Univ. u Novom Sadu Zb. Rad. Prirod.—Mat. Fak. Ser. Mat. 18.2, 103-109 (1988)

REVIEW OF RESEARCH FACULTY OF SCIENCE MATHEMATICS SERIES

SOME NEW TYPES OF CONTRACTIONS IN MENGER SPACES

Mila Stojaković

Department of Mathematics, Faculty of Technical Sciences, University of N. Sad, V. Vlahovića 3, 21000 Novi Sad, Yugoslavia

ABSTRACT

In this paper several fixed point theorems for one or two selfmappings of a Menger space are proved. These mappings are assumed to satisfy some conditions for the diameter of the set of all iterates of these mappings.

INTRODUCTION

The notion of a Menger space was introduced in [4] by K. Menger, but the theory of these spaces started to develop after the appearance of the paper [6] of B. Schweizer and A. Sklar in which the general topology of Menger spaces was given. The theory of fixed points of mappings in a Menger space is rapidly developing in the last twenty years. The purpose of this paper is to investigate the existence and uniqueness of a fixed point of one or two selfmappings of a Menger space which satisfy some new types of contraction conserning the orbit.

2. PRELIMINARIES

For the sake of convenience, we first introduce some basic definitions and concepts.

A mapping $F:R\to R^+$ is a distribution function if it is nondecreasing, left-continuous, and inf F(t)=0, sup F(t)=1.

AMS Mathematics Subject Classification (1980): 54H25,47H10-Key words and phrases: fixed point, probabilistic metric spaces.

In the sequel, we allways denote by H the distribution function defined by

$$H(\varepsilon) = \{ \begin{matrix} 0, & \frac{\varepsilon < 0}{1}, & \frac{\varepsilon < 0}{\varepsilon > 0} \end{matrix}$$

A commutative, associative and nondecreasing mapping t: [0,1]x[0,1] + [0,1] is a T-norm if t(a,1)=a for all $a\in [0,1]$ and t(0,0)=0.

Definition 1. A Menger space is a triplet (X, F, t), where X is an abstract set of elements, F is a mapping of XXX into the set of all distribution functions and t is a T-norm. We shall denote the distribution function F(x,y) by $F_{X,y}$ and $F_{X,y}$ (c) will represent the value of $F_{X,y}$ at cER. The functions $F_{X,y}$, $X,y\in X$, are assumed to satisfy the following conditions:

1.
$$F_{x,y}(c) = H(c)$$
 for every $c>0$ iff $x=y$

2.
$$\Gamma_{x,y}(0) = 0$$
, for all $x,y \in X$,

4.
$$F_{x,y}(\varepsilon+\delta) \ge t(F_{x,z}(\varepsilon))$$
, $F_{z,y}(\delta)$, for all $x,y,z\in X$ and $\varepsilon,\delta\in R^+$.

The concept of neighbourhoods in a Menger space was introduced by Schweizer and Sklar [6]. If x6X, $\epsilon > 0$ and $\lambda \epsilon (0,1)$, then (ϵ,λ) - neighbourhood of x, denoted by $U_{\chi}(\epsilon,\lambda)$, is defined by $U_{\chi}(\epsilon,\lambda) = \{y6X:F_{\chi,y}(\epsilon)>1-\lambda\}$.

If sup t(a,a)=1, then (X, F, t) is a Haudorff space in the topology a<1 induced by the family of neighbourhoods $\{U_{\mathbf{x}}(\varepsilon,\lambda): \mathbf{x} \in X, \ \varepsilon > 0, \lambda \in (0,1)\}$.

The probabilistic diameter of a subset M of X is the mapping $\mathbf{D}_{\mathbf{M}}$ defined by

$$D_{M}(\varepsilon) = \sup_{\delta < \varepsilon} \inf_{x,y \in M} F_{x,y}(\delta).$$

By $\sigma_f(x)$ we shall denote the set $\{f^nx: n\in N_o\}$ by $\sigma_f(x,y)$ the set $\sigma_f(x) \cup \sigma_f(y)$ and by $\sigma_{f,g}(x)$ the set $\{f^ng^kx: n, k\in N_o\}$ (where $N_o=N\cup\{0\}$).

