A FIXED POINT THEOREM IN A CLASS OF RANDOM PARANORMED SPACES

Olga Hadžić

University of Novi Sad, Faculty of Science Institute of Mathematics, Dr Ilije Djuričića 4 21000 Novi Sad, Yugoslavia

ABSTRACT.

In this paper a fixed point theorem in a class of random paranormed spaces is proved.

1. In [6] the notion of random paranormed space is introduced and some fixed point theorems in such spaces are proved. In this paper we shall prove a fixed point theorem in paranormed spaces (S,F,t) where T-norm t is of H-type [3].

First, we shall give some notations and definitions. Let $R = (-\infty, \infty)$, $p^+ = \{F; F : R \to [0,1], F \text{ is left continuous, inf } F = 0$, $\sup F = 1$, F is monotone nondecreasing, F(0) = 0) and

$$H(t) = \begin{cases} 1, & t > 0 \\ 0, & t \le 0. \end{cases}$$

Let T-norm t_m be defined in the following way: $t_m(a,b) = \max\{a + b - 1,0\}$. The notion of a random paranormed space is introduced as a generalization of the notions of random normed spaces and paranormed spaces. Let us recall the definition of a random normed space [9].

Definition 1. Let S be a real or complex vector space, t a T-norm stronger then t_m (t $\geq t_m$) and the mapping $F:S \rightarrow 0^+$ satisfies the following conditions (F(p) = F_p): AMS Mathematics Subject Classification(1980):47H10 Key words and phrases:Fixed point, paranormed spaces.

- 1. $F_p = H \iff p = \theta \ (\theta \text{ is the neutral element of } S)$.
- 2. For every $p \in S$, every u > 0 and every $\delta \in K \setminus \{0\}$ (K is the scalar field):

$$F_{\delta p}(u) = F_p(u/|\delta|).$$

3. For every $p,q \in S$ and every u,v > 0:

$$F_{p-q}(uv) \ge t(F_p(u),F_q(v)).$$

Then (S,F,t) is a random normed space.

Every normed space (E, # 1) is a random normed space, where

$$F_{X}(c) = \begin{cases} 1, & ||x|| < \epsilon \\ 0, & ||x|| \ge \epsilon \end{cases} (x \in E, \epsilon > 0).$$

Every random normed space is a probabilistic metric space where $F_{x,y} = F_{x-y}$.

Let E be a vector space and $p : E \rightarrow [0,\infty)$ so that the following conditions are satisfied:

- (i) $p(x) = 0 \iff x = 0$.
- (ii) p(x) = p(-x), for every $x \in E$.
- (iii) $p(x+y) \le p(x) + p(y)$, for every $x,y \in E$.
- (iv) If $\lambda_n \to \lambda(\lambda_n, \lambda \text{ are from the scalar field)}$ and $p(x_n-x) \to 0(x_n, x \in E)$ then $p(\lambda_n x_n \lambda x) \to 0$.

Then the pair (E,p) is a paranormed space. If the fundamental system of neighbourhoods of zero is given by $V = \{V_c\}_{c>0}$, where $V_c = \{x; x \in E, p(x) < c\}$, then E is a topological vector space. An example of a paranormed space is the space S(0,1) (all the equivalence classes of real Lebesgue measurable functions defined on the interval (0,1)) with the paranorm p given by:

$$p(\hat{x}) = \int_{0}^{1} \frac{|x(t)|}{1 + |x(t)|} dt \quad (\{x(t)\} \in \hat{x})$$

Definition 2. [6] A random paranormed space is a triple (E,f,t) where E is a real or complex vector space, $f: E \to D^+$ and t is a T-norm such that $t \ge t_m$ and the following conditions are satisfied:

- 1. $F_p = H \iff p = 0$.
- 2. $F_{-x} = F_{x}$, for every $x \in E$.
 - 3. $F_{x+y}(u_1+u_2) \ge t(F_x(u_1),F_y(u_2))$, for every $x,y \in E$ and every $u_1,u_2 \ge 0$.
- 4. If $\lambda_n \to \lambda$ and $F_{x_n-x}(\epsilon) \to 1, (n \to \infty)$ for every $\epsilon > 0$, then $F_{\lambda_n x_n \lambda_x}(\epsilon) \to 1, (n \to \infty)$ for every $\epsilon > 0$.

