Univ. u Novom Sadu Zb. Rad. Prirod.—Mat. Fak. Ser. Mat. 18,2, 145-151 (1988)

REVIEW OF RESEARCH FACULTY OF SCIENCE MATHEMATICS SERIES

COMMON FIXED POINT THEOREMS FOR SINGLE-VALUED AND MULTIVALUED MAPPINGS

Olga Radzic

University of Novi Sad, Faculty of Science, Institute of Mathematics, Dr Ilije Duricica 4, 21000 Novi Sad, Yugoslavia

Abstract

Using the notion of a compatible pair of mappings some generalizations of common fixed point theorems from [2] and [5] are proved.

1. Introduction

S. Sessa introduced in [6] the notion of a weakly commuting pair of mappings in the following way.

DEFINITION 1 Let (X,d) be a metric space and $f,g: X \to X$. Then the pair (f,g) is said to be weakly commuting if and only if for every $x \in X$ $d(fgx,gfx) \le d(fx,gx)$.

Every commuting pair is obviously weakly commuting but the converse is false [6].

G. Jungck generalized the notion of a weakly commuting pair in the following way.

AMS Hathematics Subject Classification (1980): 54H25

Key words and phrases: Common fixed point, weakly commuting mappings, compatible pair of mappings.

DEFINITION 2 [3] Let (X,d) be a metric space and f.g: $X \to X$. Then the pair (f,g) is said to be compatible if and only if for every sequence $\{x_n\}_{n\in\mathbb{N}}$ such that $\lim_{n\to\infty} f_n = \lim_{n\to\infty} g_n = t$, for some $t \in X$:

$$\lim_{n\to\infty} d(fgx_n, gfx_n) = 0.$$

If f and g are such that $\lim_{n\to\infty} d(fx_n, gx_n) = 0 \to \lim_{n\to\infty} d(fgx_n, gfx_n) = 0$, then the pair (f,g) is obviously compatible. Hence, every weakly commuting pair is compatible, but the converse is false [3].

We shall generalize the notion of a compatible pair to the case when g is a multivalued mapping. By CB(X) the collection of all closed and bounded subsets of X is denoted.

DEFINITION 3 Let (X,d) be a metric space, f: X \rightarrow X and g: X \rightarrow CB(X). We say that the pair (f,g) is compatible if and only if for every two sequences $\left\{x_{n}\right\}_{n\in\mathbb{N}}$ and $\left\{y_{n}\right\}_{n\in\mathbb{N}}$ from X such that $\lim_{n\to\infty} fx_{n} = \lim_{n\to\infty} y_{n} = t$ for some $t\in X$, where $y_{n}\in gx_{n}$, $n\in\mathbb{N}$:

$$\lim_{n\to\infty} d(fy_n, gfx_n) = 0.$$

In [4] the notion of a weakly commuting pair (f,g), is introduced where $f: X \to X$ and $g: X \to CB(X)$. The pair (f,g) is weakly commuting if and only if for each $x \in X$, $fgx \in CB(X)$ and

$$H(gfx, fgx) \le d(fx, gx),$$

where H is the Hausdorff metric defined on CB(X).

Suppose that the pair (f,g) is weakly commuting, $f: X \to X$ and $g: X \to CB(X)$ and prove that it is compatible.

Let $\{x_n\}_{n\in\mathbb{N}}$ and $\{y_n\}_{n\in\mathbb{N}}$ be two sequences from X such that $y_n\in gx_n$, $n\in\mathbb{N}$ and

$$\lim_{n\to\infty} fx_n = \lim_{n\to\infty} y_n = t \in X.$$

From $d(fx_n, gx_n) \leq d(fx_n, y_n)$ it follows that $\lim_{n\to\infty} d(fx_n, gx_n) = 0$. Hence $\lim_{n\to\infty} H(gfx_n, fgx_n) = 0$ and since $d(fy_n, gfx_n) \leq H(fgx_n, gfx_n)$ we obtain that $\lim_{n\to\infty} d(fy_n, gfx_n) = 0$ which means that the pair (f, g) is compatible in the n- ∞ sense of Definition 3.

In this paper we shall prove some generalizations of common fixed point theorems from [2], [4], [5].

Common fixed point theorems

Let h: $\{0, \infty\}^5 \to \{0, \infty\}$ be a nondecreasing and upper semicontinuous mapping in each variable. We say that h is from the class Ψ if and only if for every t > 0:

$$t > \varphi(t) = \max\{h(t,0,0,t,t), h(t,t,t,2t,0), h(t,t,t,0,2t)\}.$$

THEOREM 1 Let (X,d) be a complete metric space, $S,T,f,g:X\to X, TX \in fX$, $SX \in gX$ and for all $x,y\in X$:

(1)
$$d(Sx,Ty) \le h(d(fx,gy), d(fx,Sx), d(gy,Ty), d(fx,Ty), d(gy,Sx))$$

where h is from the class Ψ .

