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ABSTRACT.
In this paper a fixed polnt theorem in a class of random

paranormed spaces is proved.

1. In [6] the notion of random paranormed space is introduced
and some fixed point theorems in suchspaces are proved. In this
paper we shall prove a fixed point theorem in paranormed spaces
(S,F,t) where T-norm t is of H-type [3].

First, we shall give some notations and definitions.
Let R = (-=,=), 2% = (F; F : K » [0,1], F is left continuous,
inf F = 0, supF = 1, F is monotone nondecreasing, F(0) = 0} and

1, t >0
fi(e) = {o t s o0.

Let T-norm th be defined in the following way: tm(a,h)ﬂ-maxla +
+.b - 1.0}. The notion of a random paranormed space is intro-
duced as a generalization of the notions of random normed spa-
ces and paranormed spaces. Let us recall the definition of a

random normed space [9].

Definition 1. Let S be a real on complex veclon space, t a T-
-nonm sdnongea then tm {(t 2 tm) aw! the mapping F : § ~ D"Aatioéiea Lhe

§ollowing conditions (F(p} = F ):
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1. F_ =H <> p = 8 {8 is the neuwtral element of S).
2. fon every p € S, every u > 0 and every 6§ € K\(0}
(K ia the scalan §ield):

Fgp(u) = Fp(u/|6|).
3. For every p,q € S and every u,v > 0:

Fpoquiv) & t(Fﬂp(u).Fq(,V)).‘
Then (S,F,t) 48 a nandom noumed space.

Every normed space (E,k 1) is a random normed space,
where

1, IXk < ¢
{ (x € E, € > 0).

F_(¢) =
x 0, kxh

W

€

Every random normed space is a probabilistic metric space
where Fx,y = Fx—y'

Let E be a vector space and p : E +» [0,~) so that
the following conditions are satisfied:

(i) p(x) = 0 <=>x = 0.

(ii) p(x) = p(-x), for every x € E.

(iii) p(xty) s p(x) + p(y), for every x,y € E.

(iv) If An - x(xn, » are from the scalar field) and

P(x -Xx) = 0(x, ,x € E) then p(A x - Ax) + 0.

Then the pair (E,p) is a paranormed space. If the fundamental
system of neighbourhoods of zero is given by U = Volosoo
where Vc = {x; x € E, p(x) < ¢),then E is a topological vector
space. An example of a paranormed -space is the space 5(0,1)
(all the equivalence classes of real Lebesgue measurable func-
tions defined on the interval (0,1)) with the paranorm p given
by:

- 1
L [x(t)]

( = dt t X
pix) T+ [x(0)] {({x(t)Je x )
(1)

Definition 2. [ 6] A nandom paranoamed space (s a taiple
(E,T.t) where E is a aeal on complex vecton apace, f : E - 1;’+ and t L
a T-noam auch that t :z t and the §oflowing conditions arne satisgicd:
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F_ =H <> p=0.
F_x = Fx' fon every x € E.
Fx+y("l+“2) 2 t(Fx(u]).Fy(uzl). don eveny x,y €
€ E and eveay u;.u, 2 0.
4. If _— and Fxn_x(c) + 1,(n » =) foa every
€ > 0, then F (e) » 1,(n » =) {fon every
e > 0.
It is obvious that every paranormed space (E,p) is also a ran-

AnXp=Ax

dom paranormed space, where:

1, p(x) < ¢
{ (x €E, £ > 0).

F.(e) =
0, p(x) 2 ¢

The topology in a random paranormed space (S,F,t) is introdu-

ced by the (¢,A)-topology given by the following family of

neighbourhoods of zero: N = {N(t¢,A), € > 0, € (0,1)) where:

N(e,\) = {x; FX(C) > 1-)).

Let (R,A,P) be a probability measure space, (X,p) a
separable paranormed space and S the space of all the equi-
valence classes of mcasurable mappings x : 2 » X. If F: S » ot

is defined by

Fo(e) = Plu: w e 2, p(x(u)) < e},

then the triple (S,F,t) is a random paranormed space [6].
If ¢t is a T-norm we shall use the following notation:

tn(x) = t(t(...t(t(x,x),...,x), ne N, x« [0,1].
n-times

A T-norm t is of H-type if the family {t,(x)) oy is equicon-
tinuous at the point x = 1. It is known that for every T-norm
t which is of H-type there exists a sequence lan} from (0,1)
such that lim a, = 1 and t(an,aa) = a, for every n€ Nf 4],

n-re
In a random paranormed space (S,F,t), where T-norm t is of H-
-type and strict,the (e¢,A)~toplogy can be introduced by the

following family of functions p : § - rt.

