Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 18.1.163-168(1988) REVIEW OF RESEARCH FACULTY OF SCIENCE MATHEMATICS SERIES

CYCLIC VECTOR VALUED GROUPOIDS

Zoran Stojaković

Institute of Mathematics, University of Novi Sad, Dr Ilije Đuričića 4, 21000 Novi Sad, Yugoslavia

Abstract. Cyclic (n,m)-groupoids which represent a generalization of cyclic n-ary quasigroups and semisymmetric quasigroups are defined and considered. If S is a nonempty set, m, n positive integers and F a mapping of S^n into S^m such that for all $x_1,...,x_{n+m} \in S$ $F(x_1,...,x_n) = (x_{n+1},...,x_{n+m})$ implies $F(x_2,...,x_{n+1}) = (x_{n+2},...,x_{n+m},x_1)$, then (S,F) is called a cyclic (n,m)-groupoid. Some properties of such (n,m)-groupoids are determined and it is proved that every cyclic (n,m)-groupoid can be generated by an n-ary groupoid satisfying an identity.

1. Introduction

Vector valued groupoids represent a convenient generalization of n-ary groupoids. Various classes of vector valued groupoids which generalize n-ary quasigroups, semigroups and some other structures were considered in [1], [2], [3], [7]. Here we shall consider a class of vector valued groupoids which represents a generalization of cyclic n-ary quasigroups and semisymmetric quasigroups and which is closely related to some combinatorial structures.

We shall use the following notation. The sequence $x_p, x_{p+1}, ..., x_q$ we denote by x_p^q . If p > q then x_p^q will be considered empty.

An n-ary groupoid (n-groupoid) (S,f) is called an n-quasigroup iff the

An n-ary groupoid (n-groupoid) (S,f) is called an n-quasigroup iff the equation $f(a_i^{i-1}, x, a_{i+1}^n) = b$ has a unique solution x for every $a_i^n, b \in S$ and every $i \in \{1,...,n\} = N_n$.

AMS Mathematics Subject Classification (1980): 20 N15 Key words and phrases: n-ary groupoid, (n,m)-groupoid, cyclic identity. Let (S,f) be an n-groupoid and $\sigma \in S_{n+1}$, where S_{n+1} is the symmetric group of degree n+1. If the n-operation f is uniquely solvable at the place $\sigma(n+1) = k$ (k-solvable), that is, for every $a^n \in S$ the equation

$$f(a_1^{k-1}, x, a_k^{n-1}) = a_n$$

has a unique solution, then by

$$f^{\sigma}(x_{\sigma(i)},...,x_{\sigma(n)}) = x_{\sigma(n+i)} \Leftrightarrow f(x_i^n) = x_{n+i}$$

an n-groupoid (S,f^{σ}) is defined. The operation f^{σ} is called a σ -parastrophe of f or simply parastrophe. f^{σ} is $\sigma^{-1}(n+1)$ -solvable.

The set $\{(S,f_1),...,(S,f_n)\}$ of n-groupoids is said to be orthogonal iff for every $(a_1^n) \in S^n$ there exists a unique $(b_1^n) \in S^n$ such that

$$f_i(b_i^n) = a_i, i = 1,...,n.$$

Let S be a nonempty set, m, n positive integers and F a mapping of S^n into S^m . Then (S,F) is said to be an (n,m)-groupoid (or vector valued groupoid when it is not necessary to emphasize n and m). |S| is called the order of (S,F). The n-ary operations $f_1,...,f_m$ defined by

$$f_{i}(x_{1}^{n}) = y_{i} \Leftrightarrow (\exists y_{1}^{i-1}, y_{i+1}^{m}) F(x_{1}^{n}) = (y_{1}^{m}), i=1,...,m,$$

are called the component operations (or components) of F.

Although every (n,m)-groupoid (S,F) can be interpreted as an algebra $(S,f_1,...,f_m)$ with m n-ary operations, it is often more convenient to consider (n,m)-groupoids in the compact form as an algebra with one (n,m)-operation.

