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ABSTRACT

Using some properties of the functions of noncom-
pPactness we prove In this paper some common fixed point theo-
rems in probabilistic metric spaces with a convex structure.

1. (NTRODUCTION

In [12] K. Menger introduced the notion of a probabi-
listic metric space and there are ‘many papers and books on the
theory of pfobabiii#tic metric spaces (for the bibliography,
see the books [ 31, [15]). Some fixed point theorems in proba-
bilistic metric spaces are proved in {21, (61, (71, (81,
{91, [10), {16]. Since the space of generalized random vari-
ables is contained in the class of Menger spaces (special pro-
babilistic metric si)aces), fixed point theorems in Menger
spaceé are of a special interest for the stochastic analysis.

W. Takahashi introduced in [17] the notion of the
convexity in metric spaceéra‘nd some fixed point theorems in
such spaces are proved in [ 4], [81], (91}, (13), [14].

In this paper we shall prove common fixed point theo-
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rems in probabilistic metric spaces with a convex structure. .
These theorems contain, as special cases, many well known

fixed point theorems.
2. PRELIMINARIES

We shall give some definitions and notations which
will be used in the next text. )

A triple (S,F,t) is a Menger space if S is a non-
empty set, F : S x § + D, where D denotes the set of all dis-
tribution functions F and t is a T-norm [15] so that the fol~-

lowing conditions are satisfied: (F(p,q) = F for every

psq’
P,q € S): ’

4

1. Fp q(u) = 1, for every u > 0 if and only if
2

P = Q.
2. Pp’q(0)=0 for every p,q € S.
3. Fp,q = Fq,p’ for every p,q € S.
4, Fp’r(u+v) » t(Pp’q(u),Fq’P(v)), for every

P»q,r € S and every u,v > 0.

The (e,§)-topology is introduced by the (g,8)-neigh-
bourhoods of-v € S:

U (€,8) = (u,u € 5,F (e) > 1-8), e >0,6¢€ €0,1),

One of the most interesting example of.ﬁ Mgngér space is the
following. Let (M,d) be a separable metric space and (2,£,P)
a probability space. Fﬁfther, let S be the‘épace of all equi-
valence classes of measurable-mapbings of @ into M, t(u,v) =
max{u + v - 1,0} Cu,v € {0,1]) and for every X,Y € S and s> 0

FX,Y(S) 2 Plw,d{X%(w),Y{(s)) < 5, w € @}

(X = (X(a)}, ¥ = {¥(w)}). Then the triple (S,F,t) is a Menger
space and the convergence in the (e,8)-topology and in the
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probability are identical.
Let us recall that a metric space (S,d) is with the
convex structure in the sense of Takahashi if there exists a

mapping W : SxSx [0,1] + S so that:
d{z,W(x,y,s)) € sd(z,x) + (1 - s8)d(z,y)

for every (x,y,z,s) € SxSxSx{0,1].

Definition., Let (S,F,t) be a Mengeriapacé. A map-
ping W : SxSx[0,1} + S {g eaid to be a convex structure on 3

if for every (x,y) € SxS:

.

W(x,y,0) = y, Wlx,y,1) = x and for every s € (0,1) |

z € S and u > 0;

Fz’w(x’y’s)(Zu) > t(Fz’x(u/s),Fz’y(u/(i-s))).

It is easy to seé that every metric space with the
convex structure W can be cqnsidered as a Menger space (S,F,min)
with the same function W. Every random normed space (5,F,t)
is a Menger space with the convex structure W defined by:

W(x,y,8) = sx + (1-s)y (x,y € S, s € {0,1]).