(1) pn(x) = supf{u; Fx(u) < a") (n € N; x ¢ 8).

It is easy to prove that the family [pn} has the following pro-
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perties: _
pn(x) =0, for every n € N & x = 0,
p“(-x) = p"(x), for every x € S and every n € N.
pn(x+y) g pn(x) + p"(y). for every n € N and
x,y € S. _
4, If A, A (Xn. A &€ R) and X, v x (x,, x €5)
in the (g£,A)-topology then for every m € N:

vm(knxn - Ax) - 0.

For example the property 3. can be proved in the
following way. Let r; > p_(x) and r, > p (y). Then F (r;) > a,
and Fy(rz) > a, which implies that Fx+y(r]+r2) 2 t(F (ry),
Fy(rz)) > [(an,an) = ap. This means that pn(x+y) < ry + r, and
so p,(xty) = p (x) + p (y).

An cxample of a T-norm t which is of H-type is given
in [41.

If (S,7,t) is a Menger space and t is of H-type and
(u) & an) {n € N; x,y € S} a

strict by d"(x,y) = sup{u; Fx y

family of pscudometrics is defined.

Definition 3. Let (S,F,t) be a aandom paranoamed aspace and

K a nonempty asubset of S. The set K asatisfies the probabilistic Zima
condition if there exists C(K) > 0 a0 that 4on every * € (0,1)

Fy(x-y) (A€) 2 Fyl (£/C(K))

don eveny € > 0 and cvery x,y € K.

Example., [6] . Let (2,A,P) be a probability mea-
sure space and X be the space of all the equivalence classes
of measurable mappings x : @ » S$(0,1). Further, let s > 0 and:

is = {x;.x € X, X(w) € K, for evéiy w e Q),
where Ks = {x; x € §(0,1), |x(t)} €8, t € {0,1]}. Let
Fk(L) = P({w; p(i(w)) <)), (¢ » 0, x e X).

In {6} it is proved that for every w & @ and A > 0:

POMGHL) - y(w))) 2 (1 4 28)Ap(x(w) - §(w)),



A fixed point... 157

which implies that:

F (Acg) 2 Fi-i(cl(l + 2s))

Ax-y)
for every x,y € Es, every A > 0 and every ¢ > 0. The probabi-
listic inner function of noncompactness b, (), for every pro-
babilistic bounded subset A of S, where S is a probabilistic metric

space, is defined in the following way:
bA(u) = sup {p; p > 0, there exists a finite set

Ag © A such that hy, (u) 2 o), (u‘E rY)
where:

hAB(U) = sup inf sup F y(s) (u e R+)-

s yep yeB x=

2. In Lemma 1 we shall suppose that (5,F,t) is a probabilis-
tic metric space such that t is a strict T-norm which is of
H-type. Similarly as it was proved by Tan in [10] we shall

prove the following lemma.

Lemma 1. Let for cvery probabilistic bounded set A © S:

b (A) = sup{u; b,(u) < a ), (n e N).

Then bn(A) < f)n(A), fon eveny n € N whene:

bn(A) = inf(e; thene exists a §inite Act Af < A such that

(] .
Ac “Aiﬂn(x 1£))

and Bn(x;c) = {y; y €8, dn(x.y) < c}. 14 bA(-) i3, gon eveny

probabilistic bounded set, & atrnictly monotone then bn( <) = bn( <),
(u € N).

Proof. The proof of this lemma is similur to the
prbof of Theorem 4 in [10]) but we shall give it here for the
complecteness. First, we shall prove that bn(A) < bn(A). for
n € N, Let a - ﬁn(A) = gsupfu; bA(u) < an}. We shall prove that
bn(A) £ a, which means that for every u, > a there exists a
finite set Ag S A such Lhat A g;ir%4x,uo). Let u, > a. From the
definition of b (A) it follows that h,(uy) > a, and )
hence Lhere exists a finite subset Ap © 8 such that hAAf‘"O) > a .
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From the definition of h it follows that sup 1nfmaxF (s) >
AB s<ug xeA yeAgr XoY

> a, and s0 there exists s 4 ugy such that:

inf max F (s,) > a .
xeA yeAg *¥ 0 n
This inequality implies that A S;;l_JAtl_}n(x.so) and so b _(A) < s, <

< uy. From this we conclude that b (A) = a. We shall prove that

theoassumptlon that b. ( ) is strictly monotone implies that
b () = b (). If for some probabilistic bounded subset A © S
we have that b (A) < b (A) then there exist b and ¢ (b > ¢),
such that b (AL < e < b < b (A).

