaorphic greedoids

on at most S elements in five classes of lnterval'greedolds: local poset
greedoids, poset greedolds, undirected branching greedolds, directed
branching greedolds and convex shelllngs A computer-aided search on the
formerly generated ([3]) catalogue of all the non-isomorphic interval gree-
doids on st most 5 elements was performed for the extraction of the
greedoids 1in the first two classes. The remalning three classes were
constructed "by hand”, on the bagis of Bome more general theoretical
consldeﬁatlons (which are not restricted to .the sets consisting of at most

S elements).

1. Introduction .
An.n-get -is a set of c-rdtnallty n S-t.s m _often denoted without

brackets and commas. -
" Greedold ((S5]) G on a ﬁnlte set. (t.he ground—set) £ is an ordered

pair (E,F), uhere F 1s a family of so-called rcayple subsets of £ which

satisfles:

(1) - o€F
(11) (VX € F) (3e € X) (X-e € F) -
(111) If (XY € F) and (|X|=|¥|+1) then (3y € Y) (Y v x € F)

A greedoid (E,F) is Interval if {1t satlsflés_'addltlonally:
if (Ac BcCcE)and (x € E-C) and (A, B, C, Aux, CuxeF)
then Bux e F
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A greedoid (E, F) 1s full If E € F. A greedoid (E, F) is normal if each
element from E belongs to a set from F.
The rank of a greedoid 1s the maximal cardinality of a feasible set.

e shall ;jroceed with the definitions of seven subclesses of interval
greedoids [E, F). The name of each class 3}s followed by its recognizing

property:
1) Local poset greedoids: I1f A, B, C & Fand 4, B € C, then
AUB AnBekF. ' !

2) Poset greedoids: If A, B¢ F, then AU B, AnBeF.

3) Undlrected branching greedoids (UBC's):Let E be the edge-set of an undi-
rected graph G and let r (= root) denote a fixed vertex of G. Then
F={ XS E| X is a subtree of G contalning r }.

4) Directed branching greedolds (DBG's): The only- differences froam UBG's:
“"undirected” and “subtree” are respectively replaced by *directed” and

“arborescence = a subtree directed from the root”.

8§) Corwex shellings: Let E be a finite set of vectors in R". Then
F=d {x(1),...,x(k)} | x(i) 1s-a vertex of the convex hull of
E-{x(1),....,x(1-1)} for 1 5 [ sk }.

6) Hatroids: (ii) is replaced by X € F, YS X »Y € F.

_ 7) Shelling structures: E € F.
(this definition is valid only if the interval . property is separately
nssc-ad - intervality is a consequence of the former properties)

2. Local poset greedoids

An algorithm for testing the local poset property is given by the
following procedure (written 1in pseudoPuscal, ms well as the other
algorithas described below): ’ ’

Glven a greedoid (E,F)

- REPEAT
Tuke the next unordered palr {A,B8} of different subsets of E
IF (A in F) THEN
IF (B in F) THEN BECIN
Un: = unlon (A, B);
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Is: = intersection (A, B);
IF not (Un In F) or not (Is in F) THEN
IF Un In F THEN stop
ELSE REPEAT
X: = the next superset of Un;
(within E)
IF X in F THEN stop
UNTIL stop or (all supersets of
Un within E are examined)
END
WTIL stop or all the possible pairs {A,B} are examined;

IF stop then the greedoid Is not local! poset
ELSE it is local poset

The point of this algoritha is that attentlion is restricted solely to
those pairs {4, 8}, which contredict the poset property. The local poset
property is then also contradicted if and only if there exists a feaslble
set including the union (A, B).

The ground-set E is represented by {1,...n} , for 1 s n 35 §.

The “"small* interval greedoids obtained in [3], which are subject to
the local poset test, are represented by their families of feaslble sets.
These sets are represented as binary (incldence) vectors.

The following table contains the number of non-isomorphic local poset

greedolds of rank r on an n-set, for 0 = r s n s §:

njlo 1 2 3 4 5 r
1 1 1 1 1 0

i 2 3 a 5 1

2 8 25 70 2

5 . 44 an 3

16 356 4

63 §

3. Poset greedoids
A relaxation of the previous procedure can be applied to test the poset

property (the third IF..THEN should immedlately imply stop). Another easy
vay to obtaln poset greedolds from locul poset greedolds is to use the fact
that normal poset grcedolds = full local poset greedolds .
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Thus, the flgures on the main diegonal of the previous table correspond
to normal poset greedolds.
Note, however, that extracting the poset greedolds from general

greedolds is by no means an advisable way for poset enumeration; it is

hopeless to try this for |£| > 5.

The last three classes are directly constructed "by hand“. We produce
solely normal branching greedoids (undirected and directed); the non normal
greedoids on k elements are obtained by bijection to the greedoids on
smaller ground-sets (= edge-sets). Thus, the total number of greedolds in
these classes lIs obtalned by summing up the number of normal greedoids from
0 to k.

