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ABSTRACT

In this paper several fixed point theorems for one or two selfmap-
pings of a Menger space are proved., These mappings are assumed to
satisfy some conditions for the diameter of the set of all iterates
of these mapp1ngs -

1. INTRODUCTION

The notion of a Menger space was introduced in [4] by K. Henger,

but the theory of these spaces started to develop after the appea-
rance of the paper [6] of B. Schweizer and A. Sklar in which the
general topology of Menger spaces was given. The theory of fixed
points of mappings in a Menger space is rapidly developing in the
last twenty years. fhe purpose of this paper is to investigate the
existence and unigueness of a fixed point of one or-two selfmappinas
of a Menqer space which satisfy some new types of contraétion censer-

ning the orbit.

2. PRELIMINARIES
For the sake of convenience, we first introduce some basic definiti-

ons and concepts.
A mapping F:R-R' is a distribution function if it is nondecreasing,
left-continuous, and inf F(t)=0, sup F{t)=1.
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In the séque]. we allways denote by H the distribution function
defined by -

» €20

H(e) = (1 >0

A commutative, associative and nondecreasing mapping

t: [0,1]x[0,1] + [0,1] s a T-norm if t(a,1)=a for all a€f{o0,1] and
t(0,0)=0.

vefinition 1. A Menger space is a triplat (X, F, t), where ¥ 42 -n
abstract set of elements, F is a mapping of XxX into the set ofkall
distribution fiunctions and t is a T - norm. We shall denote the die-
tribution function F(x.y) by F, y @ F, (¢)-will represent the
value of F Xoy at cER. The functzonn F y’ X,yEX, are assumcd to
satisfy the following conditions:

1. F, y(c) = H(e) for every ¢>0 iff x=y

2. rx‘y(C) =0, Sor all X.yEXi

:3. Fx’y- Fy‘x’ fOI' GZZ X._YGX B ) .

8, Fx’y(c+5)3;$r!'z(e)), Fyy(8))ifor all x,y,26X and e, 86R".

The concept of neighbourhoods in a Menger space was introduced by
Schweizer and Sklar (6]. If x€X, ¢>0 and 1€(0,1), then (c,1) -
neiqrbourhood of x, denoted by U, (e.)), is deflned by U (c,A) =
= {yGX F (c)>l al.

1f: su? t(a a) 1, “then (X, F, t) is_a Haudorff space in. the topoloqy
induced by the family of neighbourhoods (U (c.l) XEX, €20,3€(0,1)).
The probab1llst1c dlameter of a subset M of X 1s the mapping Dh ‘
defined by .

(¢) = sup inf F §).
DM f<e X,y€EM x.y( )

By of(x) we shall denote the set [f"x: nGNolhy of(x, ') the set
of(x)ljuf(y) and by ag, g(x) the set {f qu n,kEN ) (where H Nu{O]).

3. FIXED POINT THEOREMS
Throughout this paper let (X, #; L) be a complete Menger space with
t-norm such that su? t(a,a)=1 and let +:R* R be such that

a«
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lim on(c) = 0 for all e>1.
e

Theorem 1. Let €:X+X be a eontinuous mapping euch that for a‘l’l xEX
there existd m(x)EN such that for all >0 '

Mmoo, (,,(ew -cab, (fm(x),)(o(enn-o(e)

Then f has a fized point and for all x GX the sequence of tteratcs
{f X ]nGN converzcs to a fr.xed pm.nt of \

Proof. We need only to show that for all €>0 and: ai] AG(O 1) there
exists n €N such that’ S .

Duf(fnxo)(c)§1-x for all_’n.jno .

Since 1lim on(6)=0 for all §>1, then for all ¢>0 and 2€(0,1) there

Moo n P
exists no(g)EN such that ¢ °(1+c)<m1n{c,ALFurther. we form the se-

quence of_natural‘nuhbers {m(i)}ién by
m(0)=m(x R m(i+1)-m(i)+u(xm(‘)) = 0.!;2.;;..* .

where X = f Xo » KEN.

From (1), the next impl\tations follow

D"f(kxo)..( 1*8 )>,1‘-( 1"’!:) »Ddf(fm(o)xo)(’( 1"‘ )),’ 1-4(1+c)=

D (02(14.;,;4;.2(“;, ‘... -
og(m(1)x ){e (eIl * e

-Daf(ffn(n-1)¥O,<¢"(t+c~n>.1-_of‘u+c) -

0, (e, (=129, (f“‘(,,"“)xo)("n(:“"_))"'""n(""“)""

for all n,m(n -1)}. So, we have proved that for all x ex the sequence
{f X }nGN is a Cauchy sequence and from the completness of the space

X, Vim M -x* Since f is a continuous mapping, fx*=x*, which
0 oren
completes the proof of the theorem.
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Theorem 2. Let f be a continuous selfmapping of (XiF, t) and let for
all x,y€X there exist m(x}, m(y)EN such that jbr_ﬁll >0

Do (x'y)(c)>1—c -.Do (f“ﬂ(x) fm(y) (°(5))>1°0(c) g

Then there existe a untque fixed paint fbr f and fbr<aZZ o EX” the
sequence of iterates " xo)nGN converges to that fixed noznt
Proof. From Theorem 1, the mapping f ha‘s'a fixed poin_t x*:limff"xo
where x_ is any element from X. We shall show that it is a unique

0
fixed point. Let us suppose that x*=f"x* and yf=fny*. for all neN.

