WEAK CONGRUENCES OF A LATTICE

B. Seselja and G. Vojvodic

Institute of Mathematics, Dr Ilije Duricica 4, 21000 Novi Sad, Yugoslavia

Abstract

 $C_{M}(L)$ is a set of all the weak congruences on a given lattice L, i.e. a set of all the congruences on all the sublattices of L.

It is proved here that: a) the lattice $(C_{\mathbf{w}}(L), \preceq)$ is modular if and only if L is a two-element chain; and b) if L is a bounded lattice (with two disjoint constants 0 and 1) then $(C_{\mathbf{w}}(L), \preceq)$ is complemented if and only if its lattice of sublattices is complemented. (For lattice L without constants, $(C_{\mathbf{w}}(L), \preceq)$ is never complemented).

0. Let A = (A, F) be an algebra, and $K \subseteq A$ the set of its constants. Then ([7] a weak congruence relation on A is a symmetric, transitive and compatible relation ρ on A, satisfying the weak reflexivity: if $c \in K$, then $c\rho c$.

For an algebra A, denote by

- S(A) the set of its subalgebras;
- C(A) the set of all the congruences on A;
- C(A)- the set of all the weak congruences on A;
- C(B) the set of all the congruences on $B \in S(A)$;

It is obvious that $C_{\underline{w}}(A)$ is the set of all the congruences on all the subalgebras of A.

It was proved in [7] that

(I) $(C(A), \leq)$ is a sublattice, and $(S(A), \leq)$ a retract in $(C_{w}(A), \leq)$. (Therefore, we identify here the subalgebras of A with the corresponding diagonal relations in $C_{w}(A)$).

AMS Mathematics Subject Classification (1980): 06B10, 08A30 Key words and pharases: lattices, congruence, relations

A is said to have the congruence intersection property (CIP), ([7]) if for all $\rho, \theta \in C_{\mu}(A)$,

$$(\rho \wedge \theta) = \rho \wedge \theta$$

where

$$\rho_A = \cap (\alpha \in C(A) | \rho \subseteq \alpha)$$

If d_{ρ} is a diagonal of $\rho \in C_{\rho}(A)$, i.e. $d_{\rho} = \rho \wedge \Delta$, where $\Delta = \{(x,x) | x \in A\}$, then $\rho_{A} = \rho \vee \Delta$, and the CIP thus expresses the distributivity ([4]) of Δ in $(C_{\rho}(A), 1)$.

A is said to have the congruence extension property (CEP), ([5]), if every congruence on any subalgebra of A is a restriction of a congruence on A.

It was proved in [7] that (II) A has a modular lattice of weak congruences if and only if it has the modular lattices of subalgebras and congruences, and it satisfies the CEP, and CIP.

Some algebras having a complemented lattice of weak congruences including the case when this lattice is Boolean were characterized in [6].

1. Consider now the case when A is a lattice (L, λ, v) denoted by L. The following propositions are well known.

Proposition 1.1. [1] $(S(L), \leq)$ is a modular lattice if and only if L is a chain. \square

Propisition 1.2. [4]. For every lattice L, $(C(L), \leq)$ is a distributive lattice. \square

Proposition 1.3. [5]. If L is a distributive lattice then it has the CEP. O

Thus, to discuss the modularity of the lattice $(C_{u}(L), \leq)$, we can restrict our attention to the case when L is a chain.

Proposition 1.4. The chain L satisfies the CIP if and only if it has two elements.

Proof. Let L be a two-element chain $(\{a,b\}, \land, \lor)$, a < b. Its lattice of weak congruences is represented below. ([a,b] stands for a partition determined by L^2 etc.) L obviously satisfies the CIP. (The same occurs in the case

when at least one of those elements is constant in L i.e. when |K| = 1, or |K| = 2. Now, let L be a chain with more than two elements, and let $L_1 = (\{a\} \cup \{b\}, \le)$, where $a,b \in L$, a < b, $\{a\}$ and $\{b\}$ are the ideal and the filter generated by those two elements. L_1 is obviously a subchain of L, and

$$\rho = \left\{ x | a < x < b \right\}^2 \cup \Delta$$

is a congruence on L.