It is obvious that every paranormed space (E,p) is also a random paranormed space, where:

$$F_{x}(\varepsilon) = \begin{cases} 1, p(x) < \varepsilon \\ 0, p(x) \ge \varepsilon \end{cases} (x \in E, \varepsilon > 0).$$

The topology in a random paranormed space (S,F,t) is introduced by the (ε,λ) -topology given by the following family of neighbourhoods of zero: $N = \{N(\varepsilon,\lambda), \varepsilon > 0, \lambda \in (0,1)\}$ where:

$$N(\varepsilon,\lambda) = \{x; F_x(\varepsilon) > 1-\lambda\}.$$

Let (Ω,A,P) be a probability measure space, (X,p) a separable paranormed space and S the space of all the equivalence classes of measurable mappings $x:\Omega\to X$. If $F:S\to \mathfrak{D}^+$ is defined by

$$F_{\mathbf{v}}(\varepsilon) = P\{\omega : \omega \in \Omega, p(\mathbf{x}(\omega)) < \varepsilon\},$$

then the triple (S,F,t) is a random paranormed space [6].

If t is a T-norm we shall use the following notation:

$$t_n(x) = t(t(\dots t(t(x,x),\dots,x), n \in \mathbb{N}, x \in [0,1].$$

A T-norm t is of H-type if the family $\{t_n(x)\}_{n\in\mathbb{N}}$ is equicontinuous at the point x=1. It is known that for every T-norm t which is of H-type there exists a sequence $\{a_n\}$ from $\{0,1\}$ such that $\lim_{n\to\infty} a_n=1$ and $t(a_n,a_n^-)=a_n$ for every $n\in\mathbb{N}$ $\{4\}$. In a random paranormed space $\{S,F,t\}$, where T-norm t is of H-type and strict, the $\{c,\lambda\}$ -toplogy can be introduced by the following family of functions $p_n:S\to\mathbb{R}^+$:

(1)
$$p_n(x) = \sup\{u; F_x(u) \le a_n\} \ (n \in \mathbb{N}; x \in \mathbb{S}).$$

It is easy to prove that the family $\{p_n\}$ has the following pro-

perties:

- 1. $p_n(x) = 0$, for every $n \in \mathbb{N} \iff x = 0$.
- 2. $p_n(-x) = p_n(x)$, for every $x \in S$ and every $n \in \mathbb{N}$.
- 3. $p_n(x+y) \le p_n(x) + p_n(y)$, for every $n \in \mathbb{N}$ and $x,y \in S$.
- 4. If $\lambda_n \to \lambda$ (λ_n , $\lambda \in \mathbb{R}$) and $\mathbf{x}_n \to \mathbf{x}$ (\mathbf{x}_n , $\mathbf{x} \in \mathbb{S}$) in the (ϵ , λ)-topology then for every $\mathbf{m} \in \mathbb{N}$:

$$r_{in}(\lambda_n x_n - \lambda x) \rightarrow 0$$
.

For example the property 3. can be proved in the following way. Let $r_1 > p_n(x)$ and $r_2 > p_n(y)$. Then $F_x(r_1) > a_n$ and $F_y(r_2) > a_n$ which implies that $F_{x+y}(r_1+r_2) \ge t(F_x(r_1), F_y(r_2)) > t(a_n,a_n) = a_n$. This means that $p_n(x+y) < r_1 + r_2$ and so $p_n(x+y) \le p_n(x) + p_n(y)$.

An example of a T-norm t which is of H-type is given in [4].

If (S,Γ,t) is a Menger space and t is of H-type and strict by $d_n(x,y) = \sup\{u; F_{x,y}(u) \le a_n\}$ $(n \in \mathbb{N}; x,y \in S)$ a family of pseudometrics is defined.

Definition 3. Let (S,F,t) be a random paranormed space and K a nonempty subset of S. The set K satisfies the probabilistic Tima condition if there exists C(K) > 0 so that for every $\lambda \in (0,1)$

$$F_{\lambda(x-y)}(\lambda \varepsilon) \ge F_{x-y}(\varepsilon/C(K))$$

for every $\varepsilon > 0$ and every $x, y \in K$.