2. Cyclic (n,m)-groupoids

Definition 1. An $(n,m)\text{-}\mathsf{groupoid}$ (S,F) is called cyclic iff for every $x_1^{n+m} \in S$

$$F(x_1^n) = (x_{n+1}^{n+m}) \Rightarrow F(x_2^{n+1}) = (x_{n+2}^{n+m}, x_1)$$

Cyclic (n,m)-groupoids represent a generalization of cyclic n-groupoids and semisymmetric binary groupoids. For m=1 a cyclic (n,m)-groupoid is a cyclic n-quasigroup (every cyclic n-groupoid is necessarily an n-quasigroup). Cyclic n-quasigroups were considered in [8] and their combinatorial applications in [9], [11]. For n=2, m=1 a cyclic (n,m)-groupoid becomes a well known semisymmetric binary quasigroup (a quasigroup satisfying the identity y(xy) = x is called semisymmetric).

Cyclic (2,m)-groupoids are closely related to some combinatorial structures (£101). A class of idempotent cyclic (2,m)-groupoids is equivalent to Mendelsohn designs and to decompositions of the complet directed graph K_{ν}^{*} into arc disjoint elementary circuits of length m+2.

Definition 1 implies the following.

An (n,m)-groupoid (S,F) is cyclic iff for all $x_i^{n+m} \in S$ and every $i \in N_{n+m}$

$$F(\mathbf{x}_{i}^{n}) = (\mathbf{x}_{n+i}^{n+m}) \iff F(\mathbf{x}_{i}^{n+i-1}) = (\mathbf{x}_{n+i}^{n+m}, \mathbf{x}_{i}^{i-1}),$$

where all indexes are taken modulo n+m.

Now we shall determine some properties of cyclic (n,m)-groupoids. We note first that if (S,F) is a cyclic (n,m)-groupoid, then for n=m F is a bijection and $F=F^{-1}$, that is, F^2 is the identity mapping (by F^{-1} we denote the inverse mapping of F). If S is a set and F the identity mapping of S^n , then (S,F) is a cyclic (n,n)-groupoid. Hence there exist cyclic (n,n)-groupoids of every order and every n.

Theorem 1. Let (S,F) be a cyclic (n,m)-groupoid and $f_1,...,f_m$ its components.

- a) f is 1-solvable and f is n-solvable,
- b) f_m is a (1 2 ... n+1)-parastrophe of f_1 .

Proof. a) Let $(a_1^n) \in S^n$. Then there exist unique $(y_1^m) \in S^m$ such that $F(a_1^n) = (y_1^m)$. Hence

$$F(y_m,a_1^{m-1}) = (a_n,y_1^{m-1}).$$

So, for every $(a_i^n) \in S^n$ the equation

Then

$$f_{i}(y_{m},a_{i}^{m-1}) = a_{n},$$
 (1)

has a solution y_m . If we assume that equation (1) has another solution z_m , then $f_1(z_m, a_1^{n-1}) = a_m$ implies that there exist z_1^{m-1} such that $F(z_m, a_1^{n-1}) = (a_n, z_1^{m-1})$ and by the cyclicity of $F(a_1^n) = (z_1^m)$, hence $z_m = y_m$.

The proof is analogous for f...

b) Let $(x_1^n) \in S^n$. If $f_1(x_1^n) = y_1$, then $F(x_1^n) = (y_1^m)$ for some $(y_2^m) \in S^{m-1}$. Since $F(x_2^n, y_1) = (y_2^m, x_1)$, it follows $f_m(x_2^n, y_1) = x_1$, hence $f_1(x_1^n) = y_1$ implies $f_m(x_2^n, y_1) = x_1$. Analogously we get the inverse implication, f_1 is 1-solvable, which means that $f_1^{(12...n+1)} = f_m$.

Theorem 2. Let (S,F) be a cyclic (n,m)-groupoid, nsm, with components $f_1,...,f_m$. Then $\{f_k,...,f_{k+n-1}\}$ is orthogonal for every $k \in N_{m-n+1}$.

