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Abstract

In 1858 Obrechkoff [1] introduced a generallzation of the \integral
transforms of Laplace and Mefjer. In the same paper some differential and
asymptotic properties of its kernel function were investigated and a real
inversicn formula of the Post- Widder type was found. Later on, Dimovskl
{21, {3] proposed a modification of this transform, usually referred to as
the Obrechkoff integral transform. As was shown in [2]-[5], it can be used
as a basis of an operaticnal calculus for the most general Bessel type
differential operator of an arbitrary order. It has turned out that a number
of Bessel type integral transforsmations proposed by different authbrs are
quite special cases of the Obrechkoff transfora. Here, .we shall propose
Abelian theorems . for this transfora, that is “*Initial (final) value"
theorems relating the initial (final) value of an original to the final
(initlal) valve of its transformation.

1. Sowe preliminary results on the Obrechkoff integral transfors

Definition 1. Let 11#3‘...:1’-& an arbitrary sequence od m real
rumbers, B0 be arbitrary too and

= ] ’
a-1 7 -7-1
S k-
(1) K(s) = II exp(—ul—uz-...-u__l— m——-). me, dul...du
s o 1 w-1 kst

The integral transform
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8 3(1 +1)-1
2 Ks) = O{f(x) s} B8 IK[(sx) ] f(x)dx,

defined for functions on 03x<w, Is sald to be the Obrechkoff integral

transform.
Denote by L(C) the space of Lebesgue Integrable (continuous)

functions on (0,®) with a prescribed pouer growth at x=0:

(3) Lo~ {f(0)=XP), p>a as x30; feLO.a}

(4) c, = {f)="K(x0 with p>a .7 e ClO.m)}.

The subspace of La consisting of the functions having an exponential
growth at infinity:

(5) Q= L'Ep =L n {f(x)-o[hx; ], AeR as x o m}
a.;

is sald to be the space of Obrechkoff transformable functions. Denote by
C"*? the more explicitly written subspace of 9 :

oB
[}
. . _ 8
(6) ‘ ‘C::Eé can{f(x)fo[u. ]. AER as x-ba}.
R . :

For each function f € §i [f € C’" ] there exists a well-defined Obrechkoff

transform - O(s) which 1s an analytic !‘unctlpn in the truncated angle domaln

ol oo ).

Dimovsk{ [2] -[5] used transforms (2) as the basis of an opemtlonal
calculus for the Bessel type differential operator of arbitrary order m > 1:

(7) B-x‘Bn[xgx—oﬂrt]-x-Bﬂ_[ :_x]' Derx<am

k=t

(Q-(ﬁ) is a mth degree polynominl! with zeros p= -sz. k=1,...,m, having

also the representation



Abelian theoreas for the Obrechkoff integral transform 47

ﬂ._‘ d a.

« a d .
x dx

d
(8) 8= x TX X . . . d—x
with aou-B-.Gz'lﬂ; ¢.=.81.-Br.ﬂﬂ. k=1,....21; ¢.~Bz. and B-n—(ao*,..m_)m.
It is worth mentioning here following special cases of the Obrechkoff
transform, proposed by different authors and used by tLhem in developing
operational calculil for Bessel type operators of form (7):

1) the well-known Meiljer transform

(9) Xv{l‘(x);s}-’[ /3x K, (sx) f(x)dx,
o -

related to the second order Bessel differential! operator

&£ 1d v —2fd d
B”=—-—2+;d—x—-;~x [xa;'- ][xa;w],uzo.
dx’ x

with m=g=2, 7 =3, 7% .

11) the integral trensformation used by Meller |6] es a transform basis
of an operational calculus for the Bessel type differential operator

Bat x d—-:xaﬂd—:. ~1 <« < 1. VUhen a =0 we get Ditkin's integral trans-

formation ( [7]):
. o
X{r(x);s} = 25 KO[Z /sx ]r(x)dx.
o .

‘ d d
corresponding to the operator Bo-ﬁ xa; .

111) a more genera! integral transformation related to the differential
tw)_d d d 1l . :
operator B = ax *@x R i ;[xa] of order m > 1, was proposed
simultaneously by Ditkin and Prudnikov [8] and by Botashev [9}:

[ ]
o{r( x); s}- 2 I £, (sx)f(x)dx,
-5 |

where
Peilm r. .
1 (o)
- —————— 0,
EUI(S) qun} I {(_l).s}o" o
V-1

iv) in a number of pupers Kritzel consldered Lhe Bessel type operator

of order m > 1}:
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-

2
- =P a-1 Pel——
d - s d -
B = D..u = ax x [x ax x
In [10} he used the following generalization of the Laplace and Meijer
transforms:
- a-v = X
{m) 2 v {m) - v
Zv_ {f(x).s (2x) /a s IAV [(sx) ]x f( x)dx
0
with a kernel-function of the form

v-1
("-1) "

l‘(u-—l +1)
1 o

A:’"(s) = exp(-mst)dr.