If one of the mappings S,T,f and g is continuous and the pairs (S,f) and (T,g) are compatible, then S,T,f and g have a common fixed point z and z is the unique common fixed point of S and f and T and g.

Proof: As in [2], for an arbitrary $x_0 \in X$ we can define a sequence $\{x_n\}_{n \in \mathbb{N} \cup \{0\}}$ such that $Sx_{2n} = gx_{2n+1}$, $Tx_{2n+1} = fx_{2n+2}$, $n \in \mathbb{N} \cup \{0\}$ and prove that the sequence $\{Sx_0, Tx_1, Sx_2, Tx_3, \ldots\}$ converges to a point $z \in X$. Then

$$z = \lim_{n \to \infty} Sx_{2n} = \lim_{n \to \infty} gx_{2n+1} = \lim_{n \to \infty} Tx_{2n-1} = \lim_{n \to \infty} fx_{2n}$$

Using the similar method as in [5] we shall prove that z = Sz = Tz = gz = fz.

a) Suppose that f is continuous.

From (1) we have

(2)
$$d(Sfx_{2n}, Tx_{2n+1}) \le h(d(f^2x_{2n}, gx_{2n+1}), d(f^2x_{2n}, Sfx_{2n}), d(gx_{2n+1}, Tx_{2n+1}), d(f^2x_{2n}, Tx_{2n+1}), d(gx_{2n+1}, Sfx_{2n})).$$

Further, since f is continuous we obtain that

$$\lim_{n\to\infty} fSx_{2n} = \lim_{n\to\infty} f^2x_{2n} = fz$$

From the compatibility of the pair (S,f) and the relations

$$\lim_{n\to\infty} fx_{2n} = \lim_{n\to\infty} fx_{2n} = z \text{ we have that } \lim_{n\to\infty} d(fx_{2n}, ffx_{2n}) = 0$$

and so from (2) we obtain that

$$d(fz,z) \le h(d(fz,z), d(fz,fz), d(z,z), d(fz,z))$$

= $h(d(fz,z), 0,0, d(fz,z), d(fz,z)) \le \varphi(d(fz,z)).$

This implies that fz=z. From the inequality $d(Sz,Tx_{2n+1}) \le h(d(fz,gx_{2n+1}),d(fz,Sz),d(gx_{2n+1},Tx_{2n+1}),d(fz,Tx_{2n+1}),d(gx_{2n+1},Sz))$ it follows that Sz = z. Since $SX \subset gX$ it follows that there exists $w \in X$ such that gw = z.

From (1) we have $d(z,Tw) = d(Sz,Tw) \le h(d(fz,gw), d(fz,Sz), d(gw,Tw), d(fz,Tw), d(gw,Sz)) = h(d(z,z), d(z,Z), d(z,Tw), d(z,Tw), d(z,Z)) \le \varphi(d(z,Tw))$ and so Tw = z. Since the pair (T,g) is compatible and Tw = gw = z, if we take in definition 2 that $x_n = w$, $n \in \mathbb{N}$ then we obtain that

$$\lim_{n\to\infty} d(Tgx_n, gTx_n) = d(Tz, gz) = 0.$$

From Tz = gz it follows that $d(z,Tz) = d(Sz,Tz) \le \varphi(d(z,Tz))$ and so z = Tz = gz = fz = Sz.

The proof is similar if g is continuous.

b) Suppose that S is continuous.

The relation $\lim_{n\to\infty} d(Sfx_{2n}, fSx_{2n}) = 0$ and the continuity of S implies that $\lim_{n\to\infty} fSx_{2n} = Sz$. From the inequality

$$\begin{split} \mathsf{d}(\mathsf{S}^2\mathsf{x}_{2n},\mathsf{Tx}_{2n+1}) & \leq \mathsf{h}(\mathsf{d}(\mathsf{f}\mathsf{S}\mathsf{x}_{2n},\mathsf{g}\mathsf{x}_{2n+1}), \ \mathsf{d}(\mathsf{f}\mathsf{S}\mathsf{x}_{2n},\mathsf{S}^2\mathsf{x}_{2n}), \mathsf{d}(\mathsf{g}\mathsf{x}_{2n+1}\mathsf{Tx}_{2n+1}), \\ & \mathsf{d}(\mathsf{f}\mathsf{S}\mathsf{x}_{2n},\mathsf{Tx}_{2n+1}), \ \mathsf{d}(\mathsf{g}\mathsf{x}_{2n+1},\mathsf{S}^2\mathsf{x}_{2n})) \end{split}$$

we obtain that $d(Sz,z) \le \varphi(d(Sz,z))$ and so Sz=z.

