REMARKS ON THE DISTRIBUTIONAL STIELTJES TRANSFORMATION AND THE S-ASYMPTOTIC

Stevan Pilipović University of Novi Sad, Faculty of Science, Institute of Mathematics, Dr I.Djuričića 4, 21000 Novi Sad, Yugoslavia

ABSTRACT

We investigate the behaviour of the Stiltjes transformation S_r of an $f\in S_+^*$ which has the S-asymptotic behaviour at ∞ . As well we show that the domain of the convergence of $(S_rf)(z)$, $|z|\to\infty$, which is, by appropriate assumptions, of the form $\{re^{\frac{j}{4}};\ r>0,\ j\neq l<\pi-\epsilon\},\ 0<\epsilon<\frac{\pi}{2}$, could not be enlarged to contain a half line x+iy, y≠0, x ∈(-∞,0).

1. NOTIONS

Following [1] we define the space J'(r), $r \in \mathbb{R} \setminus (-\mathbb{N})$, as a subspace of the space of tempered distributions with supports in $[0,\infty)$ (denoted by S'_+) consistend of all f of the form

(1) $f = D^{m}F$ (D is the distributional derivative) where

 $F \in L^{1}_{loc}$, supp $F \subset [0,\infty)$ and

AMS Mathematics Subject Classification (1980): 46F12, 44A15 Key words and phrases: Distributions, asymptotic behaviour, Stieltjes transformation.

(2)
$$\int_{0}^{\infty} |F(t)/(z+t)|^{r+m+1} |dt < \infty, \quad z \in \mathbb{C} \setminus (-\infty, 0]. \quad (\mathbb{C} = \mathbb{R} + \mathbb{R}).$$

The distributional Stieltjes transformation of an $f \in J'(r)$ (for which (1) and (2) hold) is a holomorphic function defined on $\mathbb{C} \setminus (-\infty, 0]$ by

$$(S_r f)(z) = (r+1)_m \int_0^\infty (F(t)/(z+t)^{r+m+1}) dt$$

where $(r)_{m}=r(r+1)...(r+m-1)$, $m \in \mathbb{N}$, and $(r)_{0}=1$.

REMARK. We can define J'(r), $r \in \mathbb{R} \setminus (-\mathbb{N})$, as a subspace of S' consisted of all f for which (1) holds but without the assumption on supp F and for which (2) holds with $Imz \neq 0$. In this case (3) defines the Stieltjes transformation of f which is a holomorphic function in $\mathbb{C} \setminus \mathbb{R}$ ([3]).

We studied in [6], [7], [2], [3], Abelian and Tauberian type results for this transformation by using the notion of the quasiasymptotic behaviour of a distribution from S'_+ and S' (see [10] and references there, and [5]). For the sake of simplicity we shall deal in this paper only with elements from S'_+ . Recall that an $f \in S'_+$ has the quasiasymptotic at ∞ related to $k^{\alpha}L(k)$, $\alpha \in \mathbb{R}$, L is a slowly varying function (see [10]), if for some $g \in S'$, $g \neq 0$,

(4)
$$\lim_{k\to\infty} \langle f(kt)/(k^{\alpha}L(k)), \phi(t) \rangle = \langle g, \phi \rangle, \ \forall \phi \in S.$$

Let $f \in S'_+$ have the quasiasymptotic at ∞ related to $k^{\alpha}L(k)$ and let $r \in \mathbb{R} \setminus (-\mathbb{N})$ such that $r > \alpha$. These assumption imply that $f \in J'(r)([0])$.

The following assertion is proved in [8] (with suitable $C\neq 0$):

$$(S_r^f)(ks)/(k^{\alpha-r}L(k)) \rightarrow C(\Gamma(r-\alpha)/\Gamma(r+1)s^{\alpha-r}, k\rightarrow\infty$$
 (C\neq 0).

(*) { Moreover, if L=1 then $(S_rf)(s)/s^{\alpha-r} \rightarrow C\Gamma(r-\alpha)/\Gamma(r+1), |s| \rightarrow \infty, \text{ uniformly in any }$

angle of the form $\Lambda_{\epsilon} = \{\rho \exp(i\phi); \rho>0, -\pi+\epsilon < \phi < \pi-\epsilon\}, 0 < \epsilon < \pi/2.$

We shall investigate in this note the distributional Stieltjes transformation of an f which has the S-asymptotic behaviour ([9]).