4. Undirected branching greedoids

We shall start with a list of all the non-{somorphic connected loopless
undirected multigraphs on at mosl S edgec (parallel edges are allowed; the
simple graphs in the considered list can be found, e.g., In [(41)." Given =
graph G 1n this 1list, we choose thc corresponding root r in all the
non-isomorphic ways (l.e., the chosen rostc are the representatives of the
orbits of the automorphism group on the vertex-set). Each pailr (C,r)
corresponds to an undirected branching greedoid. 1t s obvious that all
these greecolds are normal; each edge belongs to a rooted subtree due to the
connectedness and to the ecbsence of loops. '

We shall list the conslidered graphs G (the graphs are given by the list
of thelr edges) as well as the collections of thelr corresponding roots in
mutually non-isomorphic pusitions:

LIST OF UNDIRECTED ERANCHING GREEDOIDS

Graph Corresponding roots
Gl = o

G2 = ab. u

G3 = @b, ac. a, b

G4 = 2ab. : a.

GS = ab, acg, bd, a, ¢

G6 = ab, ac, be. a.

GC7 = ab, ac, ud. e, b

G 8 = Judb, .,

G9 = 2ab, ac a, b, c.

G 10 = ab, ac, bd, ce. u, b, d.

G 11 = ab, ac, ad, be, a, b, ¢, e
G i12= ab ec, ad, ae. a, b.

G 13 = ab, #nc, ad, be. u, b, d

G 14 = ab, ac, bd, cd. a.

G 15 = 4ab. a,

G 16 = Jab, uc. a, b, c.
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LIST OF UNDIRECTED BRANCHING GREEDOIDS

{cont 1 nued)
G 17 = 2ab, 2ac. a, b.
G 18 = 2ab, ac, cd. a, b, ¢, d.
G 19 = 2ab, ac, bd. a, c,
G 20 = 2ab, ac, ad. a, b, c
G 21 = 2ab, ac, be. a, C.
C 22 = ab, ac, bd, ce, df. a, c, e.
G 23 = ab, ac, ad, be, ef. a, b, c,e f
G 24 = ab, ac, ad, ae, bf a, b, c, f
G 25 = ab, ac, ad, be, cf. a, b d, e
G 26 = ab, ac, ad, be, bf. a, C.
G 27 = @b, sac, ad, se, af. a, b.
G 28 = ab, ac, ad, be, de. a, b, d, e.
G 29 = ab, ac, ad, ae, bec. a, b, d
G 30 = ab, ac, ad, bc, be. a, ¢, d
G331l = , ac, ad, be, ce. a, b, d, e.
G 32 = ab, ac, bd, ce, de. Y
G 33 = ab, ac, ad, bc, bd. a, ¢
G 34 = Sab : a.
G 35 = gab, ac. a, b, c.
G 36 = 3ab, 2ac. a, b, c.
G 37 = 3ab, ac, cd. a, b, c, d
G 38 = 3ab, ac, bd. a, cC.
G 39 = 2ab, 2ac, bd. a, b, c, d.
G 40 = 2ab, 2cd, ac. a, b.
G 41 = 3ab, ac, ad. a, b, c.
G 42 = 2ab, 2ac, ad. a, b, d.
G 43 = 3ab, ac, bc. a, c.
G 44 = 2ab, 2ac, bc. a, b,
G 45 = 2ab, ac, cd, de. a, b, c, d, e.
G 48 = 2ab, ac, bd, de. a, b, c, d, e.
G 47 = 2ab, ac, ad, ce. a, b,c, d, e
G 48 = 2ab, ac, ad, be. a, b, c, e
G 48 = 2ah, ab, bd, be. a, b, c, d.
G 50 = 2ab, ac, ad, ae. a, b, c.
G 51 = 2ab, ab, ac, ad. a, b, d.”
G 52 = 2ab, ac, ad, be. a, b, c, d.
G 53 = 28b, ac, ad, cd. a, b, c.
C 54 = 2ab, ac, bd, cd. ‘a, c.

The following reconstruction lemma guarantees that all the UBG's conta-
ined in the above list are palrwise non-isomorphic:

Lesma 4.1, Glven an undirected branching gredold (E,F), the corresponding
rooted (connected loopless) undirected graph (G, r) can be unlquely recon-
structed (not only up to an isomorphism, but also up to the denotatlons of
elements (edges)),
Before proving thls lemma, we shull introduce a couple of definitions:
Given a vertex r of a connected graph C, another vertex v of G is sald
to be at a distance k {rom r If the- shortest rv-path contalns k edges.
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Similarly, an edge is said to be at a distance k from r if elther both of
its vertices are at a distance k-1, or one vertex (the inner) is at a
distance k-1, while the other (the outer) is at a distance k (from r). 4
A generalized edge is a maximal bundle of wmutually parallel edges
(possibly contelning only one edge). It is obvious that all the edges of a
generalized edge are at the same distance from r. An outer St;lr at distance
k (froa r) 1s a set St of generallized edges at a distance k having a_ common
outer vertex (1f |St|=1, then the outer star 1s Just a generalized ;dge).
Proof of Lemma 4.1 : We can sketch an algeritha for the reconstruc-
tion:
k: =0 ;
REPEAT
k: = k+1 ;
Extract the edges of G which are at distance k from the root
r; they are recognized as the elements of E which appear in a
k-set of F, but not in a (k-1)-set of F;
FOR each two edges x and y at distance k from r DO
IF the sét {x,y} 1s not Included into a set S of f
(where |S| >= k+1) THEN :
the edges x and y are parallel
(they belong to a bundle of parallel edges -
at distance k from r); '
(1n this FOR-loop we have completed the set of generalized
edges, which are at a distance k from r) 7