Let w'∈ X so that gw'=z. Then from the inequality

$$d(s^2x_{2n}, Tw') \le h(d(rsx_{2n}, gw'), d(rsx_{2n}, s^2x_{2n}), d(gw', Tw'),$$

 $d(rsx_{2n}, Tw'), d(gw', s^2x_{2n}))$

we obtain that Tw'=z, which implies, as in a), that Tz = gz.

The inequality

$$d(Sx_{2n}, Tz) \le h(d(fx_{2n}, gz), d(fx_{2n}, Sx_{2n}), d(gz, Tz),$$

 $d(fx_{2n}, Tz), d(gz, Sx_{2n}))$

implies that d(z,Tz) = 0 and hence z = Tz = gz = Sz.

Let w"∈ X so that fw"= z. Then from

$$d(Sw'',z) = d(Sw'',Tz) \leq p(d(z,Sw''))$$

we obtain that Sw''=fw''=z. Using the compatibility of the pair (S,f), as in a), it follows that

$$d(Sz,fz) = d(Sfw",fSw") = 0$$

and so Sz = fz = z.

If T is continuous the proof is similar. It is easy to prove the z is the unique common fixed point of S and f and T and g.

THEOREM 2 Let (X,d) be a complete metric space, $S,T: X \to CB(X)$ H-continuous mappings, $f,g: X \to X$ continuous mappings such that $TX \subset fX$, $SX \subset gX$ and

(3)
$$H(Sx,Ty) \leq r \max \{d(fx,gy), d(fx,Sx), d(gy,Ty), \frac{1}{2} \{d(fx,Ty) + d(gy,Sx)\}, \text{ for every } x,y \in X\}$$

where $r \in (0,1)$. If the pairs (f,S) and (g,T) are compatible then there exists $z \in X$ such that $fz \in Sz$ and $gz \in Tz$.

Proof: We shall start with a usual construction.

Let x_0 be an arbitrary element from X. Since $Sx_0 < gX$ there exists $x_1 \in X$ such that $gx_1 \in Sx_0$. From 0 < r < 1 it follows that $\frac{1}{\sqrt{r}} > i$ and so there exists $y \in Tx$, such that

$$d(gx_1,y) \leq \frac{1}{\sqrt{g}} H(Sx_0,Tx_1).$$

Since $Tx_1 \subset fX$ there exists $x_2 \in X$ such that $y = fx_2$ and so we have that

$$\mathsf{d}(\mathsf{gx}_1,\mathsf{fx}_2) \leq \frac{1}{\sqrt{\Gamma}}\,\mathsf{H}(\mathsf{Sx}_0,\mathsf{Tx}_1).$$

Similarly, there exists $x_3 \in X$ such that $gx_3 \in Sx_2$ and

$$d(gx_3, fx_2) \le \frac{1}{\sqrt{r}} H(Sx_2, Tx_1).$$

Continuing in this way we obtain a sequence $\{x_n\}_{n\in\mathbb{N}}$ such that $fx_{2n}\in Tx_{2n-1}, gx_{2n+1}\in Sx_{2n}$ and

$$\begin{split} & \text{d}(\text{gx}_{2n+1},\text{fx}_{2n}) \leq \frac{1}{\sqrt{r}} \text{ H}(\text{Sx}_{2n},\text{Tx}_{2n-1}), \ n \in \mathbb{N} \\ & \text{d}(\text{gx}_{2n+1},\text{fx}_{2n+2}) \leq \frac{1}{\sqrt{r}} \text{ H}(\text{Sx}_{2n},\text{Tx}_{2n+1}), \ n \in \mathbb{N} \cup \{0\}. \end{split}$$

We shall prove, in a standard way, that the sequence $\{gx_1, fx_2, gx_3, fx_4, \dots\}$ is a Cauchy sequence.