We shall say that an $f \in \mathcal{D}'$ ($f \in S'$) has the S-asymptotic at ∞ in \mathcal{D}' (in S') related to a positive continuous function c(h), h>0, if for some $g \in \mathcal{D}'$ ($g \in S'$), $g \neq 0$

(5)
$$\lim_{h\to\infty} \langle f(x+h)/c(h), \phi(x) \rangle = \langle g, \phi \rangle, \ \forall \phi \in \mathcal{D} \quad (\forall \phi \in S).$$

(The S-asymptotic at - is defined in an adequate way.) We studied this notion in [9] and [6]. From now on we shall observe the S-asymptotic related to c(h) in S'. Note that in this case (5) implies the g-const. ([6]).

- 2. PROPOSITION 1. Let $f \in S'_+$ and have the S-asymptotic at ∞ in S' related to C(h) (h>0). Then there is $r \in \mathbb{R}$ such that for any $r>r_0$, $r \in \mathbb{R} \setminus (-\mathbb{N})$:
 - (i) $\lim_{h\to\infty} (S_r f)(z-h)/c(h) = 0$, $z \in \mathbb{C} \setminus \mathbb{R}$;
 - (11) If for some C and a

(6)
$$(1+h^{\alpha})/c(h) < C, h > 0,$$

then

$$\lim_{h\to\infty} (S_r f)(z+h)/c(h) = 0, z \in \mathbb{C} \setminus (-\infty,0].$$

PROOF. (i) Since $f \in S'_+$ there are $k,p \in \mathbb{N}_O$ and a locally integrable function F such that

(7)
$$f = D^k F$$
, supp $F \subset [0,\infty)$ and sup $\{|F(x)|/(1+|x|^P)\} < \infty$.

Take r > p. We have

(8)
$$(S_r f)(z) = (r+1)_k \int_0^{\infty} (F(t)/(z+t)^{r+k+1}) dt, z \in \mathbb{C} \setminus \mathbb{R}$$
.

On the other hand the assumption that the limit (5) exists (in S') implies that there is an m_0 such that for $m \ge m_0$

$$\lim_{h\to\infty} \langle \frac{f(t+h)}{c(h)}, \phi(t) \rangle = \langle \text{const.}, \phi \rangle, \forall \phi \in S^m,$$

see [11, p.96, Corollary 2].

By taking sufficiently large m, say $m \ge m_1$, we have that

(9)
$$\langle D^k F_* \phi \rangle = \langle F_* (-1)^k D^k \phi \rangle, \forall \phi \in S^m,$$

holds in the sense of the dual pair (S'm,Sm).

Let $m_0 > p$, $m_1 \ge m_0$; put $r_0 = m_1 + 1$. For $r > r_0$ we have

(10)
$$\mathbb{R} \ni t + (z+t)^{r+1} \quad (\text{Im} z \neq 0) \text{ is from } S^m \text{ for } m > \{m_1 + 1\}.$$

By (8), (9) and (10) we have

$$(s_r f)(z) = (r+1)_k < F(t), (z+t)^{-r-k-1} > , z \in \mathbb{C} \setminus \mathbb{R}$$

and

that

$$(S_r f) (z-h)/c(h) = (r+1)_k < F(t), (z-h+t)^{-r-k-1} > /c(h) =$$

$$= < f(t), (z-h+t)^{-r-1} > /c(h) = < f(t+h)/c(h), (z+t)^{-r-1} >$$

$$+ < const., (z+t)^{-r-1} > = 0, h-\infty, Imz \neq 0.$$

(ii) Let Imz≠0: Since (6) implies that

$$f(t-h)/c(h) \rightarrow 0$$
 in S' as $h\rightarrow\infty$,

by the same argument as in (i) we prove (ii).

Let $z=x \in (0,\infty)$ and let η be a smooth function such that $\eta(t)=1$ for t>-(x/2) and $\eta(t)=0$ for t<-x. The function

(11)
$$t \to \eta(t)/(x+t)^{x+1}$$
, $t \in \mathbb{R}$,

is a smooth one.

Formally, we have

By noting that $t\rightarrow \eta(t+h)/(t+h+x)^{r+1}$, (h>0) is smooth for t>0 and repeating all the arguments as in (i) we can prove the assertion for $z=x \in (0,\infty)$.