FOR each generallzed edge X at distance k from r DO

IF k=1 THEN
Make the lnner"vert.ex of X equal to r
ELSE BEGIN
Determine the number n{X) of outer stars St
at distance k-1 which satisfy: )
There exlst x € X and s € St such that the
the set {x, s} Is Included into a k-set of F;
(the number n(X) bclongs to Lhe set {1,2};
it is >=1 due to (ii) and It is <=2 due to the
fact that an edge has only two endpoints )
IF n{X)=2 THEN
Make the vertices of X equal to the outer
vertlces of tho correspopding stars St1 and

st2



A classification of Interval greedolds 67

ELSE (if n(X)=1)
Make the inner vertex of X equal to the
. (outer) vertex of St
END; {(else)

IF k > 1 THEN
FOR each two generallized edges X and ¥ at distance k
from r, which satisfy
a(X) = n(Y) = 1 DO BEGIN
Let x € X and y € ¥; (an arbitrary cholce)
IF the set {x,y} belongs to & {k+1)-set
: ; of F THEN
Make the outer vertices of X and Y
coincide (equivalently, put X and Y Into
the same outer star at distance k)
END (for)
{in this FOR-loop we have cospleted the set of outer
stars of G vwhich are at a distance k)
UNTIL all the elements of E are exhausted (= extracted). &
Remark. Each case n(X}=2, as well as each palr {X,Y} in the last FOR-loop,
corresponds to the completion of a new generalized cycle (constisting of
generalized edges). ‘ . .
(see also the remarks after the proof of Lemma 5.1)

We shall state a fﬁct which is usefu) for an effective production of =
UBG's from undirected rooted graphs: '

Lemsa 4.2 Gliven an undirected graph G, ail the undirected branching
greedoids (G,r) w.r.t. different roots r, have the same family of bases (=

maximajl feasible sels = feasible sets of the maximal cardinality).

Proof. These bases correspond to the spanning trees of G, which are
known to be uniquely determined. &

8. Directed branching greedoids

An edge orlented from x to y 1s denoted by (xy).

An orfentation of a graph 1s a collectlon of orientations of {ts edges.

A reconstruction lemma similar to lemsa 4.1, holds for the directed
case, too. Such a lemma again enabies Lhe constructlon of the lists of non-

-isomorphic branching greedolds by using the llsts of non-isomorphlc corres-
ponding rooted graphs:
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Lemma 5.1 Given a directed branching greedoid (E, F), the correspon-

ding rooted (connected loopless) directed graph (G, r) can be uniquely

reconstructed (non only up to an isomorphism, but also up to the denotati-

ons of elements (edges)).

Proof. A reconstruction algorithm similar to the one given in the proof of
Lemma 4.1 can be applied. We paint out solely the differences from the

undirected case:

The word “"edge” is8 throughout the algosriiiua replaced by
“orlented edge“. Similarly, the word “path” (in the deflnition of
distance) is replaced by “oriented path® (thus we can speak
about “oriented distance®) and “generalized edge" is replaced
by “generalized orlented edge“. It is understood that all the
mutually parallel edgeé within the same generalized oriented edge

are oriented in the same direction.

We need not determine the number n(X), since it must be equal to 1;
one edge (also generalized edge) cannot be oriented in two opposite

directions at the same time.

An oriented edge necessarily has an inner and an outer vertex {the

source and the sink, respectively).

We cannot speak about “the dlstance of an outer star®™ 1in the non-
-oriented sense. The oriented edges having the common outer vertex
need not be at the same oriented distance from the root; it is conven-
lent to declare the dlstance of an outer star equal to the maximal

oriented distance of the corresponding orlented edges.