This transformation can be obtalned from the Obrechkoff transform {(2) by a
speclalization of the parameters, namely for

2 k . 2
=g 1; LA k=2,...,8~1; - v+l ) 8=1,

Dimovski [2], [3] found some operational propertles and a convolution
of the Obrechkoff tranaforw. Further, in [11] a real Inversion formla for
the modified transform (2) 1s proposed and the following differential
property, on which the corresponding operational calculus Is based, was

established:

o{Br(x);s} = ﬂmsﬁ o{(x):s}

(10}
5 r, B(1’-1.) 1-1 - ﬂ't - 4
- [3 s nGy =7, +1) o F(t,-rl)]lln [x n [xa;*ﬂwll]f(x)-
1=1 x990 JEIRS!

=1 JEIRS!

A number of complex Iinversion formilas for ‘thg' Obrechkoff transform are
obtalned in (11}, [12], (13}. By specialization of the parameters # > O,
1ls{..sy_ the results .of (2]-(5], (11]1-({14] turn Into corresponding
operational properties, Inversion formulas etc. for the aforesaid trans~
formations 1)- 1v).

it is interesting to note ([12), {14]) thut the kernelfunction (1) of
the Obrechkoff transform 1s a speciul case of MNeljer's GC-functlon (see

e.g. (15}, p. 203):
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n l‘(bv() n l‘(l-ar()

on (a ) . K=1 1=1 €
(n ":.q[" (b‘,é"] w5 ; ot
k=1 ¥ pr(1-b+£) 1 Fla +§)
- k j]
k=m+l i=net

This nllows to give a new representation of (2) by means of & simple
Integral only, and to deflne 1t as a special case of the so-called

GC-transforms, viz. ( (131, {16])):
Definition 1. The C-transform of the fora

~B(y +1)¢1 %
(12) 0{f(x);s} = 8s * IG; [(sl)ﬁl(r - = 01) ][(x)dx
o

is said to be the Obrechkoff integral transform corresponding to the

»
hyper-Bessel differential operator B = x B n (%—*Br ] with 7‘5725...5 LA
k=1

As 1t is show In [13], (18], this new representation of (2) slmplifles
essentlally all previous considerations concerning this transformation.
There exists also a relationship between the Obrechkoff transform and

the usual laplace transform

{13) r(x);s} = J. e """ f(x)dx.

]

It is given by the equality ({12], [14])

- [ 2]

(14) O{{(x);[ﬁ]ﬁ } = [21]2_/7? 2l{ef(x):s}, f e,

where ¢f(x) denotes the generalized Sonine transformation corresponding to

the hyper-Besscl differentlal operator B, proposed by Disovski [3], [5):

-(1 *1)- Il ! -
of(x)=x I I[
o o

(15)

This relatlon has an important meaning s far as It allows the transferring
of the well-known results for the Laplace transform into corresponding ones

for the Obrechkoff transform. Especlally, here we shall demonstrate its
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advantages in deriving Abelian type theorems for (2). To thls end some
properties of the Sonlne Lransformation {15) discussed in view of the theory
of the generalized fractl{onal Integratlon operators will be needed.

2. A brief sketch of Lhe generalized fractional calculus

In {18], {17] a generalized fracticnal calculus - ls developed dealing
with 6perat.ors of the Integration and: dl(‘_ferentiatlon of fractlonal
multiorder. These operators, being wmultidiamensional compositions of
classical fractional integrals or derivatives, have simple Iintegral
representatlons using another case of Meljer's G-function {11) as a kernel.
Here we shall need only the definition of the generallzed fractional
integrals and a few of thelr properties used in our considerations. For the
full exposition of this theory and many speclal cases one can see [18],
pu"tlally- [17], [18]. Various appllcatlons In the theory of special
functions, In solving qulte general classes of differential equatlons and
dual integral equations, 1n operatlonal calculus and Integral transforms
etc. are proposed in other papers by Kiryakova.