3. FIXED POINT THEOREMS

Throughout this paper let (X, F, t) be a complete Menger space with t-norm such that sup t(a,a)=1 and let $\phi: R^+ \to R^+$ be such that

 $\lim_{n\to\infty} \phi^{n}(c) = 0$ for all $\epsilon>1$.

Theorem 1. Let f:X+X be a continuous mapping such that for all x6X there exists m(x)6N such that for all c>0

(1)
$$D_{\sigma_{\mathbf{f}}(\mathbf{x})}(\varepsilon) > 1 - \varepsilon \to D_{\sigma_{\mathbf{f}}(\mathbf{f}^{\mathbf{m}}(\mathbf{x})_{\mathbf{x}})}(\phi(\varepsilon)) > 1 - \phi(\varepsilon).$$

Then f has a fixed point and for all x_0 EX the sequence of iterates $\{f^nx_0\}_{n\in\mathbb{N}}$ converges to a fixed point of f.

<u>Proof.</u> We need only to show that for all $\epsilon>0$ and all $\lambda E(0,1)$ there exists $n_0 \in \mathbb{N}$ such that

$$D_{\sigma_f(f^n x_0)}(\epsilon) > 1 - \lambda$$
 for all $n > n_0$.

Since $\lim_{n\to\infty} \phi^n(s)=0$ for all s>1, then for all $\varepsilon>0$ and $\lambda \in (0,1)$ there exists $n_0(\varepsilon)\in \mathbb{N}$ such that $\phi^n(1+\varepsilon)=\min\{\varepsilon,\lambda\}$. Further, we form the sequence of natural numbers $\{m(i)\}_{i\in \mathbb{N}}$ by

$$m(0)=m(x_0)$$
, $m(i+1)=m(i)+m(x_{m(i)})$ $i=0,1,2,...$, where $x_k=f^kx_0$, kEN.

From (1), the next implications follow

$$D_{\sigma_{\mathbf{f}}(\mathsf{x}_0)}(1+\varepsilon)>1-(1+\varepsilon) \Rightarrow D_{\sigma_{\mathbf{f}}(\mathsf{fm}(0)_{\mathsf{x}_0})}(\phi(1+\varepsilon))>1-\phi(1+\varepsilon)\Rightarrow$$

$$\rightarrow D_{\sigma_{f}(f^{m}(1)_{X_{0}})}(\phi^{2}(1+\varepsilon))>1-\phi^{2}(1+\varepsilon) \rightarrow \cdots \rightarrow$$

$$\rightarrow D_{\sigma_{f}(f^{m}(n-1)_{x_{0}})}(\phi^{n}(1+\varepsilon))>1-\phi^{n}(1+\varepsilon) \rightarrow$$

$$\Rightarrow^{D}_{\sigma_{f}(f^{n}X_{0})}(\epsilon)\geq^{D}_{\sigma_{f}(f^{m}(n-1)X_{0})}(4^{n}(1+\epsilon))>1-4^{n}(1+\epsilon)>1-\lambda$$

for all $n>m(n_0-1)$. So, we have proved that for all $x_0 \in X$, the sequence $\{f^nx_0\}_{n\in N}$ is a Cauchy sequence and from the completness of the space X, $\lim_{n\to\infty} f^nx_0=x^*$. Since f is a continuous mapping, $fx^*=x^*$, which completes the proof of the theorem.

Theorem 2. Let f be a continuous selfmapping of (X,F,t) and let for all x,yeX there exist m(x), m(y)EN such that for all $\varepsilon>0$

$$D_{\sigma_{f}(x,y)}(\epsilon)>1-\epsilon \rightarrow D_{\sigma_{f}(f^{m}(x)_{x,f^{m}(y)_{y})}(\phi(\epsilon))>1-\phi(\epsilon)$$

Then there exists a unique fixed point for f and for all $x_0 \in X$ the sequence of iterates $\{f^n x_0\}_{n \in N}$ converges to that fixed point.

<u>Proof.</u> From Theorem 1, the mapping f has a fixed point $x^*=\lim_{n \to \infty} f^n x_0$ where x_0 is any element from X. We shall show that it is a unique fixed point. Let us suppose that $x^*=f^n x^*$ and $y^*=f^n y^*$, for all new.

