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ABSTRACT

A singularly perturbed second order boundary value
problem with a turning point is considered. A non-equidistant
generalization of the Gushchin-Schennikov scheme is used on a
special discretization mesh and the second order convergence
uniform in a small perturbation parameter is proved.

1. INTRODUCTION

The non-equidistant generalization of the Gushchin-
-Shchennikov scheme [1] was introduced in [2], where we con-
sidered the numerical solution of a singularly perturbed boun-
dary value problem without turning points. The reason for
using such a finite-difference scheme was explained in [2].
Here, we shall use a scheme of the same class to solve the
following turning point problem numerically:

(1) —e2ut-xa(x)u'+c(x)u=£(x), x€I=[0,11, u(0)=u(1)=0,
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where € denotes a small perturbation parameter, 0O<e<1; aGCZ(I)
and c, f€C3(I) are given functions and

a(x) > a, > 0, c(x) > c, > 0, x€I.

(We shall consider interval I = [0,1] only, although the case
when I = [-1,1] can be treated analogously, cf. [3]).

It is well known that the solution u€€c4(1) to prob-
lem (1) exists uniquely. Its derivatives up to the third order
were estimated in {3] in the case when a€C1(I) and c, fecz(I).
Using the same technigue we can prove here:

Lemma 1. Let ue€C4(I) be the solution to problem (1).
Then the following estimates hold:

(2a) f Me T, 0 <x <mge
a6 | < _
(2b) M(e-iexp(—m1x/e)+xp'l), me <X <1
i=1,2,3
(3a) Me—i, 0 <x <mge
lef | <
(3b) M(e-iexp(—m1x/e)+e_2xp+2_i, m e<x<1
i=3,4

where p = min(1, c,/a(0)), m, and m, are arbitrary positive
constantg and M is independent of €.0

These estimates will be used in Section 4 in the proof
of the consistency uniform in €. The uniform consistency is due
to the use of a special non-equidistant discretization mesh
which is dense near the origin. The mesh is given in Section 2
by a-mesh generating function which is the function from [2],
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modified analogously to [3]. The stability uniform in e and the
second order accuracy are obtained because of the use of the
non-eqguidistant Gushichin-Shchennikov scheme which is given in
Section 3. The paper ends with Section 5 where some numerical
results are presented.

Besides in [3], problem (1) was considered in some
earlier papers, such as [4], [5], [6], [7], but the conditions
were less general there. Note that the highest uniform conver-
gence order obtalned in papers [3]-[7] was 1.

Throughout the paper we let p=min(1, c,/a(0)) and de-
note by M any positive constant bounded independently of e and
of the discretization mesh.

2. THE MESH

Let a(t) = ;\1(t)2/p, teI,

5¢.(t): = Asp/zt/(q-t), tef0, t]
A (e) =

m(t):

i) (E=1)+p (1), telr,1]
where g€ (0,1), Ae(O,q/sp/z) are fixed numbers and (v, ¢(t)) is

the contact point of the tangent line from (1,1) to curve y(t).

We can easily get that 1€(0, g) exists uniquely and that g-t=
/4
= McP/ %,

Function A (t) has the following properties:
(4a) A& ) 5 0, k=1,2,3,  ter,
(4b) A' () < Ma(e) 1TP/2, teI,

(4c) A" (t) < Ma(t) 7P, <t 1.



20 R. Vulanovi¢

The discretization mesh Ih is generated by x(t), i.e.

the mesh points are given by

Xj_. = )\(tj_)l ti = ih, i=0,1,...,n, h=1/n, n€N.

x.+h, /2.

Let hi = xi-x. i+1/2 = %y ie1

{o1t i=1,2,...,n, and x.

3. THE SCHEME

Let {wi} be a mesh function on I, . We introduce the
following discrete operators:

DIw, =(2h_1_.+1wi-4'0‘f l+1l)w +hyw, 1)/(hih. (h;+h Yy,

i+1

=}
£
"

(W, =W _4)/(h,+h; ),

c'i i+1 “Ti-1 1
' =
Diw, (wi W, )/hl+1,
" —_
Dyv iv1/2 T %i%ioq FBIWITY Wit Wio
L] -
Pa¥ia1/2 = Wiag™™i) /By
pCw (3w, -w }/2
M i+1/2 i Ti-1 !

where the notation Wie1/2 should be understood formally, and:

ay = (2hy o+hy )/ thy(hy+hy G} (hy+h, g+hy o)),
Bi = "(2(hj_+2-hi)+h )/(h1h1+1(hi+1+hi+2))’

Yi = (200 pmhy )Ry ) /Ry Ry By thy )

8, = (2hy+h ) /(b (b +h o) (hy+hy th o)),
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Before forming the discretization of problem (1), it
is convenient to rewrite the problem in the following form:

Lu: = —gzu"-a(x) (xu) '+(a(x)+c(x))u = £(x), x€I,

(5)
u(0) = u(1) = 0.