The test for completing the outer stars becomes more complicated.
Given a generallzed oriented edge X at a distance k, let r(X) denote
an arbitrarily chosen k-set in F, which includes one oriented edge
from X (in other words, r{X) is an orlented path of length k from the
root, which Intersects X). When running our test, we also need the
natural extenslon of the functlon f to Lhe case when X is an outer

star. We glve the oricented version of Lhis Lest:

IF k > 1 THEN BECIN
FOR each two generalized oriented edges X and Y at

distance k from r DO
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IF £(X)} v £(Y) i8 not in F THEN
Make the outer vertlices of X and Y colnclde;
. (l.e,, make X and Y belong to the ‘same outer
star at distance k)
FOR each outer star X at dlstance k from r DO
{X ia generated in the previous FOR-loop, _
posalbly X is Just a generallzed oriented edge)
FOR each outer star Y at a distance swaller .l.hnn k DO
IF £(X) v £(Y) is not-1n F THEN ;
‘Make the vertices corresponding to X and Y
coincide ,
(In this  wey we possibly augmsent the outer stars at
distance k. After passing through this double FOR-loop, we
have completed a teiporary gset of outer stars at
distance k. However, we must note that some of these stars
say later be fused . together with an outer star at a
distance greater than k)
END; (1f) g e [

We shall give some resarks related to the reconstruction algorithss
described in the proofs of Lemmas. 4.1 and 5.1:

a) There is a 1-1 correspondence be@wqen the (final) outer stars and
those vertices v of the reconstructed grtrphs.’ vhli:h have the property that
there 1ls an orlented path of a length greater than 1 from r to v.

b) A lot of sets In F may not be ta.ken Into account when running our
algorithms. For example, given the UBG {@, a, b, ac, bc, bd, med,” bedf, we
do not conslider the feasible ‘J-sets when reconstructing the graph. However,
the absence of the sets acd and bcd would mean & contradiction w.r.t.
our reconstructed'gnph. An ellainatlon ldea based on the absent, but
compulsory, feasible séts - nlgh( be used for testing whether a general
interval gréedold'ls UBG (respectlvely DBG).

c) Some Steps can be st;orfened. For example, ‘If we find that {X.Y} and
{Y. Z} are palrs of amutually parallel edges (or, siailarly, pairs of gene-
rallzed orienled edges In the sume outer stur) - then we need not check the
same thing for the edge {X, z}. However, we need not discuss (and try to
Improve) the efflclency of the described algorithms; thelr exlstence lIs

sufficient for our purposes.



70 : Dragan M. Acketa

We use for lnput the same palrs (G, r) as In the previous sectlon.
Given a palr (G, r), we consider solely those orlentatlons of edges which
make each vertex of G reachable from the root. Then, the directed branching
greedolds are assoclated to the triples’ consisting of the underlying
undirected graph G, the root.b r and ‘the “corresponding “reachable®
orlentatlions. This conslderation is siaplified by the application of the

followlng lemma:

Leama 5.2, Givein a coinected loopless undirected graph G with no
cycles of a length greater than 2 and a vertex r of G, there exists a unique
orientation of edges of G such that the directed branchlng greedoid associ-
ated to the pair (C,r) is normai. This greedoid col'ncldes with the corres-
pording undirected branching greedold.

Proof. The graph C may be considered as a generalized tree; some of Its
edges are possibly replaced by multiple edges. -The mentloned orléntatlon is
oblalned by oricnting ezch edge FROM the root r. It is then obvious that the
feasible sets (= subtrees rooted at r) are the same, both 1n the directed
and in the undirected case.

The following two lemmas are a supplement to the previous one:

»

Lemma 5.3. Civen a connected loopless undirected graph G, which has a
cycle of a length greater thah 2, and a vertex r of G, - none of the direc-
ted branching greedolds assoclated to‘thc" pair (GC,r), w.r.t. different
orlentations of edges - Is Isomorphic to the corresponding undirected
branching greedoid. i

Proof. It 1s obvlous that each feaslible set ‘bélon'glng to a DEC also belongs
to the UBG {1t suffices to cancel the orlentatlon).

On the other hand, consider a cycle C of a length greater than 2. There
exists a vertex v of C, which elther colncldes with the root r or ls
connected to the root by a path P, which is edge-disjoint to C. Lef. Vx_'s,nd y
be two nelghbouring vertices of C, both of which arc rdlffcrenl. from v.
Denote: E = the edge {x,y}. X = xv - path in C, which does not contain y,
and ¥ = yv path in €, which does nol contaln x.‘Thcn both of the feasible
sets PUXUE and PUYUE do exist in the ULG, whlile ut most one of them does In
a 08G.

Thus the fumlly of fecasible scts of a DBG is a proper subfamily of the
famlly of feasible sets of Lhe correspanding UBGC and DBG and UBG cannot be

isomorphlc in the considered case. #
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Consequence of Lemmas 5.2 and 5.3:

Our consideration of non-isomorphic orlentations should be restricted
exactly to those cases when there exists a cycle of a length greater than 2
(there are only 18 undirected graphs to be considered in our list of 54
undirected graphs). '

The followlng lenma says that each undirected root.ed graph can be

“norsally*” oriented:

Lemma 5.4. Given a pair (G, r), where G is a loopless connected
undirected 'g;rapﬁ and r’ is the root, ‘there alvays exists an orlentation of G
such that the directed branching greedold associated to the pair (C, r) Is

normal.