For all $\epsilon>0$ and all $\lambda \in (0,1)$ there exists $n_0(\epsilon,\lambda) \in \mathbb{N}$ such that $\Phi^{n_0}(1+\epsilon) < \min\{\epsilon,\lambda\}$. Then, from $D_{\sigma_{\epsilon}(x^{\star},y^{\star})}(1+\epsilon) > 1-(1+\epsilon)$, we get

$$F_{x^*,y^*}(\varepsilon) \ge D_{\sigma_f}(x^*,y^*)(\varepsilon) \ge D_{\sigma_f}(x^*,y^*)(\phi^n(1+\varepsilon)) =$$

 $\begin{array}{l} 0 \\ \sigma_f(f^m(x^*)_{x^*,f^m(y^*)_{y^*})} \end{array} (\phi^n(1+\epsilon)) > 1-\phi^n(1+\epsilon) > 1-\lambda, \text{ for all } n > n_o(\epsilon,\lambda), \\ \text{which means that } x^*=y^*. \text{ This completes the proof.}$

Theorem 3. Let f and g be commutative, continuous selfmappings of (X, F, t) and let for all x6X there exist m(x), k(x)6N such that for all c>0

$$D_{\sigma_{f,g}(x)}(c)>1-c \Rightarrow D_{\sigma_{f,g}(f^{(m)}(x)_gk(x)_x)}(\phi(c))>1-\phi(c)$$

Then for each $x_0 \in X$ the sequence $\{f^n g^n x_0\}_{n \in N_0}$ konverges to some common fixed point $x \in X$ of f and g.

Proof. We can forme a sequence $\{x_i\}_{i \in \mathbb{N}_0}$ by $x_{i+1} = f$ g x_i .

Then we have

$$\begin{array}{c} D_{\sigma_{f,q}(x_0)}^{(1+\epsilon)>1-(1+\epsilon)} \to D_{\sigma_{f,q}(x_1)}^{(1+\epsilon)>1-\phi(1+\epsilon)} \to \dots \\ \\ \to D_{\sigma_{f,q}(x_n)}^{(\phi^n(1+\epsilon))>1-\phi^n(1+\epsilon)} . \end{array}$$

For all c>0 and all $\lambda \in (0,1)$ there exists $n_0(c,\lambda) \in \mathbb{N}$ such that $\phi^n(1+c) < \min\{c,\lambda\}$ for all $n>n_0$. If $n>n_0$ we get

$$D_{\sigma_{f,g}(x_n)}(\varepsilon) \geq D_{\sigma_{f,g}(x_n)}(1+\varepsilon) > 1-\phi^n(1+\varepsilon) > 1-\lambda$$

which implies that all subsequences of $\{f^n q^k x_0\}_{n,k \in \mathbb{N}_0}$ in which the indexes n and k converge to ∞ , are Cauchy sequences and $\lim_{n\to\infty} f^n q^k x_0 = x^* \in X$. The following three subsequences converge to x^* x_0^*

$$\{f^n q^n x_e\}_{n \in N_0}$$
, $\{f(f^n q^n) x_o\}_{n \in N}$, $\{g(f^n g^n) x_o\}_{n \in N_0}$.

By the continuity of f and q we obtain that

$$x^* = fx^* = gx^*$$

which means that x* is a common fixed point of f and q.

Theorem 4. Let f and g be selfmappings of (X, F, t) and let for all x,y $\in X$ there exist $\{m(x), k(x), m(y), k(y)\}$ N such that for all $\epsilon > 0$.

$$D_{\sigma_{f,q}(x)\cup\sigma_{f,g}(y)}(\varepsilon)>1-\varepsilon\rightarrow D_{\sigma_{f,q}(f^{m}(x)_{g}k(x)_{x})\cup\sigma_{f,q}(f^{m}(y)_{g}k(y)_{y})}(\sigma_{f,q}(f^{m}(y)_{g}k(y)_{y}))$$

Then there exists a unique common fixed point for f and g. The proof The proof of this theorem is similar to the proof of Theorem 2 and Theorem 3, so it is omited.