Hence, there exists a fanLe set Af c A such that:

A cUB (x,c).

xéAfn

This implies that h AA (b) 2 a, and so from the definition of bA'
b (b) 2 a.. Further, since b (-) is nondecreasing and left
contlnuous we have that b (b (A)) 3 ag and so a, b b (b) s~
< bA(bn(A)) < a, which wmcans Lhat b (b) = bA(bn(A)) = ag
Since bA(-) is strictly monotone we obtain a contradiction.

Definition 4. Let (S,F) be a probabilistic metric space, G
a nonempty probabilistic bounded subset 0§ S and T:G -+ P(G) \ 0,
q € (0,1). We say that the mappingT <5 a (b,q) set probabilistic con-
Lraction mapping 4§ fon eveny A © G and every u € R+: '

hT(A)(u’ 2 bA(u/q).

Lemma 2. Let (S,F,t) be a probabifistic metric space, G
a nornempty probabifistic bounded subsct of S, and T:G -~ P(G) \ g a
{b,q)-set probabilistic contraction mapping where b Al is staictly
monodene fox every A © G. Then for every n'€ WNand every A c G

b (T(A)) £ qb (A).

Proof. Since hA(-) is sirictly monotoue, for every
Ac G, from Lemma 1 it follows that bn(A) = sup{u; hA(u) < an)

"

for every n « N and A ¢ G. Since T is (b,q)-set probabilistic

contraction mapping it follows that b {u) < a. implies that

T(A)
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by(u/q) £ a  and s0: {u; bp,,(u) S a,} € {u; b,(u/q) s a }.
This implies that

bn(T(A)) = gsupf{u; bT(A)(“) < an} <

< supfu; bA(u/q) s an) = q sup{s; bA(s) s an) =

= q-bn(A).

Definition 5. [7] Let (S,F) be a paobabilistic metrnic apace,
P#FMcSand T : M » P(SY\P. The mapping T is a multivalued pro-
babilistic q contraction (q € (0,1)) if fon every x,y € M and
every u € Tx there exiats v € Ty 40 that for every s > 0:

Fy,v(as) 2 Fy  (s).

Lemma 3. Let (S,F,t) be a Menger apace with a continuous
T-noum t, G a nonempty probabilistic bounded subset of S and T:G -
+ Com(G) (the family o4 all nonempty compact subseta of G| a multivafued
probab.ilistic q contraction mapping. Then:

bpa)(as) 2 by(s), (s € rYH

don every A © G, i.e. T 4is (b,q)-set probabilistic contraction mapping.

Proof. The same method of the proof we used in a
part of the prcof of Theorem 1 from [7]. Let A € G. Since
by(+) is left continuous it is enough to prove that for every
v e (0,8): by(s-v) = bT(A)(qS)' In order to prove this inequa-
lity we shall prove that for every r > 0, r < bA(s-v) implies
that r £ bT(A)(qS)‘ If r < bA(s-v) then there exists a finite
set Ar < A such that:

inf max F (8-v) > r
xeA yeAg X.y

and so for every x € A there exists y(x) e A so that Fo y(s-v)
>r. Let x € A, u € Tx and w € Ty(x) be such that:

Fu'w(k(s—v)) z Fx,y(x)(s—V) >r.

The existence of w follows from the assumption that T is a
multivalued probabilistic q-contraction. Hence for every u € T(A)
there exists w € 'I‘(Af) so that l“‘.j w(ks-kv) >r. Let § € (0,r)
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and Ay € (0,1) be such that 1 2 h > 1 - Ag implies that t(r,h)

> r-6 and Af = {xl,xz,...,xn]. Since Txi is compact for every

ie {1,2,...,n}, there exists, for every i € {1,2, ... ,n} a

finite subset AY ¢ T(A) such that Tx c U N (EX'AG N 51,; =
f ,EArpZ P\ 2 [

- {u; F, plkv/2) > 1 - xﬁ})

How it is easy to prove that hT(A) Bf(ks) > r-§&, where Bf

= L{ Af, which implies that r-6 3 bT(A)(kS) for arbitrary number

6 € (0,r). This means that bT(A)(ks) 2 r.

From Lemmas 2 and 3 we obtain the following result.