We shall use the following schemes for problem (5):
~ central scheme

Lhw T = -EZD"W -a(x,)D'x,w, + (a+c) (x,)w

c'1°® c'i 1"7e™i"i i""vi’
- mid-point scheme

n o 2, _ .
Lu¥i+1/2° e DyWir1/2 " 2%y 1120 DX 09 /0%54172 ¢

O
*+ (@a0) (x4 4 /20 Dy¥y 412

- up~wind scheme
Ihw : = —EZD"W -a({x,)D'x.w, + (a+c) (x,)w
‘uti® c'i 177+ i’7i

On mesh 1, we form the discretization of problem (5):

W, = 0
\LPw.=f(x.), 4f p.i=h.x, .a(x,)/(2¢2)<1
h c'i i’ i i"1-1 i -
(6) LGw.:=
i h )
LMwi+1/2-f(xi+1/2)’ if p1>1,
i=1,2,...,n=2,
LW = Lhw fix )
n-1° u'n-1 n-1""'
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This is the non-equidistant generalization of the Gushchin -
Shchennikov scheme, similar to the one from [2].

From now on we shall take

(7) n > 2a'(1)a,/a,,

where a’(x) > -ay, X€I, a; > 0. Inequality (7) implies that
‘ezYi'a(xi+1)xi+1/h1+1 <0 when p,>1,

thus it follows that the matrix, corresponding to system (6)
is an M-matrix, cf. [2]. Then the stability uniform in ¢ is
immediate.

h h
Schemes Lc and LM

are second order accurate and Lg
is a first order scheme. In spite of the use of Lg at point
X,_q’ We can prove that there is no loss of accuracy. The
technique for this is the same as in [2] and we shall not re-
peat the proof here. We shall only prove the consistency uni-

form in ¢ (see the next Section). Thus, we have the following

Theorem. Let u be the solution to problem (5) and
{wi} be the solution to diserete problem (8) on mesh I, with

n>n,, where n, €N ig8 great enough and independent of «.
Then we have the second order convergence uniform
in €:
2 -
luE(xi)-wil < Mh®, i=0,1,...,n.

4. PROOF OF THE UNIFORM CONSISTENCY
Let, besides (7), n satisfy n>6/t. The we can prove:

2

lrcue(xi)l Mh<, i=1,2,...,n-2,

| A

2

(8) |rMue(xi)| Mh©, i=2,3,...,n-2,

| A
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(note that at X4 LE is applied),

lrgu (x )| < Mh,

n-~1

= —th X
where rcue(xi)—(LuE)(xi) Lcue(xi), etc. Inequality (8) will be
proved only, since the other ones can be proved analogously.

For the technique cf. (2], [31, [71.

Let i=2,3,...,n-2. We have to prove that

", = 2 " - “ 2
(9a) R": = ¢ lue(xi+1/2) DMuE(xi+1/2)| < Mh°,
. = [} - n' 2
{9b) R': I(xue) (xi+1/2) DMxi+1/2ue(xi+1/2)l < Mh*,
o, _ (o] 2
(9¢) R : = lue(xi+1/2) - DMue(xi+1/2)| < Mh“,

The following estimates are valid:

(4)

" 2.2 ., 3,4
(10a) R" < Mh"e™ (A" (t; ,)7/2 (ti-I))Ui—1,i+2'

' 2. 2 "
(10b) R' < Mh"A'(t, ) max xug (x)™ [,

XiZXZX g4

o _ (1) 2 2 (2)
(10c) R < M((hi+1 hi)Ui—1,i+1 + h "'(ti+1) Ui-1,i+1"
where

Uésl =  max [ués)(x)l, s=1,2,4.
' Xy <X<X

The other estimates which we shall use are:

" 2 (2)
(11a) R" < MeU Ty 4o
Xi+1 :
(11b) R' < M(1/hy ) | xf (5%, 172 (su_(s)) "ds|,

i
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X,
i+1
=M [ J|ultx)lds.
x

(11c) rR®

i-1

Let j€EN be given by tj_1<r/2:tj. Because of n>6/t, we
have j>4 and tj+2<1/2+3h<1. Then

- 2/p
xj+2 = W(tj+2) < mge.

The proof will be given in the following steps:

-
-
n

°© i=2(1j

[\S]
(o]
-
)

j+1(1)n-2

2°1 t > 1+h

-1 2
2°2a) h < P74
2°2b) h > P/4

2°3 €y ,<1, t;_; < g-4h

o
274 g-4h < ti_1 < T.

The estimates from Lemma 1 will be used. Since the
exponential terms can be treated as in [{2] we shall here con-
sider non-exponential terms only.

First we shall need

[2]

Lemma 2. In cases 10, 2%1, 2°2a) and 203, we have

(k) (k) ' )
(12) A e e ) <w, k=01,
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Proof. Let us prove (12) for k=0. In case 2°1, we
have to prove

Q: = w(ti+2)/n(ti_1) < M.
Let s = t; = 1t > h. Then Q < Mg(s) with
gls) = (s+2n+eP/d)/(54cP/4) .
Since g'(s)<0, it follows that

g(s) < g(h) < M,

and this part of proof is completed.