REMARK. The arguments given above do not imply that $(S_rf)(x-h)/c(h)\to 0$ as $h\to\infty$, $x\in (0,\infty)$.

Let $f \in S'_+$ and have the S-asymptotic at ∞ related to $h^{\nu}L(h)$ with $\nu>-1$. Then f has the quasiasymptotic at ∞ related to $k^{\nu}L(k)$ ([12]) and (*) characterizes completely the behaviour of S_-f ($r>\nu$) on the rays

$$z = \rho e^{i\phi}, \rho \in (0,\infty)$$

where ϕ is fixed and belongs to $(-\pi,\pi)$. If L=1 the second part of (*) gives the behaviour of S_rf on the lines

$$z = x + iy, x \rightarrow \infty$$
,

where y is a fixed element of $\mathbb R$. This result is much more precise than the one which follows from Proposition 1. Note that (*) does not imply any result about the behaviour of S_r f on the lines of the form

$$z = x + iy, x \rightarrow -\infty$$

where Imy # 0.

3. Let $f(x)=H(x-1)/x^{\alpha}$, $x\in\mathbb{R}$, $\alpha>1$; f has the quasi-asymptotic at ∞ related to k^{-1} with the limit δ and f has the S-asymptotic at ∞ related to $h^{-\alpha}$ with the limit 1. Proposition 1 implies that for suitable r

(12)
$$(s_r f) (z-h)/h^{-\alpha} \to 0 \text{ as } h\to\infty, \text{ Im } z \neq 0,$$

and (*) implies that

$$(s_r f)(z)/z^{-r-2}$$
-const., uniformly in h_r when $|z|$ ---.

One can prove, by Lebesgue's theorem that for $\alpha=3$ and r=1 (12) holds. This implies that, in general case assertion (*) couldn't be extended on a domain which contains a line x+iy, $x \in (-\infty,0)$, with $y\neq 0$ fixed.

REFERENCES

- [1] Lavoine, J., Misra, O.P., Abelian Theorems for the Distributional Stieltjes Transformation, Proc. Camb. Phil. Soc., 86(1979), 287-293.
- [2] Nikolić-Despotović, D., Pilipović, S., Tauberian Theorem for the Distributional Stieltjes Transformation, Internat. J. Nath. Nath. Sci., 9(1986), 521-524.
- [3] Nikolić-Despotović, D., Pilipović, S., Quasiasymptotic of Distributions at ± and the Distributional Stieltjes Transformation, Rev. Res. Sci. Univ. Novi Sad, 16.2(1986), 41-52.
- [4] Pilipović, S., Quasia symptotic and the Distributional Stieltjes Transformation, Publ. Inst. Math. Beograd, 40(1986), 143-152.
- [5] Pilipović, S., On the Quasiasymptotic of Schwartz's Distributions, Math. Nachr., 137(1989), 19-25.
- [6] Pilipović, S., On the S-asymptotic of Temepred Distributios, Rev. Res. Sci. Univ. Novi Sad, Part I, Part II, 15 nº 1(1985), 47-58, 59-67.
- [7] Pilipović, S., Stanković, B., Initial Value Abelian Theorems for the Distributional Stieltjes Transform,
 Studia Math., LXXXVI (1987), 239-254.
- [8] Pilipović, S., Stanković, B., Abelian Theorem for the Distributional Stieltjes Transform, Z.Anal. Anvend. 6(4)(1987), 341-349.
- [9] Pilipović, S., Stanković, B., S-asymptotic of Distributions, Pliska (to appear).
- [10] Seneta, E., Regularly Varying Functions, Lect. Not. Nath.

 Springer, Berlin, New York, Heidelberg, 1976.
- [11] Vladimirov, V.S., Generalized Functions in Mathematical Physics Mor., Moscow, 1979.
- [12] Vladimirov, V.S., Drožžinov, Yu.N., Zavialov, B.I., Mulitdimensional Tauberian Theorems for Generalized Functions, Nauka, Moscov, 1986, (in Russian).

REZIME

O DISTRIBUCIONOJ STIELTJESOVOJ
TRANSFORMACIJI I S-ASIMPTOTICI

Ispituje se ponašanje Stieltjesove transformacije distribucije koja ima odredjenu S-asimptotiku.

Received by the editors June 1,1986.