4. CONNECTION WITH METRIC SPACES

We shall consider a Menger space (X, F, t). The function $d: XxX+R^{+}$ defined by

$$d(x,y) = \inf_{c>0} \{c+1-F_{x,y}(c)\}$$

is a metric in X. In [7] it was proved that, if sup t(a,a)=1 and $t \ge t_m$, then the metric d induces the same topology which is induced by (a,λ) -neighbourhoods.

The following theorem is due to P.R. Meyers and it is used for the proof of Theorem G.

Theorem 5. [5] Let(X,d) be a complete metric space, f:X-X a continuous mapping and the following conditions are satisfied

- 1. f has a unique fixed point x*.
- 2. For each xEX the vequence (fnx) nen converges to x*.
- 3. There exists an open neighbourhood U of x* with the property that for any given open set V including x* there

is an $n_0 \in \mathbb{N}$ such that $n > n_0$ implies $f^n(U) \subseteq V$.

Then for each kE(0,1) there exists a matric d_k , topologically equivalent to the metric d so that

$$d_k(fx,fy) \le k d_k(x,y), x,y \in X.$$

Theorem 6. If all conditions of Theorem 2 are satisfied, then for every kE(0,1) there exists the metric d_k topologically equivalent to a metric d which induces the (e,λ) - uniformity such that

$$d_k(fx,fy)\leq k d_k(x,y)$$
 for all x,y $\in X$.

Proof: By Theorem 2 the mapping f satisfies conditions 1 and 2 from Theorem 5. In order to prove condition 3 we shall take that U=X and V={y: yeX, $F_{x^*,y}(c)>1-\lambda$ }, c>c, $\lambda \in (0,1)$. Since $\{f^n\}_{n\in\mathbb{N}}$ is a Cauchy sequence converging to the fixed point and since for all c>c and $\lambda \in (0,1)$ there exists $n_0(c,\lambda)$ such that $\phi^n(1+c)<\min\{c,\lambda\}$ for all $n>n_0$, we have (using the same argument as in Theorem 1).

$$\mathbb{D}_{\sigma_{\mathbf{f}}\left(\mathbf{x}^{\star},\,\mathbf{f}^{\mathbf{n}}\mathbf{x}\right)}(\varepsilon)\geq\mathbb{D}_{\sigma_{\mathbf{f}}\left(\mathbf{x}^{\star},\,\mathbf{f}^{\mathbf{m}}(n_{0}-1)\mathbf{x}\right)}^{\sigma_{0}\left(1+\varepsilon\right)>1-\phi^{0}\left(1+\varepsilon\right)>1-\lambda}$$

for all $n>m(n_0-1)$ where the sequence of numbers $\{m(i)\}_{i\in \mathbb{N}}$ is the same as in Theorem 1.

This completes the proof of the theorem.

References

- O. Hadžić, A generalization of the contraction princip in PHspaces, Zbornik radova PMF-a u Novem Sadu, 10, (1980),13-21.
- Hadžić, Fixed Point Theory in Topological Vector Spaces, Institute of Mathematics, Novi Sad, 1984.
- M. Hegedüs, S. Kasañara, A contraction principle in metric spaces, Math. Sem. Notes. Vol. 7, (1979), 597-603.
- K. Henger, Statistical metric, Proc. Nat. Acad. USA, 28, (1942), 535-537.
- P.R. Meyers, A converse to Banach's contraction theorems, J.Res, Nat. Bur. Standards. Sect. B 71B (1967), 73-76.
- B. Schweizer, A. Sklar, Statistical metric spaces, Pacific J. Hath., 10 (1960), 313-333.
- B. Schweizer, A. Sklar, E. Thorp, The metrization of SM-spaces, Pacific J. Math. 10 (1980), 673-675.
- V.M. Sehgal, A.T. Bharucha-Reid, Fixed points of contraction mappings on PM-spaces, Math.Syst.Th., G (1972), 97-100.
- M. Stojaković, Fixed point theorems in probabilistic metric spaces, Kobe J. Math., 2 (1985), 1-9.

Rezime

NEKI NOVI TIPOVI KONTRAKCIJA U MENGEROVIM PROSTORIMA

U ovom radu je dokazano nekoliko teorema o nepokretnoj tački za jedno ili dva preslikavanja nekog Mengerovog prostora u samog sebe. Preslikavanja su takva da zadovoljavaju neke uslove vezana za dijametar orbite.

Received by the editors September 1, 1986.