ON THE S-ASYMPTOTIC OF TEMPERED AND K1-DISTRIBUTIONS PART IV.S-ASYMPTOTIC AND THE ORDINARY ASYMPTOTIC

Stevan Pilipović

Prirodno-matematički fakultet, Institut za matematiku 21000 Novi Sad, Dr Ilije Djuričića 4, Jugoslavija

ABSTRACT

It is proved that the S-asymptotic of an f \in L $_{loc}^{1}$ implies its ordinar asymptotic behaviour at infinity under some conditions of monotonicity.

0. For the notation and the basic properties of the S-asymptotic behaviour of an $f \in \mathcal{D}'$ we refer to [3],[4]. We shall repeat here only the definition.

Let $f \in \mathcal{V}'$ and c(h), $h > h_0$, be a continuous positive function. If for some $g \in \mathcal{V}'$, $g \neq 0$,

(1)
$$\lim_{h\to\infty} \left\{ \frac{f(x+h)}{c(h)}, \phi(x) \right\} = \left\{ g(x), \phi(x) \right\}, \forall \phi \in \mathcal{D}$$

then we say that f has the S-asymptotic at infinity with respect to c(h) with the limit g. In this case we write $f(x+h) \stackrel{S}{\sim} g(x)c(h)$ in \mathcal{D}' at infinity. It follows from (1) that for some $A\neq 0$, $\alpha\neq 0$, and some slowly varying function L

(2)
$$g(x) = \lambda e^{\alpha x}$$
, $c(h) = e^{\alpha x} L(e^h)$.

Recall, L is slowly varying at infinity if L is measurable and $L(ax)/L(x)\rightarrow 1$, $x\rightarrow \infty$ for every a>0; for the properties of such functions we refer to [2].

If we assume in (1) that $f \in S'$ ($f \in K_1'$) and that this limit exists in $S'(K_1')$, i.e. $\forall \phi \in S$ ($\forall \phi \in K_1$) then we write f(x+h) = g(x) = 0 because the existence of (1) implies that $g \in S'$, i.e. $\alpha=0$ in (2).

1. PROPOSITION 1. Let $f \in D'$ and $f(x+h) \stackrel{R}{\sim} 1 \cdot c(h)$ in D' at infinity with $c(h) = e^{\alpha}h^{\beta}L(h)$, h < h and monotonous L. Then a=0 and any distribution g with supp $g \subset [a,\infty)$ for some $a \in R$, which is equal to f in a neighbourhood of infinity is from S' and $g(x+h) \stackrel{S}{\sim} 1 \cdot c(h)$ in S' at infinity.

PROOF. That $\alpha=0$ is a direct consequence of (2). Let $\psi \in C^{\infty}$, $\psi=1$ for $x\geq 1$ and $\psi=0$ for $x\leq 0$. We have that $\psi f \stackrel{\$}{\sim} 1 \cdot c(h)$ in \mathcal{P}' and so, that $\left\{\frac{(\psi f) (x+h)}{c(h)}, h \in R\right\}$ is bounded in \mathcal{P}' . [5] implies that $\psi f \in S'$. The assumption on L implies that we can apply [4,Part II, Prop. 2] and [4, Part I] which gives

 $(\psi f)^{5}_{\sim} 1 \cdot c(h)$ in S' at infinity.

Let g satisfy assumptions of the proposition. Clearly, $(\psi f-g) \stackrel{5}{\sim} 0 \cdot c(h)$ in 0' at infinity and the application of [4, Parts I, II] gives that the same holds in S'.

By using [4, Parts I, II] in the same way as in Proposition 1 we have:

PROPOSITION 2. Let $f \in \mathcal{D}'$, $f_{\sim}^{S} e^{\alpha x} c(h)$ in \mathcal{D}' at infinity, where $c(h) = e^{\alpha h} h^{\beta} L(h)$, $h_{o} > h$, and L is monotonous. Then $\tilde{\alpha} = \alpha$ and every g with the support bounded from the left and equal to f in some neighbourhood of infinity, is from K_{1}' and $g(x+h) \stackrel{S}{\sim} e^{\alpha x} c(h)$ in K_{1}' at infinity.

Now we can easily prove:

PROPOSITION 3. Let $g \in P'$, supp $g \subset [a,\infty)$ and L be monotonuous. The following conditions are equivalent:

(a)
$$g(x+h) = e^{\alpha x} e^{\alpha h} h^{\beta} L(h)$$
, in K_1' at infinity,

(b)
$$e^{-\alpha(x+h)}g(x+h) = 1-h^{\beta}L(h)$$
 in S' at infinity.