Proof. A generallzed spannlng tree is a subgraph T of G, which is incident
to each vertex of G, the only cycles of which (if any) are of length 2, and
which satisfies: if an edge x belongs to T, then all the edges of G, which
are parallel to x, also belong to T. ’

We prllarlly orient the edges of a generalized spanning tree T - FROM
the root r (towards outside). Each of the remaining undirected edges {x,y}
(appart from the edges of T) is oriented in t.he‘ following manner:

IF x and ¥ 1lle on the sh.ne directed path in T from the root r THEN

the edge {x,y} should be oriented in the same direction as the
xy-path within T o

ELSE the edge {x.y} may be oriented arbitrarily.

It 18 obvious that t.he {x.y} oriented In this manner can be attached to
the oriented pnt.h leading fro- the root to t.he source of {x,y}. without
making an Qrignt.ed cycle in the enlargened pglh. This implies that each of G
belongs to a feasible set in the constructed DBG. #

Consequence of Lemmas 5.2, 5.3 and §.4:

The number ol‘ non-lso-orphlc (nor-al' res;:ectlvely general) DBC's
correspondlng to a baslc unoriented grnph [+ (ulth different cholces of the
root) - is not s-aller thun the correspondlng number of UBG's. Generally
speaking, the number of non-isomorphic DBG's on a ground-set is not smaller

than the number of corresponding UBG's. :
Our ncxt  lemma  facilitates Lhe consideration of non-1somorphic

orlentatlons by Introducting sowme nccessary conditions for the orientations
leading to normal DBG's. We ure able by applylng 1t to fix the necessary

orlentation on certaln edges:
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Lemma 5.5. All the orientatlons of the edges of a rooted undirected
graph, which correspond to ‘a normal directed greedold, must obey the
following rules: _ .

(1) Each edge incident to the root must be oriented FROM it (towards

outside). '

(2)  Each generallzed bridge (l.e., a usual bridge which aight be
replaced by a bundle of mutually paralle! edges) mist be orlented
FRON the root.

(3) Each edge incident to a generalized bridgc ard following it (in
the sense of the orlentation 6[ the brldgé) sust be orlented FROM
the root. ) ‘ '

(4) Each vertex aust be reachable by an orlented path from the root.

Proof. The reachability requirement (4) 1is obvious, while {2) is a useful
speclal case of it. If the greedoid is normal, then violating some of the
rules (1) and (3) would mean that an arborescence contalns an orlented

cycle, a contradiclion. #

Remark. The necessary conditions for “norsal” orientatlons given in Lemsa
5.5 are by no means sufflcient. For example, consider the directed graph on
the vertex-set {a,b,c,d} with orfented edges (ab), (ad), (cb}, (cd), (dc)
and with the root a. The underlying undirected graph contains no brldges,
the conditions (1) and (4) are satisfied. Nevertheless, the oriented ‘edge
(cd) is not included into a feasible set, that Is, the DBG ls not normal.

The only 16 non-isomorphic undirected (connected looplessA) graphs on at
most five edges, which have a cycle of i le_:ngt.h greater t.hnﬁ 2 - give rise
to the total of 40 non-isomorphic rooted undirected graphs. The rules of
Leama 5.5. have not flxed the orlentation of one, two, three edgesr in 24,
12, 4 of these 40 cases respectively,

Given B palr (G.r), where C 1s an undirected graph and r is the root,
we primarily determined the flxed orientations of edges and later searched
for all those non-lsomorphlc ways to orfent the resaining edges, which leave

the corresponding DEG normal. We shall give an example of ‘such a search:

let the undirected graph G on the vertex-set {a,b.c,d} with the edges
(a,b), (a,c), (a.d), (b,c), (b,d) (this graph is denoted as G 33 in our
11st} be given and let the vertex ¢ be the root.The oriented edges (ca) and
(cb) are compulsory for u “"normul® orlentation. The “flexible” orien-

tations of the olher Lhree edges are Lreated as follows:
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The vertices a and b are In lsomorphic positions w.r.t. the palr (G.c)
(more preclsely, a and b belong to the same orblt of the subgroup of the
automorphism group on the vertex-set of G, conslsting of those automorpisms,
which fix the root c). Therefore, we may fix an arblitrary of the orliented
edges (ab) and (ba), say (ab). The other posslbility should be neglected,

since It leads to Isomorphic cases.
There are four possibilities to orlent the last two edges:
(ad) (bd) - (ad) (db) - (da) (bd) - (da) (db).

We throw away the third possibility, since it is Isomorphic to the
second one, as well as the fourth possibility, since it makes the vertex d
unreachable from the root ¢ (and the corresponding DBG non-normal). Thus in
our list with the rooted undirected graph (G 33, ¢} we have the fixed
oriented edges (ca) and (cb), while the collection of non-isomorphic

flexible orientations is
(ab) (ad) (bd) - (ab) (ad) (db)

Finally, we shall give the list of non-isomorphic DBG's, which are not
UBG's. The corresponding graphs by Lemma S5.2. have a cycle of a length
greater than 2 and, by Lemma 5.3., all the undirected graphs on at most §
edges, which have such a cycle, should be included. Each row of the list
corresponds to those DBG's, which have the common underlying undirected
graph (the dénot.at.lons of which are the same as in the Section 4), the
common root And the common fixed oriented edges (the orientation of each of
these ecdges is in . accordance with Lemma 5.5). Orlented edges (in brackets)
are not separated by commas. Different DBG's in the same row are separated
by short lines, which stand between their collections of flexibly oriented

edges:

LIST OF DIRECTED BRANCHING CREEDOIDS

(which are not UBG's)
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74
Underlying Fixed Flexibly orliented edges
undirected | Root oriented {corresponding to the possible
graph edges non-isomorphic orientatlons)
GC 6 a (ab) (ac) {bc)
G 13 a (ab) (ac) (ad) (be)
G 13 b (bc) (ba) (ud) (ac). - (ca)
G 13 d (da) (ab) (ac) (bc) _
G 14 a (ab) (ac) (bd) (dc) - (bd) (cd)
c 21 a (ab) (ab) (ac) (bc) - (cb)
cC 21 c (ca) (cb) (ab) (ab) - (ab) (ba)
G 28 a (ab) (ac) (ad) (de) (bc) -
G 28 b (bc) (ba) (ad) (de) (ac) - (ca)
G 28 d {da) (de) (ab) (ac) (bc)
G 28 e (ed) (da) (ab) (ac) (bc)
G 29 a (ab) (ac) (ed) (ae) (bc)
G 29 b (ba) (bc) (ad) (ae) (ac) - (ca)
G 29 d (da) (ab) (ac) (ae) (bc)
C 30 a (ab) (ac) (ad) (be) (be) - (cb)
G 30 c (ca) (cb) (ad) (be) (ab)
G 30 d (da) (ab) (ac) (be) (bec) - (cb)
c 3 a (ab) (ac) (ad) (be) (ce) - (be) (ec)
G 3 b (be) (ba) (ad) (ac) (ce) - (ac) (ec) - (ca) (ec)
G 31 d (da) (ab) (ac) (be) (ce) - (be) (ec)
G 31 e (eb) (ec) (ad) (ba) (ac) - (ba) (ca)
G 32 a (ab) (ac) (bd) (de) (ce) -~ (bd) (de) (ec)
G 33 a (ab) (ac) (ad) (cb) (bd) - (cb) (db) - (bec) (bd)
G 33 c (ca) (cb} (ab) (ad) (bd) - (ab) (ad) (db)
G 43 a (ab) (ab} (ab) (ac) (be) - (cb)
G 43 c (ca) (cb) (ab) (ab) (ab) - (ab) (ab) (ba)
G 44 a (ab) (ab) (ac) (ac) (bc) .
C 44 b (ba) (ba) (bc) (ac) (ac) - (ca) (ca) - (ac) (ca)
G 51 a (ab) (ac) (ad) (bc) (bec) - (be) (cb)
G 51 b {ba) (bc) (bc) (ad) . (ac) - (ca)
C 51 d (da) (ab) (ac) (bc) (bc) - (be) (cb)
G 52 a (ab) (ab) (ac) (ad) (bec) - (cb)
G 52 b (ba) (ba) (be) (ad) (ac)- (ca)
G 52 c (ca) (cb) (ad) {ab) (ab) - (ba) (ba) - (ab) (ba)
G 52 d (da) (ab) (ab) (ac) (bc) - (cb)
G 53 a {ab) (ab) (ac) (ad). (cd)
G 33 b (ba) (ba) (ac) (ad) (ed)
C 53 c (ca) (cd) (ab) (ab) (ad) - (da)
G 54 a (ab) (ab) (ac) (bd) (dc) - (bd) (cd) - (cd) (db)
C 54 ] (ca) (cd) (ab) (ab) {bd) - {(ab) (ab) (db)} -

8. Convex shellings

(ba) (ba) (db)

~ (ab) (ba) (db)

Let “chull (X)* be an aubbrevation for “the convex hull of X*. A palr
(C.,r) 1s a circuit with the root r ({7]) of u convex shelling on E If C 1s
2 sinimal subset of E satlsfylng: r is the only clement of C which is not a

vertex of chull (C).

Lemoa B6.1.

A convex shelling (E,F) is uniquely determined by the

family of its (rooted) circuils (C,r), where r € C S E, Iln the followlng

manner:
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X C E Is NOT In F If and only if there exists a circuit (C,r) such
that X n C = {r}.

Proof. [IF-part: Let C-r = {cl1},...,clkl}. Then the root r cannot become a
vertex of chuif (E-{x[1),...,x[1-1]) before at least one x[p] (i<=p<=i-1)
becomes equal to - some clg] (1<=g<=k) (otherwise it 1s impossible to
apprbaéh the root r; it remains encircled with the elements of C-r, since
chull (C) € chull (E-{x(1),...,.xli-11}) ).
OMLY-IF-PART: We primarily make preparations by extracting a sequence
S of vertex-set of convex hulls on the basis of the following algoritha:

Z:=E; f:= 1;

REPEAT .