Proof. For every $(a_1^n) \in S$, there exist unique $(y_1^m) \in S^m$ such that $F(a_1^n) = (y_1^m)$ which implies $F(y_{m-n+1}^m) = (a_1^n, y_1^{m-n})$. So, for every $(a_1^n) \in S^n$ the system

$$f_1(y_{m-n+1}^m) = a_1, \dots, f_n(y_{m-n+1}^m) = a_n,$$

has the unique solution $(y_{m-n+1}^m) \in S^n$, hence $\{f_1,...,f_n\}$ is an orthogonal system and analogously for any other n consequtive component operations $f_k,...,f_{k+n-1}, k=1,...,m-n+1$.

Let (G,f) be the free n-groupoid on n generators $x_1,...,x_n$. We shall generate an infinite sequence of words in (G,f) in the following way:

$$\mathbf{w}_{i}(\mathbf{x}_{i}^{n}) = \mathbf{x}_{i}, \dots, \mathbf{w}_{n}(\mathbf{x}_{i}^{n}) = \mathbf{x}_{n},$$

 $\mathbf{w}_{i+n}(\mathbf{x}_{i}^{n}) = f(\mathbf{w}_{i}(\mathbf{x}_{i}^{n}), \dots, \mathbf{w}_{i+n-1}(\mathbf{x}_{i}^{n})), i=1,2,\dots.$

The identity of the form $w_k(x_1^n) = x_1$, k > n, is called k-cyclic identity and an n-groupoid satisfying this identity is called k-cyclic n-groupoid. k-cyclic binary quasigroups were considered in [4], [5], [6]. For k = n+1, $n \ge 2$, k-cyclic n-quasigroups are cyclic n-quasigroups from [8].

The definition of w, implies the following identity;

$$\mathbf{w}_{i}(\mathbf{w}_{i+1-i}(\mathbf{x}_{i}^{n}), \dots, \mathbf{w}_{i+n-j}(\mathbf{x}_{i}^{n})) = \mathbf{w}_{i}(\mathbf{w}_{i}(\mathbf{x}_{i}^{n}), \dots, \mathbf{w}_{n}(\mathbf{x}_{i}^{n})), \quad 1 \le j \le i.$$
 (2)

Now we shall show that every (n,m)-groupoid can be defined by a single (n+m-1)-cyclic groupoid.

Let (S,F) be a cyclic (n,m)-groupoid and f the first component of (S,F). If $F(x_1^n) = (x_{n+1}^{n+m})$, then $x_{n+1} = w_{n+1}(x_1^n)$ and by the cyclicity of F

$$F(x_i^{n+i-1}) = (x_{n+i}^{n+m}, x_i^{i-1}), \quad i=1,...,n+m.$$
 (3)

Hence for i=2 using (2) we get $x_{n+2} = w_{n+1}(x_2^{n+1}) = w_{n+2}(x_1^n)$, and similarly for other values of i we obtain $x_{n+1} = w_{n+1}(x_1^n)$, i=1,...,m. Hence

$$F(x^{n}) = (w_{n+1}(x^{n}_{1}), ..., w_{n+m}(x^{n}_{1})),$$
(4)

Now from (3) for i = 2 and (4) it follows

$$w_{n+m}(x_2^n, w_{n+1}(x_1^n)) = x_1$$

which by (2) gives $w_{n+m+1}(x_1^n) = x_1$.

Theorem 3. Let (S,f) be an n-groupoid. (S,f) is an n-groupoid satisfying the identity

$$w_{n+m+1}(x_i^n) = x_i.$$

iff the (n,m)-groupoid (S,F) defined by

$$F(x_{1}^{n}) = (w_{n+1}(x_{1}^{n}), ..., w_{n+m}(x_{1}^{n}))$$
 (5)

is a cyclic (n,m)-groupoid.

Proof. Let (S,f) be an (n+m+1)-cyclic n-groupoid. If $x_i^n \in S$, then (5) is valid and using (2) we get

$$F(x_{2}^{n}, w_{n+1}(x_{1}^{n})) = (w_{n+1}(x_{2}^{n}, w_{n+1}(x_{1}^{n})), ..., w_{n+m}(x_{2}^{n}, w_{n+1}(x_{1}^{n}))) = (w_{n+2}(x_{1}^{n}), ..., w_{n+m}(x_{1}^{n}), x_{1}^{n})$$

hence (S,F) is a cyclic (n,m)-groupoid.