Definition 2. Let m=1 be an integer, >0, the "weights” LAVEE SORTTTE
be arbitrary real numbers and 6‘z 0,62?. 0,... ,6-2 0 be the coaponents of the
“multiorder of Integration” as(a‘,...,a_). Deflne the integral operators

(2,05 ) ! (y +8 )0 H
(16) R " « f(x) = J‘ ™% o, * u* %Y xcp de,
B.n ", . (1k)"‘
o

depending on these (2ar+2) paranéters. Then every operator of the form

Bs (1k).(6k)

§%5) Rf(x) =x °9

8, n f(x) vith some 8 & O,

- s sald to bte a generalized (w- dimensional) operstor of the frectional

integration of the Riemann-Liouville type, or briefly: a generalized R.-L.

fractional integrai.
(1k),(6k)
it s shown Lhat the operalors ‘Rﬂ. are lincar lnvertible
mappings of Lhe spaces C¢ defined by (4) with a = max[-ﬁ (11‘*!)]. into
K
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(7)(6)

themselves, 1.e. R I SN Ca. The same can be said for spaces (3) of

:
Lebesgue lntegr‘able function on (0.«) having a prescribed power growth at

(1 ) (6 )
x=0, namely :RB - :La—) La' a z :ax{-ﬂ (1lﬂ)].

This fact becomes. wore explicable If we take Into account that,
operators (16) preserve the power functions up to a constant multiplier:
(1 2,08 r(y, +g+1)

(18) Precl =P
! ﬂ' { * c ka1 l‘(1 +8 +E41)

P a,

end therefaore they preserve the asymptotic behaviour of the functlions (x)
which are O ") near to the inltial polnt x=O:
(7l).(6k)

R B.n (x)

(18') |f(x) | AP x50 - sAcpxp. x - 0,

Other rules which will be useful here are:

(7 ).(8) (7, 4A)(8)
(19) Ry - P = g T r(x).
J
(7,).(8.) 1(3). . [y +3+1)
(20) R ﬂ" Tt = o) g —=E8 |, je0.1.2,....
e k=1 !'(1k+6.¢‘-‘;41)

It is worth saying also that all the known results for the
Riemann-Liouville and Erdelyi-Kober fractional Integrals and for the
classical fractional derivatives have their counterparts concerning the
generalized fractlonal integrals (16), (17) and the generallzed fractional
derivatives corresponding to them (see e. g. [161, {17], (18]).

What will be used now is anolher representation of the generallzed
Sonine transformation (15) by meuns of = simple integral lnvoiving Meljer's

:::':_I‘- function as kernel, that is, as a generaffzed (m-1)-dimensional
fractional integral (see [13], [16], (18]):

B sl Gl
] =x " “ - " ().
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3. Initial value theorem for the Obrechkoff transforam

The knowledge of Abellian theorems for a given integral transform is of
considerable importance for {ts use in sblving initlal and boundary value
problems arlising in mathematical physics. For the Laplace transform (13)
several different variants of the lnitial and final value theorems (Abellan
theorems) are kpown (see (19], {20]). One of them can be stated as follows.

Lemma. Let f(x) be a Lebesgue Integrable function on (0,w) which is
O(eh) with some poslitive number A as x + =, Assume t.hi_it. there exists the
limit

(22) e x Pe(x) = fo
x>0

and consider the Laplace transfora

#(s) = 2{f(x);s} = J-c'"r(x)dx. s>

o
Then,
(23) lm 7' s) = £ M(p+1),
[ & .1 ]
or
(24) £f(x) =0(x"), x 20 = 2s) =AsP?), 53 a

Remark 1. The conditions required for the orlginal function f(x) are
fulfilled for instance in the subspace of continuous function of the form
(6) with a =—1, s=g=1:

(25) P - {f(x)=xp?(x). p>-1, 7 € CI0,@); f(x)=0(™), x -aﬂ} .

In this case

(22°) lim X Pr(x) = tim F(x) = 7(0): = r
x>0 x50 °

exists and yields the existance of the limit

(23"} Ha P V() = 70) Npe1).

w0
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Initial and final value theorems for the Hankel transform and for the
Mei Jer transform (9) are proposed by Zemanian ([21]. for the general
G-transformation of Narain [22] and Kesarwani [23] emnalogous and quite
general results are obtained by Pathak (24). In view of the new Definitlon
1' one can I‘I.nd Abelian theorems for the Obrechkoff transform (2) by a
suitable specilalization of Pathak’s results and by a specification of the
11st of condltlons imposed on the original function f(x) there. Independent
of this, we shall demonstrate now that the relationship (14) between the
Obrechkoff and Laplace Integral transforms and the properties of the
generalized fractional integral (21) can be used to this end too.