Let S[i]) be the set of vertices of chull (2);
2:=2 - S[i) ;
1:= {+1

WTIL 2 = @

Now assume that some X ¢ E sat.ls.fles for each circuit (C.r):
If r € X, then'X n (C-r) <> @ '
Then the ordering x(1]...x(k] of X with the propert.y.- v
x[i] 1s the vertex.of chull (E-{x[1],...,x[i-1]}), 1<=1<=k,
can be constructed by the following algoritha: o

Y = X; i: = 1;

REPEAT
Tl) := X nSl1); . .
Pick up the elements of TI(i] ln an u‘bltmy order.
(that 1s, make an arbltrary ordering of T[i) be the next
section of ordering of X that we construct)
Y:=Y-Tl]; '
i1: = 1+}

UNTIL ¥ = @,

We s;\ould confirm that our plcking up of elements of TI[i] is legal,
i.e., that we never pick up the root of u circuit before some of. the other
elements of thut circult have already been plcked up:

The elemenls of T[1] are nol roots of circults. Glven an element x of
T{1) (1>1), we know that x Is a vertex of the 1-th convex hull. This implies

that each non-root element of X n C, for mny clrcult C with the root x -



76 Dragan M. Acketa

1ies in a set T{}] for some J smaller than iI. It follows by our algorlths
that all the elements of (X n C) -x have been plcked up before x. The

assumptlon of our ONLY-IF part says that |(X a C) ~ x| >= 1, that is, at
least one outer element of C has been plcked up before the root x. #

Remarks. We need not have all the circulits to describe a cénvex shelling;
special, so-called, critical circults are sufficient ({7])). For example, if
we have the circuits (abc,a) and (bde.bl, then the circuit (acde,a) is a
consequence. . '

If all the l-subsets of the ground-set E are feasible, then the convex
shelling has no circuits and F becomes equal to the power set of E. This is
a speclal case of t.her fact that all the Interval greedoids with all the
1-sets feasible - are matroids. Namely, the oniy matroids which are shelling
structures (in particular, convex shellings) at the same time - are “free”
matroids, which have all the subsets of the ground-set femsible.

The followlng lémma considerably reduces our search:

Lesma 6.2. The circuits of convex shellings have at least three
elements. )

Proof. 1-circuits would contradict the glven definition of a circult,
since r 1s the vertex of chull ({r}).

Let a 2-circuit {x,y} with"the root x be given. Then y is the only
vertex of chull ({x.y}). It follows that x colncldes with y, but then x
should also be a vertex of chull ({x,y}). 'a contradiction with the
definition of the root. o

When listing the non-isomorphic convex shellings on at most § elements,
we shall concentrate on those of them which have the S-element ground-set.
If the unlon of all the circults of a convex shelling CS ls a k-set (k < 5),
then CS can be bijected to a convex shelling on 1 elements, for each 1, k <=
1 <= 5§,

For the sake of shortness, we shall further replace the clrcuit
denotation "(C,x)* by “x-(C-x). E.g., we shall write "a-bc" Iinstead of
*(abc, a)". ’ ;

We proceed with the detalls of our search:

There 1s one circult-free convex shelling on § elements.

If there 1s exactly one circult C, then the conve;: shelllng Is
determined by the cardinality of €. There are Lhree possibllities (]Cl €
{3.4,5)). '

If there are some two 3-circuits Cl and C2, Lhen |C1 n C2| belongs to
the set {1,2} (because of |C1 u C2|<=5). Note that 3-circults correspond to

triples of colllnear polnts.
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If |Cl A C2| = 2, then w have two triples of collinear polnts, which
have two points In common. It follows that all the four points are
collinear. Such a 4-point configurationm includes four 3-cirecuits. If k=4,
then this 1s the unique remalning possibllity.

I [CI n C2‘ = 1, then assuae that the points of C1 v C2 are not all
collinear (the collinear case will be .considered nfterw'd“s). ‘We have k=S,
The only common point for the (different) lines suppdﬂ.ing the triples C1
and C2 may be:

r) the root for both Cl and C2

b) a vertex for both C1 and C2

c) the root for one triple and a vertex for the other.

Thus, there, are three non-isomorphic possibilities. Note that another
4-circult necessarily exists with the case c).

Now, assume that k=5 and that there exist at least three 3-circults
c1.c2,63: ' _

Suppose that |Cl n C2| = 1. Then [C1 v C2]| = S and at least one of the
cardinalities |C1 n €3] and |C2 n C3| 'Is equal to 2. Let |C1 n C3| = 2. It
follows that |C1 v C3| = 4 and that the four points of C1 v C3 are collinear

on some line p. If the line q supporting €2 is different from p, then the
. lines p and ¢ have at most one common point and we have that k>=8, a
contradiction.

If each two of the circults C1,C2,C3 have a 2-intersection, we derlve
by two applications of a former reasoning that all the five points are
collinear.

We conclude that 5 collinear polnts (having 10 3-circuits) are the only
possibility .ult.h k = 5 and at least three 3-circults.