Example. [6]. Let (Ω, A, P) be a probability measure space and X be the space of all the equivalence classes of measurable mappings $x : \Omega \to S(0,1)$. Further, let s > 0 and:

$$\tilde{K}_{s} = {\hat{x}; \hat{x} \in X, \hat{x}(\omega) \in K_{s}, \text{ for every } \omega \in \Omega},$$

where $K_s = {\hat{x}; \hat{x} \in S(0,1), |x(t)| \le s, t \in [0,1]}$. Let

$$F_{\hat{\mathbf{x}}}(\varepsilon) = P(\{\omega; p(\hat{\mathbf{x}}(\omega)) < \varepsilon\}), (\varepsilon > 0, \hat{\mathbf{x}} \in X).$$

In [6] it is proved that for every $\omega \in \Omega$ and $\lambda > 0$:

$$p(\lambda(\hat{x}(\omega) - \hat{y}(\omega))) \le (1 + 2s)\lambda p(\hat{x}(\omega) - \hat{y}(\omega)),$$

which implies that:

$$F_{\lambda(\hat{x}-\hat{y})}(\lambda \varepsilon) \ge F_{\hat{x}-\hat{y}}(\varepsilon/(1+2s))$$

for every $\hat{x}, \hat{y} \in \tilde{K}_S$, every $\lambda > 0$ and every $\epsilon > 0$. The probabilistic inner function of noncompactness $b_A(\cdot)$, for every probabilistic bounded subset A of S, where S is a probabilistic metric space, is defined in the following way:

 $b_A(u) = \sup \{\rho; \rho > 0, \text{ there exists a finite set } A_f \subset A \text{ such that } h_{AA_f}(u) \ge \rho\}, (u \in \mathbb{R}^+)$

where:

$$h_{AB}(u) = \sup_{s \le u} \inf_{x \in A} \sup_{y \in B} F_{x-y}(s) (u \in \mathbb{R}^+).$$

2. In Lemma 1 we shall suppose that (S,F,t) is a probabilistic metric space such that t is a strict T-norm which is of H-type. Similarly as it was proved by Tan in [10] we shall prove the following lemma.

Lemma 1. Let for every probabilistic bounded set A ⊂ S:

$$\bar{b}_n(A) = \sup\{u; b_A(u) \le a_n\}, (n \in \mathbb{N}).$$

Then $b_n(A) \leq \bar{b}_n(A)$, for every $n \in \mathbb{N}$ where:

 $b_n(A) = \inf\{\epsilon; \text{ there exists a finite set } A_f \subset A \text{ such that } A \subset \bigcup_{x \in A_f} B_n(x; \epsilon)\}$

and $B_n(x;\varepsilon) = \{y; y \in S, d_n(x,y) < \varepsilon\}$. If $b_A(\cdot)$ is, for every probabilistic bounded set, A strictly monotone then $b_n(\cdot) = \tilde{b}_n(\cdot)$, $(u \in \mathbb{N})$.

Proof. The proof of this lemma is similar to the proof of Theorem 4 in [10] but we shall give it here for the completeness. First, we shall prove that $b_n(A) \leq \tilde{b}_n(A)$, for $n \in \mathbb{N}$. Let $a = \tilde{b}_n(A) = \sup\{u_i, b_A(u) \leq a_n\}$. We shall prove that $b_n(A) \leq a_n$ which means that for every $u_0 > a$ there exists a finite set $A_f \subset A$ such that $A \subset_{\mathbf{x} \in A_f} H(\mathbf{x}, u_0)$. Let $u_0 > a$. From the definition of $\tilde{b}_n(A)$ it follows that $b_A(u_0) > a_n$ and hence there exists a finite subset $A_f \subset S$ such that $b_{AA_f}(u_0) > a_n$.

From the definition of h_{AB} it follows that $\sup_{s < u_0} \inf_{x \in A} \max_{y \in A_f} F_{x,y}(s) > a_n$ and so there exists $s_0 < u_0$ such that:

$$\inf_{x\in A}\max_{y\in A_f}F_{x,y}(s_0)>a_n.$$

This inequality implies that A $\subseteq_{\mathbf{x}\in A_{\mathbf{f}}}^{\mathbf{U}}\mathbf{B}_{n}(\mathbf{x},\mathbf{s}_{0})$ and so $\mathbf{b}_{n}(\mathbf{A})<\mathbf{s}_{0}<<\mathbf{u}_{0}$. From this we conclude that $\mathbf{b}_{n}(\mathbf{A})\leq\mathbf{a}$. We shall prove that the assumption that $\mathbf{b}_{\mathbf{A}}(\cdot)$ is strictly monotone implies that $\mathbf{b}_{n}(\cdot)=\tilde{\mathbf{b}}_{n}(\cdot)$. If for some probabilistic bounded subset $\mathbf{A}\in\mathbf{S}$ we have that $\mathbf{b}_{n}(\mathbf{A})<\tilde{\mathbf{b}}_{n}(\mathbf{A})$ then there exist \mathbf{b} and \mathbf{c} ($\mathbf{b}>\mathbf{c}$), such that $\mathbf{b}_{n}(\mathbf{A})<\mathbf{c}<\mathbf{b}<\tilde{\mathbf{b}}_{n}(\mathbf{A})$. Hence, there exists a finite set $\mathbf{A}_{\mathbf{f}}\in\mathbf{A}$ such that:

$$A \subset UB_{x \in A_{\mathbf{f}}}(x, c).$$

This implies that $h_{AA_{\bar{1}}}(b) \ge a_n$ and so from the definition of b_A , $b_A(b) \ge a_n$. Further, since $b_A(\cdot)$ is nondecreasing and left continuous we have that $b_A(\bar{b}_n(A)) \le a_n$ and so $a_n \le b_A(b) \le b_A(\bar{b}_n(A)) \le a_n$ which means that $b_A(b) = b_A(\bar{b}_n(A)) = a_n$. Since $b_A(\cdot)$ is strictly monotone we obtain a contradiction.

Definition 4. Let (S,F) be a probabilistic metric space, G a nonempty probabilistic bounded subset of S and $T:G \to P(G) \setminus \emptyset$, $q \in (0,1)$. We say that the mapping T is a (b,q) set probabilistic contraction mapping if for every $A \subseteq G$ and every $u \in \mathbb{R}^+$:

$$b_{T(A)}(u) \ge b_A(u/q)$$
.

Lemma 2. Let (S,F,t) be a probabilistic metric space, G a nonempty probabilistic bounded subset of S, and $T:G \to P(G) \setminus \emptyset$ a (b,q)-set probabilistic contraction mapping where $b_A(\cdot)$ is strictly monotone for every $A \subset G$. Then for every $A \subset G$

$$b_n(T(A)) \leq qb_n(A)$$
.

Proof. Since $b_A(\cdot)$ is strictly monotone, for every $A \subset G$, from Lemma 1 it follows that $b_n(A) = \sup\{u; b_A(u) \le a_n\}$ for every $n \in \mathbb{N}$ and $A \subset G$. Since T is (b,q)-set probabilistic contraction mapping it follows that $b_{T(A)}(u) \le a_n$ implies that

 $b_A(u/q) \le a_n$ and so: $\{u; b_{T(A)}(u) \le a_n\} \subseteq \{u; b_A(u/q) \le a_n\}$. This implies that

$$b_{n}(T(A)) = \sup\{u; b_{T(A)}(u) \le a_{n}\} \le$$

$$\le \sup\{u; b_{A}(u/q) \le a_{n}\} = q \sup\{s; b_{A}(s) \le a_{n}\} =$$

$$= q \cdot b_{n}(A).$$

Definition 5. [7] Let (S,F) be a probabilistic metric space, $\emptyset \neq M \subset S$ and $T: M \rightarrow P(S) \setminus \emptyset$. The mapping T is a multivalued probabilistic q contraction $(q \in (0,1))$ if for every $x,y \in M$ and every $u \in Tx$ there exists $v \in Ty$ so that for every s > 0:

$$F_{u,v}(qs) \ge F_{x,y}(s)$$
.

Lemma 3. Let (S,F,t) be a Menger space with a continuous T-norm t, G a nonempty probabilistic bounded subset of S and $T:G \rightarrow Com(G)$ (the family of all nonempty compact subsets of G) a multivalued probabilistic g contraction mapping. Then:

$$b_{T(A)}(qs) \ge b_{A}(s), (s \in \mathbb{R}^{+})$$

for every $A \subseteq G$, i.e. T is (b,q)-set probabilistic contraction mapping.