In case 2°2a), we have
0 < M(h+eP/4) /eP/4 <y

and (12) holds again.

In case 2°3, we have to prove

{A

(13) Vit ) /el ) < M,

since t.0%9 and x1(ti+2)

|A

w(ti+2). Furthermore, in this case

we have
q-ti+2 kd (q"ti_.l) /4 ’
and (13) follows immediately.

In case 1°, we have to prove (13) as well. Now

(a=t;_q4)/(a-t; ) <1+ 3h/(t/2-3h) < M,

and we get (13) again.
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Inequality (12) for k=1 can be proved in the same way

since
M) = /22, (P2 (o). a
Now we continue with proving (9).
1° We use Lemma 2 for k=1, estimates (2a, 3a) and facts that

A'(ti+2) < Me,

2

h,,,-h, < Mhiiv(e, ) < mne

i+1 71 1+1)

to get (9) from (10).

2° By considering the non-exponential terms in (2b, 3b), we
conclude that when using (10) it is sufficient to prove

v, = ' 3 p/2
PP o= (A'(t; S) /AT (e ) )a(ty ) < M,
1, = 2 p-2
Pr:o= At 05 P o,
(14) P%: = (h, .-h.)a(t, )P < Mn?
' 117 A < Mh7,
ek} ig derived from the estimates (10) of r'*', k=0,1,2). In

cases 201, 2°2a) and 203, we get
< M, k=1,2,
because of Lemma 2 and (4b). In cases 2°1 and 2°2a), we have

(15) hi,,-h; < h2am(e

i+1 1+1)

and because of (4c) and Lemma 2 we get (14). Now let us prove
(14) in case 293, 1f ty 2T, then because of "(ti+1) < vlt

—2/ i+1)
(15) holds again with A=y P Because of
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(16) a-t;,.q 2 (g-t;_4)/4,

it follows that

p° < Mhzsp/(q—ti_1)4,

but since

g-t. p/4

i-1 > g =1 = Me

we obtain (14). If ti>-r>ti_1 we use

h., .-h, = (t y2/p

2/p_ 2/p
i+l i i+1) 2"(ti) +w(ti

<

-1

< vt 2P g1 Py, 2P

) +

+

200 (&) 2P () 2Py W2 APy ey

2/p-1

+

(4/p) v (£,) (plty)-m(t)) <

un (@ /Py e, 0+ e 2PN (e ))

A

Now from (16) it follows that

p° < Mhzep/(q-ti_1)4 < Mh? .

There remains to prove (9) in cases 2%2b) and 2°%4.
Now we shall use estimates (11). Again we shall consider the
nonexponential terms from (2b, 3b) only. Thus, it is suffici-
ent to prove:

s": = eda(t, )P/2 < wn?,
i-1 -
X
i+1
s': = [ sPlas < Mh?,
X

i
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(k)

(S(k) is derived from the estimates (11) of R , k=0,1,2).

2°2b) The proof for s® and S' follows immediately, since

k)

s < xB = w(t,, 02 < MeeP 2 cmn?, k=01,

For S" we have

s" < MEZW(T+h) (2/P) (P-2) < ME1+p/2 < Mh2.

p/4

2°4 Now because of q-4h<t, ,<t=q-Me we have Ep/4 < Mh, Since

s* < e2(u(x)) Z/PHP2) o ycP o ypn?

s (k) <xf < M(v(t)+h) 2 < MnZ, k=0,1,

(8) is proved. D

5. NUMERICAL RESULTS

Now we shall give some numerical results for the test

problem:
-ezu"-xu'+2u=f(x),
2
u(0)=1 , u(1)=1+exp(-1/€7),

with the exact solution u=x+exp(-(x/e)2).

The maximum point-wise error is denoted by E. By P we
denote the percentage of mesh steps in interval [0,e]. We take
that n=50.
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In Table 1 we give the results of our method. We take

that p=1, A=0.5, g=0.5 and obtain P=32%,

Table 1
c 1072 1073 1076 1079 10712
103€ 2.77 4.49 4.99 5.24 5.30

We compare these results with the results obtained by the up-
-wind scheme on the mesh from [3] with p=1: P=30% and E=0.018
for all ¢ from Table 1.
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REZIME

UNIFORMNI NUMERICKI METOD DRUGOG REDA
ZA PROBLEM SA POVRATNOM TACTKOM

Posmatra se singularno perturbovani konturni problem
sa povratnom talkom. Neekvidistantna generalizacija Seme Gu3éi-
na-3€enikova koristi se na specijalnoj mreXi diskretizacije i
dokazuje se drugi red konvergencije, uniformne po malom pertur-
bacionom parametru.
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