A nontrivial example of a Menger space with a convex structure

is the following one.
Let (M,d) be a separable metric space with a convex

structure W which has the property that for every s € (0,1]
the mapping (x,y) =+ W(x,y,s) is continuous. Let (R,L,P) be a
probability space. We'shall prove that the Menger space of all
equivalencé classes of measurable mappings from @ into M.
is a probabilistic metric space with a onvex structure if tlu,v)
= max{u + v - 1,0} and for every X,Y € S : FX,Y(U) = P{q,d(x(m),
Y(w)) < u}l, u € R,

, Let W(X,Y,s)(w) = W(X(w),Y(w),s), for every uw € @,
every X,Y € S and every s € [0,1], It is easy to see that
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# : sxsx[0,1] - S and that for every X,Y,U € S, s € (0,1) and

every u > 0:

F )(2u) > PU,X(U/S) + PU'Y(u/(1~s)) -1,

u,W(x,Y,s
Since W(X,Y,0)(w) = W(X(w),¥(w),0) = Y(w) and
WX,Y,1)(w) = W(X(w),Y{(w),1) = X(w), for every w € 9 it fol-
lows that the mapping W is a convex structure on the probabi=-
listic metric space (S,F,t).
In this paper we shall suppose that a convex struc-
ture W on a Menger space (S,},t) satisfies the condition:

f‘w(x,z,s),W(y,z,s)(us" » Fx,y(U)’
for every (x,y,2) € SxSxS.

A similar condition for metric spaces with a convex
structure is introduced in [ 3].

The notion of the Kuratowski function is introduced
in [ 1] as a probabilistic generalization of the notion of the
Kuratowski measure of nonéompactness. '

Suppose that (S,F,t) be a Menger space and A a non-
empty subset of S. The function D, (+), defined on the set

{0,=) = R » by D, (u) = dup inf F (s), u € R' is called the
s<u p,q€a P°9
probabilistic diameter of the set A and the set A is probabi-

listic bounded if and only if sup D,(u) = 1.
u>0 A
Let A be a probabilistic bounded subset of S. The

Kuratowski function uA(u),‘u € R = {-=,=) of the set A is de-

fined by:

aplu) = sup {r > 0, there is a finite family Aj(jéJ)'

such that A = U A. and D, (u) # r, for
' j€J j L
every j € J}

The Kuratowski function has the following properties::

1) € D.

oA
2) uA(u) » DA(u), for every u €,Rf.
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3) U AcBcS = aA(u) » aB(u). for every u € R'.

u) uAUB(u)

$)  aglu) = aﬂ(u). (u € R), where A is the closu-

min(uA(u).aB(u)}, for every u € RY,

re of A.
6§) a, = H » A is precompact, where H(x) = {0+ X € 0
A * 1, x>0

In [ 3] the function BA(u) is defined in the fol-

lowing way:

By(u) = 4up(r-> 0, there exists a finite subset
of S such that FA Af(u) > rl

where:

(u) = sup inf sup F_ _(s)
Fa.B s<u x€EA y€B X»Y
' .
and A and B are two probabilistic bounded subsets of S. The
function B satisfies 1) - 6) and the following inequalities:

BA(u) > aA(u) » BA(u/2),,for every u > 0, if t = mdn.
Let (S,F,t) be a Menger space, K a probabilistic bo-
unded subset of S and T : K + § so that T(K) is probabilxstlc
bounded. If for every B c K: ’ :
YT(B)(u) < fB(u), for every u > 0 = B is precompact
(v, € {aA,BA}) we say that the mapping T is densaifying on the

s4et K £n nespect to the function Y or pPobdblllstlc Y-densi-
fying. The map T : K+ S (Ke S) is said to be a probabilistic

q-contraction if there exicsts q € (0,1) so that for every x,y
€ K: ‘

T,

Tx,Ty(QU) > Fx’y(u), for every u > 0,

IfT : K~» K is a pr9babilistic q-contraction with a bounded
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set Op(x) = {T™(x), n € N} (x € K) it is known { 7] that there
exists one and only one element x € K such that x = Tx, under
the assumption that T-norm t is continuous.

If q = 1 the mapping T is said to be nonexpansive.
A mapping T : K + S is (W,xe)-convex (x¢ € K) if for every
x € K, TW(x,x0,5) = W(Tx,xu,s) (s € [0,1]).