Proof. The same method of the proof we used in a part of the proof of Theorem 1 from [7]. Let $A \subset G$. Since $b_A(\cdot)$ is left continuous it is enough to prove that for every $v \in (0,s) \colon b_A(s-v) \leq b_{T(A)}(qs)$. In order to prove this inequality we shall prove that for every r > 0, $r < b_A(s-v)$ implies that $r \leq b_{T(A)}(qs)$. If $r < b_A(s-v)$ then there exists a finite set $A_f \subset A$ such that:

inf max
$$F_{x,y}(s-v) > r$$

and so for every $x \in A$ there exists $y(x) \in A_f$ so that $F_{x,y}(s-v) > r$. Let $x \in A$, $u \in Tx$ and $w \in Ty(x)$ be such that:

$$F_{u,w}(k(s-v)) \ge F_{x,y(x)}(s-v) > r.$$

The existence of w follows from the assumption that T is a multivalued probabilistic q-contraction. Hence for every $u \in T(A)$ there exists $w \in T(A_f)$ so that $F_{u,w}(ks-kv) > r$. Let $\delta \in (0,r)$

and $\lambda_{\delta} \in (0,1)$ be such that $1 \ge h > 1 - \lambda_{\delta}$ implies that $t(r,h) > r - \delta$ and $A_f = \{x_1, x_2, \ldots, x_n\}$. Since Tx_i is compact for every $i \in \{1,2,\ldots,n\}$, there exists, for every $i \in \{1,2,\ldots,n\}$ a finite subset $A_f^i \subset T(A)$ such that $Tx_i \subset \bigcup_{p \in A_f^i} N_p \left(\frac{kv}{2}, \lambda_{\delta}\right) \left(N_p \left(\frac{kv}{2}, \lambda_{\delta}\right)\right) = \left\{u; F_{u,p}(kv/2) > 1 - \lambda_{\delta}\right\}$. Now it is easy to prove that $h_{T(A)} \setminus B_f(ks) > r - \delta$, where $B_f = \bigcup_{i=1}^n A_f^i$, which implies that $r - \delta \le b_{T(A)}(ks)$ for arbitrary number $\delta \in (0,r)$. This means that $b_{T(A)}(ks) \ge r$.

From Lemmas 2 and 3 we obtain the following result.

Proposition 1. Let (S,F,t) be a Menger space with a continuous strict T-norm t of H-type, G a nonempty probabilistic bounded subset of S and $T:G \to Com(G)$ a multivalued probabilistic q-contraction mapping. Then for every $n \in \mathbb{N}$ and every $A \subseteq G$:

$$b_n(T(A)) \leq qb_n(A)$$
.

3. If (S,F,t) is a random normed space with a continuous strict T-norm t of H-type then the family of seminorms $\{p_n\}_{n\in\mathbb{N}}$, which is defined by (1), defines a locally convex topology in S. This fact was used by Constantin and Istratescu in [3] and they obtained some fixed point theorems in such random normed spaces. But, if (S,F,t) is a random paranormed space the family does not define, in general case, a locally convex topology. Hence, in this case the fixed point theory in topological vector spaces have to be used.

If (S,F,t) is a random paranormed space such that t is a strict T-norm of H-type and $G \subset S$ satisfies the probabilistic Zima condition with constant C(G), it is easy to prove that for every $n \in \mathbb{N}$ and every $\lambda \in (0,1)$:

(2) $p_n(\lambda(x-y)) \le C(G)\lambda p_n(x-y)$, for every $x,y \in G$.

It can be proved, similarly as in [5], that in this case G is σ -admissible in the sense of [8]. The class of σ -admissible subsets of a topological vector space is very important in the fixed point theory [8]. If (S,F,t) is a random paranormed space with a strict T-norm t of H-type we can not prove, in general, that for every probabilistic bounded subset A of S:

(3)
$$b_n(co A) = b_n(A) (n \in \mathbb{N}).$$

It is well known that the equality (3) is important in the fixed point theory in locally convex spaces but if the topology in a topological vector space is defined by the family $\{p_n\}_{n\in\mathbb{N}}$ which satisfies 1., 2., 3. and 4. we shall use the following result which can be proved as in [5].

Proposition 2. Let $(E,\{p_n\}_{n\in\mathbb{N}})$ be a metrizable topological vector space in which the topology is defined by the family of functionals $\{p_n\}_{n\in\mathbb{N}}$ so that 1., 2., 3. and 4. are satisfied. Let G be a nonempty bounded and convex subset of E such that $\{2\}$ holds. Then for every $A\subseteq G$

(4)
$$b_n(co A) \le C(G)b_n(A)$$
, for every $n \in \mathbb{N}$.