2. The ordinar asymptotic behaviour of an $f \in L^1_{loc}$ at infinity with respect to $c(x) = e^{\alpha x} L(e^x)$ implies, under some simple conditions, the S-asymptotic behaviour of f at infinity in \mathcal{D}' with respect to $e^{\alpha h} L(e^h)$. This is quoted in [3]. The question is: when the S-asymptotic of an $f \in L^1_{loc}$ implies its ordinary asymptotic? First we shall give an example.

On can easily construct a function G such that $G(n)=n^n$, $n\in \mathbb{N}$, G(x)=0 for $x\notin \mathbb{I}_n$, where \mathbb{I}_n is a suitable small interval around n and that

$$G_1(x) = \int_0^x G(t)dt \rightarrow 1 \text{ as } x \rightarrow \infty.$$

Clearly, $G_1(x+h) \stackrel{S}{\sim} 1 \cdot 1(g(x)=1 c(h)=1)$ in \mathcal{D}' at infinity. This implies that $\lim_{h\to\infty} (g(x+h), \phi(x)) >= 0 \ \forall \phi \in \mathcal{D}'$.

Let f(x)=1+G(x), $x \in R$. We have $f(x+h) \stackrel{5}{\sim} 1 \cdot 1$ in \mathcal{D}' at infinity but f(x) has not the ordinary asymptotic at infinity.

The following proposition gives the sufficient condition under which the S-asymptotic of an $f \in L^1_{loc}$ implies its ordinar asymptotic behaviour.

PROPOSITION 4. Let $f \in L^1_{loc}$, $c(h) = h^{\beta}L(h)$, $h > h_0$, $g \in R$ and L be monotonuous. If for some $m_0 \in N_0$ and $x_0 \in R$, $f(x) \times^{m_0}$ is non-decreasing for $x > x_0$ then $\lim_{h \to \infty} \frac{f(h)}{c(h)} = 1$.

PROOF. Let $m \in R$ so that $m \ge m_0$ and $m > -\beta$. Let ψ be as in the proof of Proposition 1. By [2] and Proposition 1 we have

$$((1+t^2)^{m/2}\psi(t)f(t))(x+h)^{s} \cdot 1 \cdot h^{m+\beta}L(h)$$
 in S' at infinity.

Since m+ $\beta>0$, we have $(1+t^2)^{m/2}\psi(t)f(t)$ has the quasiasymptotic at infinity with respect to $k^{m+\beta}L(k)$. (For the basic properties of the quasiasymptotic behaviour we refer to [6]). Now from the fact that $(1+t^2)^{m/2}\psi(t)f(t)$ is non-decreasing for t>x and that m+ $\beta>0$, by using [2,Th.2] we get that

$$\lim_{t\to\infty}\frac{(1+t^2)^{m/2}\psi(t)f(t)}{t^{m+\beta}L(t)}=1.$$

This implies the assertion.

Propositions 3. and 4. imply:

PROPOSITION 5. Let $f \in L^1$, $f(x+h) = e^{\alpha x} e^{\alpha h} h^{\beta} L(h)$, where L is monotonuous. Assume that for some m_0 and m_0 , $f(x) e^{-\alpha x} m_0$, m_0 , is non-decreasing. Then

$$f(x) \sim e^{\alpha x} x^{\beta} L(x), x \rightarrow \infty$$

REFERENCES

- [1] Доожжинов, .Н., Завьялов,Б.И., Нвазиасимптотина обобщениых функций и Тауберовы теоремы в комплексной области, Мат.Сб. 102(144)(1977), 372-390.
- |2| Seneta, E., Regularly varying functions, Lecture Notes in Math., Springer-Verlag, Berlin-Heidelberg-New York, 1976.
- |3| Pilipović, S., Stanković, B., S-asymptotic of a distribution Pliska (to appear).
- |4| Pilipović, S., S-asymptotic of tempered and K'-distributions, Part I, II, Rev. Res. Sci. Univ. Novi Sad, 15, Nº1 (1985), 47-58, 59-67.
- | 5 | Schwartz, L., Theorie des distributions I-II, Hermann, Paris, 1950-1951.951.
- [6] Владимиров, В.С., Дрожжинов, .Н., Завъялов, Б.Ч., Многомерные Тауберовы тооремы для обобщенных функций, Наука, Москва, 1986.

REZIME

O S-ASIMPTOTICI TEMPERIRANIH I KI-DISTRIBUCIJA. LV DEO. S-ASIMPTOTIKA I OBIČNA ASIMPTOTIKA.

Dati su uslovi na lokalno-integrabilnu funkciju koja ima Ş-asimptotsko ponašanje u ∞ koji impliciraju njeno obično asimptotsko ponašanje.

Received by the editors June 1,1986.