2. COHMON FIXED POINT THEOREMS

If (S5,F,t) is a Menger space with a convex structure
W and K € S we say that K is starshaped if there exists xp; € K
(the star center of X) if for every x € K and every s € (0,1)
W(x,x0,5) € K. For nonexpansive mappings defined on a starshaped
subset of S we shall prove the following fixed point theoren.,

Theorem 1. Let (S,F,t) be a complete Menger space
with a convex etructure W and continuous T-norm t, K a closed
and starahaped subset of S and f : X'+ K so that f(K) is pro-
babilistie bounded. If f is nonexpansive and such that there
exista m € N so that ™ is densifying on the set {(W(x,Xg,s),X
€ f(K), s € (0,1)) in respéct to v {y € {a,8})uwhere x, is the

gtar center of K then there exiots x € K so that x = fx.

Proof. First, we shall prove that there exists a
sequence {x_} ey from the set {(W(x,x4,5),x € £f{(K), 5 € (0,1)}
such that for every u > 0:

Lim F -m_ (u) = 1,
" N xn’f %n
Let {r,) g be a sequence of numbers from (0,1) and

Lim r, = 1. For every n € N and every x € K, let:

n+wx

fhx = W(fx,Xg,Pn),

It is obvious that r is a probabilistic r_-contrac-
tion since: ’
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F, =
W(fx,xo.rn),w(fy,x,,rn)(U)

* Fucex,xo ,r ), HUEY X ,rn)"‘n‘”"‘n”

» fo,fy(U/Pn)- for every y,x € K and every u > 0.
Further for every u > 0 we have that:

sup 4inf§ T

>
s<u x,y€K W(fx,xo,rn),w(fy,Xo,rn)(S)

> sup "in‘ F

s
Pn<5n X, ¥€K

fx,fy(S/rn)

which implies that:
»
Dfn(K)(u) Deckyu/r,)
and hence f (K) is probabilistic bounded for every n € N. Then
the set Ofn(x) = {f:x,m € N} is probabilistic bounded and hen-

ce, there exist, for every n € N, X, € K so that fnxn = X,
Then for every n € N and every u > 0:

. 0) >
Fxn,fxn(zu) FW(fxn,xo.rn),fxn(2u)
2 t(F : ‘ _
fxn,fxn(u/rn),fon’XO(u/(i-rn))) =
= t(1,F (u/(1-vn))) = fon,x.("/(l'Pn))

fxn,XU

and since f(K) is probabilistic bounded it follows that:

(1) £im F_ . (u) = 1, for every u > 0.
x_,fx
N+ n n

Further, from the relation X, = W(fxn,x,,rn), (n € N) it fol=-

lows that {xn}nEN < W(E(K),%e,(0,1)). From the inequality:
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2
F (u) 2 t(Fx £x (u/?),t(Fx JEx (us2%), ...

x_, Flx
n? n n’ “n n n

m-1
eee 5 F L Ex (u/(2 )y L. )
n n
the centinuity of t and (1) we obtain that:

(u) s 1, for every u > 0,
n

(2) Lim F m
n-veo xn,f x
We shall show, using (2),that there exists a con-

vergent subsequence {xnk}k €N First, we shall prove that:

(3) Y{xn,nEN](u)= Y{fmxn,nEN}(U)’ for every u > 0.

Let us suppose that Y = 8. In order to prove (3)
we shall prove that for every s € {(0,u):

().

- S) < B{xn,rEN}

("‘) B{fmxn,HEN}(u

Then from the left continuity of 8 it follows that:

8 (u) < 8 ().

{fmxn,nEN} {xn,nEN)

Similarly we can prove that:

B{fmx neN}(U) > B{x ,n€N)(U)

for every u > 0 which implies that (3) is satisfied. Hence, we
shall prove that (4) is satisfied. If B{fmx nEH](u -s5)=0

for some u and s € (0,u) then (4) holds. So, we shall suppose
that B{fmx ,nEN}(u - 8) >0 for every u > 0 and every s € (0,u).