From (3) we have

$$d(gx_{2n+1}, fx_{2n+2}) \le \sqrt{r} \max \{d(fx_{2n}, gx_{2n+1}), d(fx_{2n}, Sx_{2n}), d(fx_{2n}, fx_{2n})\}$$

$$d(gx_{2n+1}, Tx_{2n+1}), \frac{1}{2}[d(fx_{2n}, Tx_{2n+1}) + d(gx_{2n+1}, Sx_{2n})]$$

and since $gx_{2n+1} \in Sx_{2n}$ and $fx_{2n+2} \in Tx_{2n+1}$ we obtain that

$$d(gx_{2n+1}, fx_{2n+2}) \le \sqrt{r} \max \{d(fx_{2n}, gx_{2n+1}), d(fx_{2n}, gx_{2n+1})\}$$

$$d(gx_{2n+1}, fx_{2n+2}), \frac{1}{2}[d(fx_{2n}, fx_{2n+2})] \le \sqrt{r} \max \{d(fx_{2n}, gx_{2n+1}), d(fx_{2n}, gx_{2n+1})\}$$

$$\frac{d(fx_{2n}, gx_{2n+1}) \ d(gx_{2n+1}fx_{2n+2}), \ \frac{1}{2}[d(fx_{2n}, gx_{2n+1}) + d(gx_{2n+1}, fx_{2n+2})]}{d(fx_{2n}, gx_{2n+1}), \ d(gx_{2n+1}, fx_{2n+2})},$$

As in [4] we obtain that

$$d(gx_{2n+1}, fx_{2n+2}) \le \sqrt{r} d(fx_{2n}, gx_{2n+1})$$

and similarly that

$$d(gx_{2n+3}, fx_{2n+2}) \le \sqrt{r} d(fx_{2n+2}, gx_{2n+1}), n \in N.$$

Hence $\{gx_1, fx_2, gx_3, fx_4, ...\}$ is a Cauchy sequence and let

$$z = \lim_{n \to \infty} gx_{2n+1} = \lim_{n \to \infty} fx_{2n}.$$

We shall prove that $fz \in Sz$ i.e. that d(fz,Sz) = 0. For every $n \in N$ we have

$$d(fgx_{2n+1},Sz) \leq d(fgx_{2n+1},Sfx_{2n}) + H(Sfx_{2n},Sz)$$

and we shall prove that $\lim_{n\to\infty} d(fgx_{2n+1}, Sz) = 0$.

For this purpose we shall show that $\lim_{n\to\infty} d(fgx_{2n+1}, Sfx_{2n}) = 0$. The relation $\lim_{n\to\infty} H(Sfx_{2n}, Sz) = 0$ follows from the H-continuity of S. The pair $\lim_{n\to\infty} (f,S)$ is compatible and since for $x_n' = x_{2n}$ and $y_n = gx_{2n+1}$ we have that $\lim_{n\to\infty} fx_n' = \lim_{n\to\infty} y_n = z$ and $y_n \in Sx_{2n}$, it follows that $\lim_{n\to\infty} fx_n' = \lim_{n\to\infty} y_n = z$ and $\lim_{n\to\infty} fx_n' = \lim_{n\to\infty} y_n = z$ and $\lim_{n\to\infty} fx_n' = \lim_{n\to\infty} y_n' = z$

$$\lim_{n\to\infty} d(fy_n, ffx'_n) = \lim_{n\to\infty} d(fgx_{2n+1}, ffx_{2n}) = 0.$$

Hence $\lim_{n\to\infty} d(fgx_{2n+1}, Sz) = 0$ and so from

$$d(fz,Sz) \le d(fz,fgx_{2n+1}) + d(fgx_{2n+1},Sz)$$

and the continuity of f we obtain that d(fz,Sz) = 0 which implies

that fz∈ Sz. Similarly, we can prove that gz ∈ Tz.

References

- Shih-sen Chang, A common fixed point theorem for commuting mapping, Math. Jap., 26 (1981), 121-129.
- Xieping Ding, Some common fixed point theorems for commuting mappings, Math. Seminar Notes 11 (1983), 301-305.
- Gerald Jungck, Compatible mappings and common fixed point, Internat. J. Math. Math. Sci. 9(4) (1986),771-779.
- Hideaki Kaneko, A common fixed point of weakly commuting multi-valued mappings, Math. Japonica, 33, No. 5 (1988), 741-744.
- V. Popa, A common fixed point theorem of weakly commuting mappings, Publ. Inst. Math. (in print).
- S. Sessa, On a weak commutativity condition of mappings in fixed point consideration, Publ. Inst. Math., Beograd, 32 (46) (1982), 146-153.
- C.C. Yeh, On common fixed point theorems of continuous mappings, Indian
 J. Pure Appl. Math., 10 (1979), 415-420.

Rezime

TEOREME O ZAJEDNIČKOJ NEPOKRETNOJ TAČKI ZA JEDNOZNAČNA I VIŠEZNAČNA PRESLIKAVANJA

Koriscenjem pojma kompatibilnosti para preslikavanja neka uopstenja teorema o zajedničkoj nepokretnoj tački iz [2] i [5] su dokazana.

Received by the editors June 1,1989.