Now.

$$\rho \wedge L_1^2 = d_{L_1^2}$$
, and $(\rho \wedge L_1^2)_{\Lambda} = \Lambda$

On the other hand, $\rho_{A} = \rho$, $L_{1}^{2} = L^{2}$, and thus $\rho_{A} \wedge L_{1}^{2} = \rho$.

Hence, $(\rho \wedge L_1^2)_A \leq \rho_A \wedge L_1^2$, and the CIP is not fulfilled. \Box

Using the congruence $\{0,1\}^2$ instead of L_1^2 , one can prove that a bounded lattice satisfies the CIP if and only if it is a two-element.

Whether an arbitrary lattice fails on CIP is still an open problem.

Theorem 1.5. An arbitrary lattice L has a modular lattice of weak congruences if and only if it is a two-element chain.

Proof. Straightforward, by (II), and by Proposition 1.1, 1.2, 1.3 and 1.4. O

In this part we shall characterize the lattices having a complemented lattice of weak congruences.

It was proved in [6] that no algebra having less than two different constants can have a complemented lattice of weak congruences. Therefore, we shall look for our lattices in the class of bounded ones, denoted by $(L, \wedge, \vee, 0, 1)$, $0 \neq 1$.

Theorem 2.1. Let (L, A, V, 0, 1) be a bounded lattice. Then it has a complemented lattice of weak congruences if and only if its lattice of sublattices is complemented.

Proof. Let L be a bounded lattice with a complemented lattice of weak congruences $(C(L), \leq)$. Then, for $\rho, \rho' \in C(L)$,

$$\rho \vee \rho' = L^2$$
, $\rho \wedge \rho' = d$ (where $d = \{0, 1\}^2 \wedge \Delta$),

we have that $d_{\rho} \vee d_{\rho}$, = Δ , and $d_{\rho} \wedge d_{\rho}$, = d_{m} . Since the diagonal relation represents a corresponding subalgebra ((1)), it follows that $(S(L), \leq)$ is a complemented lattice.

Now let $(S(L), \le)$ be a complemented lattice. Consider $\rho \in C(H)$, $H \in S(L)$, such that $\rho \ne M^2$, and let $H \in S(L)$ be a complement of H in S(L). Then,

$$\rho \vee N^2 = L^2, \quad \rho \wedge N^2 = d.$$

If $\rho=H^2$, its complement is $\rho' \in C(N)$, such that $\rho' \neq N^2$.

Examples

The lattices in (1) and (11) are bounded ($k = \{0,1\}$), and they both have complemented lattices of weak congruences, as well as lattices of sublattices.

Note that the lattice in (11), considered as a Boolean algebra $(B, \wedge, \vee, -, 0, 1)$, has the same (up to the isomorphisms) lattice of weak congruences as L in (1).

References

- 1. Birkhoff G.: Lattice Theory, Providence, Rhode Island 1967.
- Biro B. Kiss E.W., Palfy P.P.: On the congruence extension propety, Colloquia Mathematica Socientatis Janos Bolyai, 29 Universal Algebra, Esztergom (Hungary), 1977, 129-151.
- Burris S., Sankappanavar H.P.: A Course in Universal Algebra, Spinger-Verlag, 1983.
- 4. Crawley P., Dilworth R.P.: Algebraic Theory of Lattices Prentice Hall, Englewood Cliffs, N.J. 1973.
- Kims E.W., Marki L., Proble P., Tholen W.: Categorical algebraic properties, a compendium on amalgamation, congruence extension, epimorphisms, residual smallness, and injectivity, Studia Sci. Hat. Hung. 18 (1983), 79-141.
- Sceelja B., Vojvodic G.: On the complementedness of the lattice of weak congruences, Studia Sci. Mat. Hung., 24/1-2 (1989) (to appear).
- Vojvodic G., Seselja B.: On the lattice of weak congruence relations,
 (to appear in Algebra Universalis, 25 (1988) 121-130.

Rezime

Slabe kongruencije mreze

- a) da je mreža slabih kongruencija proizvoljne mreže modularna, ako i samo ako je mreža dvoelementna i
- b) mreża slabih kongruencija ogranicene mreże je komplementirana ako i samo ako je mreża njenih podmreża komplementirana.

Received by the editors June 1. 1987.