The converse part of the theorem has been already proved.

Using cyclic (n,m)-groupoids by Theorem 3 some results on k-cyclic n-groupoids can be obtained and vice versa.

Theorem 4. Let (S,f) be an n-groupoid, k-1>n. Then for all $x_i^m \in S$

$$w_k(x_i^n) = x_i \iff w_{n+1}(w_{k-1}(x_i^n), x_i^{n-1}) = x_n.$$

Proof. Let (S,f) satisfy $w_k(x_i^n) = x_i$. By the preceding theorem if F is defined by

$$F(x_i^n) = (w_{n+1}(x_i^n), ..., w_{k-1}(x_i^n))$$

then (S,F) is a cyclic (n,k-n-1)-groupoid. Hence

$$F(w_{k-1}(x_1^n), x_1^{n-1}) = (x_n, w_{n+1}(x_1^n), ..., w_{k-2}(x_1^n))$$

and consequently $w_{n+1}(w_{k-1}(x_1^n),x_1^{n-1}) = x_n$.

The inverse implication is proved analogously.

Similarly all previously obtained results and results from [10] on cyclic (2,m)-groupoids give the corresponding properties of n-groupoids satisfying the identity $w_{L}(x_{L}^{n}) = x_{L}$.

REFERENCES

- G. Čupona, J. Ušan, Z. Stojaković, Multiquasigroups and some related structures, Maced. Acad. Sci. and Arts, Contributions, Sect. Math. Techn. Sci. I 2, 1980, 5-12.
- G. Čupona, Z. Stojaković, J. Ušan, On finite multiquasigroups, Publ. Inst. Math. Belgrade, 29 (43), 1981, 53-59.
- 3. G. Čupona, Vector valued semigroups, Semigroup Forum, 26, 1983, 65-74.
- C.C. Lindner, On the construction of cyclic quasigroups, Discrete Math., 6 (1973), 149-158.
- 5. C.C. Lindner, N.S. Mendelsohn, Construction of n-cyclic quasigroups and applications, Aequationes Math., 14 (1976), 111-121.
- N.S. Mendelsohn, Combinatorial designs as models of universal algebras, Recent progress in combinatorics, Academic Press, New York, 1969, 123-132.
- Z. Stojaković, On bisymmetric [n,m]-groupoids, Univ. u Novom Sadu, Zb. rad. Prir.-mat. fak., 12, 1982, 399-405.
- Z. Stojaković, On cyclic n-quasigroups, Univ u Novom Sadu, Zb. rad. Prir.-mat. fak., 12, 1982, 407-415.
- Z. Stojaković, A generalization of Mendelsohn triple systems, Ars Combinatoria, 18, 1984, 131-138.
- 10. Z. Stojaković, On cyclic (2,m)-groupoids (to appear).
- Z. Stojaković, D. Paunić, Self-orthogonal cyclic n-quasigroups, Aequationes Math., 30, 1986, 252-257.

REZIME

Definisani su i razmatrani ciklični (n,m)-grupoidi koji predstavljaju uopštenje cikličkih n-arnih kvazigrupa i polusimetričnih kvazigrupa. Ako je S neprazan skup, m i n prirodni brojevi a F preslikavanje S^n u S^m takvo da za svako $x_1,...,x_{n+m} \in S$ iz $F(x_1,...,x_n)=(x_{n+1},...,x_{n+m})$ sledi $F(x_2,...,x_{n+1})=(x_{n+2},...,x_{n+m},x_1)$, onda se (S,F) naziva ciklički (n,m)-grupoid. Određena su neka svojstva takvih (n,m)-grupoida i pokazano da se svaki ciklički (n,m)-grupoid može generisati n-arnim grupoidom koji zadovoljava jedan identitet.

Received by the editors March 31, 1988.