Let r > 0 be such that:

r< B{fmxn,nEN}(u - ).

Then there exists a finite set Af < S such that:
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in§ max F_g ‘{u-s8)>r
nEN €A, T Xn2?

and hence there exist, for every n € N, z, € Af such that
F (u - 8) > r. From the relation t(1,r) = r and the
fox ,z

continuity of t it follows that for every d € (0,r) there
exists d“ € (0,1) so that:

1% h> 1-d"= t(h,r) > r-d.

From (2) it follows that there exists no{(s,d”) € N
so that:

F (s/2) > 1-d7, for every n # ne(s,d”)

oy ,x
n*“n

which implies that:
(5) r (u - s/2) » t(F m_ (s/2),F (u ~s)) >
n*?n u xn,f x. b4 fmxn,zn

> r -~ d,

for every n » ny(s,d”).
From (5) we obtain ‘that:

r-d € B(x ,n)n,(s d )}(“) B{x nEN}‘“)'

VS1nce d is ‘an arbitrary element of the 1nterval (0 r} we ob-

tain that B{x neN}(u) » r.which 1mp11es (u). “The ‘mapping ©
9

is densifying 8n W(f(K) 2Xy,(0,1)) in respect to B8 and since

B{fmxn,nEN}(U) < B{xn’neﬁ}(u)

we obtain that the set (xn,nGN} is precompact. This means that
there exists a convergent gubsequence {xnklkeu. Suppose‘that
Y = a. Similarly as in the case Y = B we shall prove that:

a{fmxn,nEN}(u - 8) & u{xn,nEH}(U)
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for every u > 0 and every s € (0,u). Let r > 0 be such that
0 <r < “(fmxn,nEN}(u - s). From the definition of the func-
tion a it follows that there exist A.,Az,...,An c S so that:
n
(6.) {fmxn,n € N} = v Aj,QAj(u -s)»r,j € {3,2,...,n}.
j=1
Relation (6) implies that F_ y(u -s5)?» r,j€ {1,2,...,n}l for
every x,y € AJ Let 4 € (0, r) and d” € ¢(0,1) be such that

13 hihz > 1-d” = t(hi,t(r,h2)) > r-d.

Let B. = {z, F, y(s/u) > 1-d”, for some y € Aj},
i € {1,2,...,n} and ni(s, d ) € N so that

J

Fxn,fmx (s/4) > 1-d”, for every n # n.(s,d”).
n
Then we can prove that (xn, n»? m(s,d?)}l cu Bj
j=1

where DB (u) » r-d, for every j € {1,2,...,n}. This implies
that a{x €N}(u) 2 pr-d, where d is an arbitrary element from
’

(0,r). Hence.

“{xn,ncul‘“’ » a(fmxn,nEH}(")

which implies that the set {x » NEN} -is precompact. The space
S is complete and so there exlsts a convergent subsequence
{x"k}kEN' Let étﬂ Xp = X. Then from (1) and the continuity of
f we obtain that fx = x.

Theorem 2. Let K be a closed, starshaped subset of

S where {S,F,t) i8 a complete Menger spGce with a convex struc-—
ture W and continuous T-norm t. Suppose that the mappinge f,g,
S,T : K + K are such that S and T commute with f (or-g), £(K)
(or glK)} ia8 probabilistic bounded and the following conditions
are sattafied:

(<) There cxziots m € N such that f" (or gm) 18 probabi-
liotic Y~densifying (v € {a,B)) on the set {W(x,xq,5),x € f(K),
s € (0,1)} (or {W(x,xy,s),x € g(K), s € (0,1)}, where x.
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18 the star canter for K, and for all x,y € K:

fx,gy(S) > f Ty(s), for every s 2 0.
(i1) S and T are ocontinuous and (W,x,)-convex,
Then there exises x€K auch that x = fx = gx = Sx = Tx.