For all ¢>0 and all A€(0,1) there exists n (c.A)EN such that
°(1+c)<m1n{c.x) Then, from D_ Fxe g2 )(1+c)>1 {1+e), we get

- ’ n _
Fx*,y*(':)locf(x*,y*)(c)?-ucf(x*,y*)(@ (1"'5))"' i

n n . -
o (110X ) gnly#) o) (¥ (D101 102, for all g (e.),

which means that x*sy*. This completes the proof.

Thearem 3. ret f and g be commutative, continuous selfmaprings of
(X, F, t) and let for all x€X there exist m(x), k(x)EN such that
for all > 0 -

Daf’g(X)(E)>1-c - Dof.q(fm(x)gk(x)gf¢(é))>1-¢(c)

Then for each XOGX the sequence (fngnxo)nEN konverges to some common
Jized point x*€X of f and q. °
. m(xi) k(xi)
oof . %: ). L= Xy
Pr We can forme a sequence (‘1)1€N0 by X7 F a Xy

Then we have
D’ Te)>1-(1 -l (1 -d(i+r -
”f,ﬂ(xo)( r) (1+c) ”f'q(x1) (r(1+ed>1-0(i+s)
-OD 'n 1 > —n” IR
"f,q(xn)(Q (THe))s=t1-9(140) .

For all >0 and all 2€(0,1) there exists n (|,A)€N such that
b (I+.) min{c,2l for all n: e Ifone N, We qet

- oo Mila Stojskovic
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,a¥n )‘clioa g ﬂdw'+9)>"°"(1+t)>1-l

which implies that all subsequences of (" q x ,n kGN " in which the

indexes n and k converge to =, are Cauchy sequences,and
lim " q Xy = x*€X. The following three subsequences converge to x*

N
Koo

nn n_n '
1£7q x } {fifq)x} , (9(fg)x) s
1€N 0 eN (4] n€N0
By the continuity of f and q we obtain that
x* s fx* = gx*
which means that x* is a common fixed point of f and a.

Theorem 4. Let f and g be selfmappings of (X, F, t) and let for all
%, YEX there exist {m(x), k(x), m(y), k(y)} N such that for all e>o.

)(c)>1 € - D ) R.V)d“wﬂd(t)

(fm(x) k(x)x)ua (fm(y q

Then there extsts a wnique common fixed point for f and g.The proof
The proof of this theorem is similar to the proof pf Theorem 2 and
Theorem 3, so it is omited. S C

)
Of,q(XWag oy

4. CONNECTION WITH METRIC SPACES
We shallconsicder a Menger space (X, F, t). The function d: XxX+R
defined by ~ '

d(x.y) = inf {c+l- Fy (c)}
€>0 o

.is a metric in X, In [7] it was proved that, if sup t(a a) 1 and
t>t, . then the metric d induces the same topolog9 which is. 1nduced
by (-,A) neighbourhoods.

The following theorem is due to P.R. Meyers and it is used for the
proof of Theorem G.

Theorem 5. |5] Zet(X,d) be a complete metric opace, f:XrX a conti~
nuouss mapping and the following conditions arc natiufibd

V1. f han a wnique f7acd point x*, "

2.For cach XEX Lhe: vsequene: {fnx) neEN r'rmv«'yﬁu'- Lo X*.

3. Mhere extots an open nedghbourbiood U of x* with the

propevty Lhat for any atven open gel NV 1nr~7u111.ng X th(’re
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e a0y €N such that n>n, irplies fn(U}EV.

Then for each k€(0,1) there exists a metric d,, topologicallu
equivalent to the metric d so that

dk(fx.fykik dk(x.y), - x,yEX.

Theorem 6. 7f all conditione of Iheorem2 are satisfied, then for
every kE(0,1) there exists the metric dk topologically eaquivalent
to a mairic d which inducce the {c,1)- uniformity such thiaz

dk(fx,fy)ik dk(x,y) for all x,ytEX.

Proof: By Theorem 2 the mapping f satisfies conditions 1 and 2
from Thecrem 5. In order to prove condition 3 we shall take that
U=X ard Ve(y: yEK, Fyu (e)>1-21,  c>c, A€(0,1). Since (M) oy s
& Cauchy sequence converqing to the fixed point and since for all
¢>c and A£(0,1) there cxists no(c.l) such that @n(1+c)<min{s.x} for
ali n>h,. we heve (using thg same arqument as in Theorem 1}.

0o p(xx 1) (1200 (e (-1 KX8 O 14} ) 1-0 O(fre)>1-2

for 21} n>mtn ~1) where the sequence of numbers {m(r)] SN is the
same as in Theorem 1.

This completes the proof of the theorem.
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Rezime

NEKI NOVI TIPOVI KONTRAKCI1JA U MENGEROVIM PROSTORIMA

U ovom radu je dokazano nekoliko teorema o nepokretnoj talki
za jedno ili dva preslikavanja nekog Mengerovog prostora u samoq
sebe. Preslikavanja su takva da zadovoljavaju neke uslove vezana za
dijametar orbite,
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