Theorem 1. lLet f € 1 be an Obrechkoff transformable function and

P > a = max ‘B(?."l)] = —B(rl*l). Assume there exlists a lialt (22):
15k 3Sa

lim r-p{(x) = {0
x>0

and denote by
os) = 0 {f(x);s} s>,
the Obrechkoff transformation (2). Then there exists a llait

.-p+B(1 +1) -
(26) ln s Xy =o o r(1.+;; +1).
»-n k=1

In the case of a continuous function f(x) on (0,») which belongs to
exp

the subspace Ca Bcn. this assertion has the following more explicit form.

exp
Theorem 1°. Suppose that f € Ca'}_i_. f.e. It has the form
l- N

(27) f(xy = xpff(x) with some p > a and f € C(0,®),

B

and |s O[expkx- ] as x »+ o with some real positive A. Then,

Pty 1)
-

(26') lin s «s) = HO) r"u‘% +1).
& -0 k=1
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Proof. For f(x) = xp?(x) with p > a , f € Cl0,m), condition (22') is
satisfled. In {3], [16] it is proved that the Sonine transformation ¢ maps
the space Ca' a =z -5‘(1101) into the space C_l where Laplace transform
appearing on the right-hand side of (14) can be considered. To describe more
precisely the asymptotic behaviour of ¢f(x) as x 3 0, we shall use the
propert.!es of the generalized fractional integral (21) mentioned In 2.

According to (19)

K
(. ). (v -7, +0) (z, ). (v -7+ (v, +5 ) (r_-7 +5)
[ 4 a Kk s &k I m kR
Ry o =w gt x"r(x) ol P ‘ (0,
that is
8. s nf goa e Ba_+1-p
(vt')[ ] x R g a1 "R =x " f(x),

(7 08) (1 -7 +5)

where f(x) = R B. a1 k ® Hx) is denoted. So

np [
aly *1)-14~ =
of(x) =x ° B ?[xs]

and hence

P
~al(y +% 21} 41 =
limx =B of(x) = linm ?[:r‘3 ] = 7(0).
X¥9*t0 - X0

On the other hand,

£) (g ~y o= ) a-1 Ty +& +1)
?(0)-[ VB TR o) - 7o) B
* k=31 (¥ 0. g*ll

by virtue of pro_perty (20) for J=0. In this manner we gelL that condition
(22') implies the condition

-y +£ +n1 w-1 Ty +£ .1
(28) lim x - ef(x) = 1(0) ——-—"-%—-——
x>0 x=1 I'ly 054%'1)

where ¢f(x) is the generallzed Sonine Lransformation (15). There remalns to
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apply the initial value Lemma for the Laplace transform on the right -hand
side of equallty (14). Condition (28) satisfied by ¢f(x) ylelds that llait
(23') exlsts when p 1s substituted by (l(r.'rz-fl)-l) and fo is substituted by

= P
£(0) .[;l'r(wkoﬁ;d). i.e. )
F1¢ 054»1) o a-1 r(wkog +1)
lins " 2 {pf(x);s} = ?(O)T(l(t_*‘ﬁ- WM e
PESY Y k=1 l"(w_oifﬁtl).

Now the Gauss-Legendre multiplication formula for I- functlons ( {15), p.
18) has to be applled:

e —.% -;- -‘7.’%"1) o a-1 X P
My + 8 +1)) = (2w) a’ = ) F(w_*§ +1) 1 My + o+ B* 1).

kw1
Hence, we get that

-(10201) —.—-l-——-(‘logolln e
(28) lims " B 2{ef(x);s} =F(0)(2n) 2 “n " nr('r-* 501).

S+ k=1
or

lim ¥(s) = £(0) a“"k + g + 1),

se k=1

where

)

et ]-(1 + = 1)

1
2 2

¥(s) = (2x) ° n [; PR oref(x);st

is denoted. According to (14)
*s) = [[2]5 ]PoﬂlT.ol lo{f(;): [E]E}.

g PoB(Y_+1)
liaXs) = 1in ¥ [-r' ] =lin o 0 {f(x);a}.
shw 8 e Tm

80

Ax=
we obtaln the limlt (26'). Let us note that the condition f(x)= O[e - } as

X 3 » s needed to ensure the convergence of the Obrechkoff Integral (2) for



56 D. Nikollc-Despotovic, V. Kiryakova

s >A, and, thcrefore, the exlstance of the Obrechkoff image O(s) in the same

Ax
way as the condition f(x)= O[e J X 3 « ensures the convergence of the

Integral (13) for s >A. This fact is a corollary of Obrechkoff’'s

Laplace
results [1) determining the asymptotic behaviour of the kernel-function (1)
as s I @
1 fa-1 ™0} 1
w1 - ['—2—4 z 'iu-7 -n]/- :
(301} K(s) ~(2n) & “s 1 . exp[—ns ]

