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ABSTRACT

1
loc
Implies its ordinar asymptotic behaviour at infinity under

lt Is proved that the S-asymptotic of an f €L
some conditions of monotanicity.

0. For the notation and the basic properties of the
S~asymptotic behaviour of an £€P’ we refer to [3},[4]). We
shall repeat here only the definition.

Let £€0’ and c(h), h>h°, be a continuous pecsitive
function. If for some g€D’, g#0, -

1) 2im < 2L 4 (x) > =< g(x),00x) >, Ve €D
hesao c(h)

then we say that f has the S-asymptotic at infinity with re-
spect to c(h) with the limit g . In this case we write
f(x+h)% g(x)c(h) in D’ at infinity. It follows from (1) that
for some A¥0, o#0, and some slowly varying function L

X

(2) g(x) = ae?™, c(h) = euxL(eh).
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Recall, L is slowly varying at infinity if L is measurable
and L(ax) /L(x)=1, x+= for every a>0; for the properties of
such functions we refer to {2}.

If we assume in (1) ‘that fES'(fGKi) and that this
1limit exists in S’(Ki), i.e. YOES (V¢£K1) then we write
£(x+h) % g(x)c(h) in S'(K]) at infinity. If (1) exists in S’
then g(x)=A because the existence of (1) implies that g€ S’,
1.e. a=0 in (2).

1. PROPOSITION 1. Let £ €D’ and £(x+h)Rl-c(h) in D’
at infintty with c(h)=e°hBL(h), h°<h and monotonoué L. Then
=0 and any dietribution g with suppgcla,») for some a€R,
which i8 equal to T in q neighbourhood of infinity ie from S’
and g(x+h)21l.c(h) in S’ at infinity.

PROOF. That c¢=0 is a direct consequence of (2).
Let ¢ € c”, ¥=1 for x>1 and ¢¥=0 for x<0. We have that ¢f§1-c(h)

in ?' and so, that {iﬂf%%g;ﬁl,11eg} is bounded in D’. [5} im-

plies that yf € S'. The assumption on L implies that we can
apply (4,Part II, Prop. 2] and [4, Part I] which gives

(v£)%1.c(h) in S’ at infinity.

Let g satisfy assumptions of the proposition,
Clearly, (vf-g)20.c(h) in P’ at infinity and the application
of [4, Parts I, II} gives that the same holds in S’.

By using [4, Parts I, II]l in the same way as in
Proposition 1 we have:

PROPOSITION 2. Let £€D’, £3 ° ¥c(h) in D' at in-
fintty, where c(h)=e°hhaL(h), h >h, and L 15 monotonous. Then
a=a and every g with the support boundsd from the left and
equal to f in some neighbourhood of infinity, ta from K' and

g(x+h) 2 e™c(h) in K’ at infinity.

Now we can easily prove:
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PROPOSITION 3. Let g€D’, suppgc(a,=) and L be
monotonuous. The following conditions are equivalent:

(a) g(x+h) & e™e™nPL(n), in K] at infintey,
(b) e 0N L vnyB1mPL(h)  ©n S* at infinity.
2. The ordinar asymptotic behaviour of an fELioc at

1nfinlty with respect to c(x) =e"*L (eX) implies, under some
simple conditions, the S-asymptotic behaviour of f at in-
finity in D’ with respect to euhx.(eh) . This 1s quoted in [3].
The question is: when the S-asymptotic of an f ELJI.oc implies
its ordinary asymptotic? First we shall give an example.
On can easily construct a function G such that
G(n)=n", n€N, G(x)=0 for x ¢In, where In is a suitable small
interval around n and that
X
G (x) = I cl{t)dt—+1 as x-e,
o
Clearly,. G, (x+h)Z 1-1(g(x)=1 c(h)=1) in D' at infinity. This
implies that lim<G(x+h),¢(x)>=0 Y$ € D’

h-sao
Let £(x)=1 t+G(x), x€ R, We have f.(.x+h)§ 11 in D(
at infinity but f{x) has not the ordinary asymptotic at in-
finity.
The follon;ing proposition gives the sufficient con-
dition under which the S-asymptotic of an f€ Lioc implies 1its
ordinar asymptotic behaviour.

PROPOSITION 4. Let £€L) , cthy=nPL(n), h>h,,

loc
BER and L be monotonuous. If for some m_€N_ and x_€ER,
mo (o] o o
f£(x)x = {0 non-decreasing for ¥x>x_ then ,. f(h) _
[+ m E—(Fi- =1,
h-voo

PROOF. Let m€R so that m>m  and m>-p. Let ¢ be as
in the proof of Proposition 1. By (2]} and Proposition 1 we
have

(+e2™ 25 () £(£) ) e+h) E1-0™PL(h) in S’ at infinity.



194 S. Plllpovic

Since m+p>0, we have (1+t2)m/2¢(t)f(t) has the quasiasymptotic

at infinity with respect to km+BL(k). {For the basic proper-
ties of the quasiasymptotic behaviour we refer to [6]). Now
from the fact that (1+t2)m/2¢(t)f(£) is non-decreasing for
t>x and that m+8>0, by using {2,Th.2) we get that

om 2t 201800
e P

This implies the assertion.

Propositions 3. and 4. imply:

PROPOSITION 5. Let £eLY, £(x+h)% e e™™PL(n),
where L i8 monotonuous., Assume that for some mo'and X

o)
-ax_Mm . o
£(x)e ®¥x 0, X>X . T8 non~decreasing. Then

£0x) ~ e %PL(x), xwe.
REFERENCES

|1| Npowwunos, .H., 3aseanos,b.H., HeaanacnmnToTHHA oBoGUEN-
Hux dyHHuun n TayGeposuw Teapems B Hoﬁnneucuoﬁ oGna-
cTH, Mar.C6. 102(144)(1977), 372-390.

|2| Seneta,E., Regularly varying functions, Lecture Notes in
Math., Springer-Verlag, Berlin-Hetdelberg-New York,

‘ 197¢6.

|3} Pilipovié¢,S., Stankovié,B., S-agesymptotic of a distribu-
tton Pliska (to eppear).

j4] Pilipovié,s., S-asymptotic of tempered and K’ -digtribu-
tions, Part I,II, Rev.Res.Sct.Univ.Novi Sad, 15,
NO1 (1985), 47-58, 59-67.

|5} Schwartz,L., Theorie des distributione I-II, ilermann,
Paris, 1950-1951.981.

|6 Bnagumnpos,B.C., Jpowmnnos, .H., 365§anoa,5.q.. Muoromep -
Hoe TayGepobb! ToOOpeMW gan 0600WEHHUX GyHHUHW, Haywa,
Mocwnea, 108G6.




On the S-asyamptotic of tempered and X 195

REZIME

0 S-ASIHPTOTICl TEMPERIRANIH | K;-DISTRIBUCIJA.
LV DEO. S-ASIMPTOTIKA | OBICNA ASIHPTOTIKA.

Dati su uslovi na lokalno-integrabilnu funkciju ko-
ja ima S-asimptotsko ponaZanje u « koji impliciraju njeno
obi&no asimptotsko ponaEanje.
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