Proof. It is easy to see that x¢ € F{x(S,T) =
= {x,x € K, x = Sx = Tx} and that F{x(S,T) is a closed and
starshaped subset of S. Further for every x,y € F{x(S,T):

) fo,fy<3) > Px,y(S)’ for all s > 0
and fx = gx, for every x € F{x(S,T). Let us prove that
f(Fix(S,T))  Fix(S,T). Suppose that x € Fix(S,T). Then:

fx = fSx = Sfx, fx = fTx = Tfx

and hence fx € Fix(S,T). This means that f(Fix(S,T)) < Fix(S,T).
So, we can apply Theorem 1 taking for the set K the set
Fix(s,T). ,

From Theorem 2 we obtain as a Corollary the fol-
lowing result obtained by xie—Ping Ding in L[4 1. '

Corollary. Let K be a'cloaed, Btarahaped cubset of
X where (X,F, t) 13 a complete Menger space uith a oonvcz atruo-
ture W and continuous T-norm t. Suppose that. thc mappzngs f,g,
S,T : K + K are such that S and T commute with f {ar g), f(K)
i8 probabilistio bounded and the following conditions are sa-
tisfied: k ' k j.
¢i) There exists m € N such that f" (or g“),ia precom—
pact bn.the get {W(x,xy,58), x € £f(K), s € (0,1)} for {W(x,%0,8),
x € g(K), s € (0,1)) where x, ic the otar center far»K, and for
atl x,y € K:

(s) » Fa (s), for every s > Q.

fx By Sx,Ty
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(¢2) S and T are continuous and (W,x,)-convex.

Then there exists x €K such that x = fx =gx = Sx = Tx.

Proof. It remains to be proved that the condition
(i) of Theorem 2 is satisfied. Since f™ (or g™) is precompact
on the set {W(x,%0,8), x € f(K), s € (0,1)} (or on the set
{W(x,x4,8), x € g(K), s € (0,1)}) it follows from the property
6) of the Kuratowski function a and from the same property of
the function B that:

YEM(WCE(K) ,xe,(0,1))) = H» ¥ € fa,B

Sﬁppose now that for some B © W{f(K),x0,(0,1)):
Yfm(B)(u) <€ YB(u), for every u > 0.

We have to prove that the set B is precompact. Using property
3) we obtain that for every u>0:

1= YEMOWCE(K) ,x0,(0,1)))¢8) € Ygmegy(u) € vg(u)

and so YB(u) = 1. This implies that the set B is precompact.
This means that f" is probabilistic y-densifying. The following
well known result of D. Gdhde is also a Corollary of Theorem 1.

Corollary 2. et (X,M+1) be a Banach'apace, Ka
closed, starshaped subset of X,f : K+ K a nanquanhive map-
ping 8o that there exists m € N such that £f™K) <8 ielatively
compact. Then there exists x € K ouch that x = fx.

Proof, Every Banach space is a random normed space
(X,F,min) where the mapping IF : X + D is defined by:

1, Ixf < u
Px(u) =

0, Ixl > u

It is easy to see that rfx,fy(u) ? rx,y<U)' for every x,y € K
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and every u > 0. Further, the set f™(K) is relatively compact
if and only if YeMixy © H and so the mapping f™ is densifying
on K in respect to Y (y € {a,B}). Hence, if we take that

W(x,y,s) = sx + (1 - s)y (x,y € X,'s € [0,1]) all the condi-

tions of Theorem 1 are satisfied.
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REZIME

TEOREME O ZAJEDNIEKCJD NEPOKRETNOJ TAEKI U
VEROVATNOSNIM METRICKIM PROSTORIMA SA
" KONVEKSNOM STRUKTUROM

Kori3cenjem osobina funkcija nekompaktnosti u ovom '

radu su dokazane neke teoreme o zajedniZkoj nepokretnoj
tagki u verovatnosnim metric¢kim prostorima sa konveksnom

strukturom.
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