The same asymptotic formula can be derived directly from the theory of

G-functions taking into account Definition 1°. The proof is over.

in the more general case of Lebesgue
It is

Remark 2. To prove Theorem 1
integrable function fefl, we have to make only slight modifications.

sufficlent to replace condition (22') by the supposition that the limit

e f(x) = [o exlsts. This will lmply the existence of limit (26).
x>0
Remark 3. The result of Theorem 1 follows also from the general

consideration of Pathak [24) If one substitutes the parameters used there by
the following ones:
8 1 1
a -\, pt=0, q+30, n0, 1}—)5, ck=1k- 2—B+ 5
n. 1, F 1
B 187, +1)-1. &1 501 5)#2: 7. P S P

Only the following conditions from the statement of Th. 1, [24] have to be
retained: A) (3>0) t» (B>0); B) 1ii): (Osa~t, p=0, n=0) |- (m21),

(n < B+ g) = (p>a = -B(7,+1): C) f(x) is a measurable functlon on (0,=) for
which integral (2) exist.s. Then, the existence of a number « l—-)l'o suchthat

e x Pf(x) = f, ylelds that (26) in our notatlons Is fulfilled.
x-)eQ

4. Final value theorem for the Obrechkoff transform

Now we shall dispose with tree different gmanners of obtalning a resul't
analogous to the flnal value theorems for the Laplace transform ({19]) and

for the Meller Llrunsform ( {21]). First, we can prove Lhal 1lm x-pf(x) =1,

X P+ 0
9*3(1_41) s
implies that lim s €@s) = [y +&+1) directly, using the
850 @ k=1 L B
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pattern of (18], (211, (24] and Definition 1°. The second way is to derive
this result from Pathak's Theorem 2, ([24] by the substitutions and
specifications mentjoned in Remark 3. The last but not least approach |is
to use the generalized Sonine transformation ¢f(x) as this is done in 3. One

way or another, the following assertion can be established.

Theorem 2. let f € Q be an Obrechkoff transformable function and
pa = -ﬂ(rlﬂ). The exlstance of a number !- such that

(31) lin x PH(x) = f,
Ao 80

implies the limit equality

. p*B(7y_+1) -
(32) e s oos) =L, MG gD
80 k=1

S. Example. As corollaries of Theorem 1, 2, inltial and final value
theorems for the integral transformations 1)-1v) can be obtained. liere we
shall demonstrate this only for the case of the classical Meljer transform

(9). So, by taking
=B=2, 7 = %, ¥ =% (0svsy) . a ==f(7, +1)=v-2,

T2 Y 2 2 " 1

we recelve the following results of Zemanian (21], ss

v 1 v 1
0,2 “ztz ozt f] = sK(9)

Gz.o[(;)a

( (1S}, p. 211) and the Obrechkoff transform (12) turns into a modificatlon
of the Mei)er transform (9).

Corollary 1. ([21], lLemma 3.) Let the numbers v, p be so restricted

% and p>v-2. Let f(x) be a mesurable function on (0.w) such that,

for some positive number A, ‘l'(x)e-h i{s a lLebesgue integrable on every
interval of the form X<x<m (¥>0). Assume that there exists a number fo such

that Ospx

that

-t — )
(33} lim x  2f(x) = Ty
x>0 ;
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Finally, set

o
(34) K s) -I sX Kv(sx)!(x)dx, s> A.
0
Then,
(35) C Ua¥s)s = &v.p),
sy
where
=Pt pfe L, ¥ e,1_v
(36) Nv,p) = 2 I‘[z tgt 2] r[z *3 2].

Corollary 2. (21}, Lemsa 7) Let 0.‘.;.-.‘.% and p>- % . Let f(x) be a
measurable function on (0,w) satisfying Lhe conditions:
1

“Ve—

1) x 2I‘(x) is Lebesgue integrable for v#0 on every Interval of the

form 0 < x < X (X < w), and
11) there exists a number i‘u such that

-pot
(37) lim x f(x) = 1.
E & 4]
Then,
oL
(as) - . limn ¥ s)s 2 . !“G(v.p).
20

where ¥(s) is defined by (34) for each s>0 and G{v,p) is the same number as
in (38). :

The autors thank Prof. Dimovski for posing this problem and for his valuable

suggestions.
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ABELOVE TEOREME ZA INTEGRALNU TRANSFORMACIJU OBRECHKOFFA

Koristeci rezultat Pathaka [24] dokazane su Abelove teoreme 2za
integralnu transformaciju Obrechkoffa koJa Je uopstenje  integralne

transformaci Je Laplacea i Mel Jera.
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