There remalns to consider the cases when k = §, there is a 4-clrcuit
{or a S-circuit), which is not the only circuit, and there 15 no wore than
one 3-circult.

Let a 4-circult x-abc be given and consider the pogition of the fifth
point y. We may assume thal the points a,b,c belong to the set V of vertices
of chull (abcxy). Namely, Lhe existence of a 4-circult gives |V|>=3. The
root x cannot belong to ¥, since 1t s encircled by the triangle abc. If,
for example, V = aby, Lhen we ulgo have the 4-circuit x-aby and we xay
interchange the denotations ¢ und y. Thus, we have to consider the
possibllities V = abcy and V¥ = abc. : '

(1). V = abcy..1f y does not belong to the abc-plane, then abex Is the
only circull. Otherwise, abcy Is ‘a planar convex 4-gon and we Ray 8asgume
‘(aince the denotatlions a,b,c are "flexiktle*) that ac and yb are its (lnner)
diagonals. If x is Incident to the line yb, then we have Lhe 3-clrcult x-by,
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otherwise we have exactly one of the 4-circults x-aby and x-bcy. Thus we
obtained two non-isomorphic cases with (I):

x-abc, x-by and x-abc, x~aby ,

(II), V =abc. We primarily consider the subcase when y belongs to one
of the edges of the triangle abc, say ab. Then we distinguish two
poss!bllltl:s: the point y elither belongs to the line cx or not. The first
of them gives two 3-circuits: x-cy and y-ab, and is isomorphic to the for-
merly considered possibility c) for t-uo non-collinear 3-circults. The second
possibllity gives exactly one of the 4-circuits x-acy and x-bcy. Thus the
only convex shelling obtained here is

x-abc, x-acy, y-ab .

If y (as well as x) belongs to the interior of the triangle abc, then
the line xy elther contalns a vertex (say a) or intersects (the interlors
of) two edges (say ‘ac and be). In the first case we may assume that the
point y lies between a and x. Then, we have y-ax, y-abc, x-abc, x-bcy. In
the second case we may assume the existence of the 4-circult x-acy. Then, we
have x-abc, y-abe, x-acy, y-bcx. Thus case (II) gave three new non-
~isomorphic convex shellings.

Finally, the existence of a 5-circuit x-abcd implies that the vertices
a,b,c,d belong to chull (abcdx) and none of them can be the root of a
circult (unless some sixth element exists). If follows that x-abcd is the
only circuit. ) ]

The following 1ist of non-lsomorphic convex shelllngs (given by
familles of thelr clrcuits) susmarizes the results of the considerations

above:

1) o

2) a-bc.
3) a-bed.
4) a-bcde.

§) a-bc, b-ad, a-cd, b-cd.

6) a-bc, a-bd, a-ce, a-de, b-ae, b-ce, b-de, c-ad, c-bd, c-de.
7) a-bc, a-de. °

8) a-cd. b-ce.

8) a-be, b-de, a-cde.

10} a-be, a-bed.
11} a~bcd, a~bce,
12) b-cd, a-cde.
13) a-bc, a-cde, b-cde, b-ade.
14) a-bced, b-ace, a-cde, b-cde.
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4 classification of interval greedoids

In addition to the considered classes of interval greedoids, we remark

that the matroid enumeration 18 completed up to 8 elements (c.f.[1]}), while
the shelling structures:are extracted as full iInteryal greedoids and are

enumerated (up to 5§ elements) i{n {3}.

We chall give the total number of non-iscmorphic greedoids on n

elements for O<=n<=5 in ail of the considered classes:

n 0 1 2 ) 4 5

Matroids ([1})

General greedoids (12}) 1 2 § 20 228 256812
Interval greedoids ([3)). 1 2 5§ 18 132 4811
Local poset greedoids 1 2 s 17 80 806
Poset greedolds 1 2 4 g 25 88
Undlrected branching gds. 1 2 5 14 44 148
Directed branching gds. 1 2 5 14 48 179
Convex shellings 1 -1 1 2 4 14
1 2 4 8 17 a8
1 1 2

Shelling structures ([3])

6 34 672
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Rezime

JEDNA KLASIFIKACIJA INTERVALKIH GRIDOIDA HA SKUPOVIMA GD NAJVISE
S ELEMENATA

U radu Je data konstrukclja .;.vni nelzomorfnih gridoida na najvise 5

elemenata, kojl spadaju u neku od Eledecih pet klasa intervalnih gridolda:



80 Dragan M. Ackela

lokalni poset gridoidl, orijentisani —rﬁzgnmntl gridoidi 1 konveksne
skol jkaste strukture. Gridoidi u prve dve klase su odredenl uz pomec
redunara, Rna osnovu ranije generisanog kataloga (3] svih nelzomorfnih
intervalnih gridolida na skupovima od najvise S elemenata.. Ostale tri klase
gridoida su  “rué¢no* konstruisane, na: osnovu - neklh opati jlh- teoretskih
razmatranja (koja nisu ogranicena na skupove od najvise -5 elemenata).

Reclued by iie editons Decemben 7, 1988.