_Proposition 1. lLet {S,F,¢) be a Mengen space with a continuous
staiet T-noam t of H-type, G a nonempty probabilistic’ bounded subset of
Sand T:G - Com(G) a mubltivalued probabifistic q-contracticn mapping.
Then §on every n € W and every A © G:

bn(T(A)) s qbn(A).

3. If (S,F,t) is a random normed space with a continuous strict
T-norm t of H-type then the family of seminorms (pn}nE]l' which
is defined by (1), defines a locally convex topology in S. This
fact was used by Constantin and Istratescu in [3] and they ob-
tained some fixed point theorems in such random normed spaces.
But, if (S,F,t) is & random paranormed space the family does not
define, in general casec, a locally convex topology. Hence, in
this case the fixed point theory in topological vector spaces
have to be used.

If (S,F,t) is a random paranormed space such that t is a
strict T-norm of H-type and G ¢ S satisfies the probabilistic
Zima condition with constant C(G), it is easy to prove that for
every n € N and every A € (0,1):

(2) pplr(x-y)) = C(G)kpn(x-y). for every x,y € G.

It can be proved, similarly as in [5], that in this case
G is g-admissible in the scnse of [8). The class of u-admissible
subsets of a topological vector space is very important in the
fixed point theory [8). If (5,F,t) is a random parancormed space
with a strict T-norm t of H-type we can not prove, in general,

that for every probabilistic bounded subset A of §:
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(3) bn(co A) = bn(A) (n € N).

It is well known that the equality (3) is important in the
fixed point theory in lacally convex spaces but if the topo-
logy in a topologicai vector space is defined by the family
{pn}nEIN which satisfies 1., 2., 3. and 4. we shall use the
following result which can be proved as in [5].

Proposition 2. Let (E, {Pn}nEN) be a metrizable topological
vector apace £in which the topology £s defined by the family of §unctionals
{pn}nEIN 80 that 1., 2., 3. and 4. are Aa,u:aum‘m G bea nonempty
bounded and convex subset of E such that {2} holda. Then fon every ACG

(4) bn(co A) S C(G)bn(A), dor every n € N.

Using Proposition 2. we obtain the following result.

Proposition 3. Let (E'{pn)nen) be a complete metrizable
topofogical vecton space in which the topology is defined by the family of
$unctionals {Pn)nGN 80 that the propeaties 1., 2., 3. and 4. are satis-
d4ed. Let G be a nonmempty, bounded and convex subset of G such that (2}
holds and T:C + cc(C) (the family o4 all nonempty cloased and convex sub-
sets o4 C) be an uppen semicontinuous mapping such that:

(5) bn('I'(A)) S q-bn(A), éon every n € N and every A < C

where g € (0,1). 14 q-C(C) < 1 ithen there exists x € C s0 that

X € Tx.

Proof. By a standard way we can prove that there exists
2¢ € such that 2 = co(T(Z) U {z}), where z is an arbitrary
element from C. Then using (4) and (5) we obtain that:

b (Z) = b (co(T(Z) U {z])) =
£ C(GIb(T(2)) s q-C(G) b (2).

From this it follows that bﬂ(Z) = 0, for every n € N which
implies that 2 is compact. Since % is o-admissible, which fol-
lows from (2), and T(2Z) € Z using Hahn's fixed point theorem it

follows that there exists x € C such that x ¢ Tx.
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Remark. It is easy to prove that Propositions 2. and
3. hold for every topological vector space (E‘{P)\)J\EA)' where
Py for every A € A, has the properties 1., 2., 3. and 4,

Using the preceeding results we obtain the following

fixed point theorem which is a generalization of Theorem 2 in

[6].

Theorem. Let (S,F,t) be a complete random paranonmed space
where t {8 a strnict T-noam of H-type . G a probabifistic bounded, cfosed
and convex subset of S, and T:G+cc(G) an upper semiconlinuous mapping
which {8 a {(b,q)-set probabilistic contraction mapping. 1§ G sctisfies
the probabilistic Lima condition and qC(G) < 1 .then there exists x € G
s0 that x € Tx.

Proof. The proof follows from Proposition 3. and

Lemma 2.
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REZIME

TEOREMA 0 NEPOKRETNOJ TACKI U JEDNOJ KLASI

SLUCAJNIH PARANORMIRANIH PROSTORA

U ovom radu dokazana je jedna teorema o nepokretnoj tacki

u sludajnim paranormiranim prostorima.

Received by the editors June 1,1988.