Using Proposition 2. we obtain the following result.

Proposition 3. Let $(E, \{p_n\}_{n\in\mathbb{N}})$ be a complete metrizable topological vector space in which the topology is defined by the family of functionals $\{p_n\}_{n\in\mathbb{N}}$ so that the properties 1., 2., 3. and 4. are satisfied. Let G be a nonempty, bounded and convex subset of G such that (2) holds and $T:C \to cc(C)$ (the family of all nonempty closed and convex subsets of C) be an upper semicontinuous mapping such that:

(5) $b_n(T(A)) \le q \cdot b_n(A)$, for every $n \in \mathbb{N}$ and every $A \subseteq C$ where $q \in (0,1)$. If $q \cdot C(C) < 1$ then there exists $x \in C$ so that $x \in Tx$.

Proof. By a standard way we can prove that there exists $2 \subseteq C$ such that $Z = \overline{CO(T(Z) \cup \{z\})}$, where z is an arbitrary element from C. Then using (4) and (5) we obtain that:

$$b_{n}(Z) = b_{n}(\overline{co}(T(Z) \cup \{z\})) \le$$

$$\le C(G)b_{n}(T(Z)) \le q \cdot C(G)b_{n}(Z).$$

From this it follows that $b_n(Z) = 0$, for every $n \in \mathbb{N}$ which implies that Z is compact. Since Z is σ -admissible, which follows from (2), and $T(Z) \subseteq Z$ using Hahn's fixed point theorem it follows that there exists $x \in C$ such that $x \in Tx$.

Remark. It is easy to prove that Propositions 2. and 3. hold for every topological vector space $(E, \{p_{\lambda}\}_{{\lambda} \in \Lambda})$, where p_{λ} , for every ${\lambda} \in {\Lambda}$, has the properties 1., 2., 3. and 4.

Using the preceeding results we obtain the following fixed point theorem which is a generalization of Theorem 2 in [6].

Theorem. Let (S,F,t) be a complete random paranormed space where t is a strict T-norm of H-type. G a probabilistic bounded, closed and convex subset of S, and $T:G \to cc(G)$ an upper semicontinuous mapping which is a (b,q)-set probabilistic contraction mapping. If G satisfies the probabilistic lima condition and qC(G) < 1 then there exists $x \in G$ so that $x \in Tx$.

 $$\operatorname{\textbf{Proof.}}$$ The proof follows from Proposition 3. and Lemma 2.

REFERENCES

- Gh. Constantin, Gh. Bocsan, On some measure of noncompactness in probabilistic metric spaces, Sem. Teor. Funct. Math. Apl., A. Spatii metrice probabiliste, Timisoara, 11(1974),
- Gh. Constantin, Gh. Bocsan, The Kuratowski function and some applications to the probabilistic metric spaces, Sem. Teor. Funct. Math. Apl., A. Spatii metrice probabiliste, Timisoara, 1(1973).
- Gh. Constantin, I.Istratescu, Random measure of non-compactness in PM-spaces and applications, Probability and Mathematical Statistics, (to appear).
- O. Hadžić, On the (ε,λ) topology of probabilistic locally convex spaces, Glas. Mat., Vol. 13(33)(1978), 293-297.
- O. Hadžić, Fixed point theory in topological vector spaces, Institute of Mathematics, Novi Sad, 1984, 337 p.
- O. Hadźić, Fixed point theorems in random paranormed spaces, Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak., Ser. Mat., 15,2(1985), 15-30.

- O. Hadžić, Fixed point theorems for multivauled mappings in some classes of fuzzy metric spaces, Fuzzy Sets and Systems, 29(1989), 115-125.
- S. Hahn, A remark on a fixed point theorem for condensing set-valued mappings TV Dresden, Informationen, 07-5-77.
- A.N. Sherstnev, The notion of a random normed space, Dokl. Akad. Nauk. SSSR, 149(1963), 280-283.
- Do Hong Tan, On the probabilistic inner measure of noncompactness. Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak., Ser. Mat., 13(1983), 73-79.

REZIME

TEOREMA O NEPOKRETNOJ TAČKI U JEDNOJ KLASI

SLUCAJNIH PARANORMIRANIH PROSTORA

U ovom radu dokazana je jedna teorema o nepokretnoj tački u slučajnim paranormiranim prostorima.

Received by the editors June 1,1988.