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Abstract In this paper a theorem on coincidence points for the famtly
{Ax}lew of multivalued mappings and singlevalued mappings S and T in
convex metric spaces is proved. The obtained theorem contalns, as special

cases, the theorems from (1], [2] and [5).
1. Introduction

An extension of the contraction principle in convex metric spaces 1s
obtained in (1].

THEOREM A Let (M,d) be a complete convex metric space, K a nonempty
closed subset of M, A: K — CB(M) (the family of all bounded, closed and
nonempty subsets of M) such that A(8K) & K and there exists q € (0,1)
so that
(1) H(Ax,Ay) = qd(x,y), for every x,yeK.

Then there exists x € K such that xeAx.

Let us recall that (M,d) is a convex metric space if for any x,yeM,
x#y there exlsts.an element zeM such that x#y#z and

d(x,z) + d(z,y) = dix,y).
By H the Hausdorff metric is denoted. A generalization of Theorem A is
proved in [4], where condition (1) is replaced by condition (2):
(2) H(Ax,Ay)sad(x,y) + Bld(x,Ax) + d(y,Ay)] + 7[d(x,Ay) + d(y,Ax)],
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for every x,y € K where a,B, 720, (a+pty) (1;131-1) <1
(1-g-7)

A further generalization of Theorem A is given in [S].

DEFINITION 1. Let K be a nonempty subset of a metric space (M,d) and
S,T:K 5 CB(M). Then (S,T) is salid to be a generalized contractlion pair on
K if there exist ea,B,y 20 witha + 28 + 2y < 1 such that for any x,yeK
(3) H(Sx,Ty) s ad(x,y) + Bld(x,Sx) + d(y,Ty)] + y[d{x,Ty) + d(y,Sx)].

THEOREM B [S] Let (M,d) be a complete convex metric space, K a non-

empty and closed subset of M, (S,T) be a generalized contraction pair on

K so that ,
(atB+y) (1+8+7) 1.

S(8K) v T(8K) € K and 3
' (1~8-7)

Then there exists zeK such that zeSz and ze€Tz.

In [2] inequality (3) is replaced by inequality (4):
(4) H(Sx,Ty) s ad(fx,fy) + Bld(fx,Sx) + d(fy,Ty)] + y[d(fx,Ty) + d(fy,Sx)],
for every X,y € K, where f:K 5 M, and under some additional conditlons it
was proved the existel;ce of an element z € K such that fz € Sz and fz € Tz.
We shall introduced the following definition.

DEFINITION 2 Let K be a nonempty subset of a mertic space (M,d), for

every 1 € N, AI:K > CB(M) and S,T: K » M. The family {A is said to be

ihian
a generalized (S,T) contraction famlly if there exist a,B,7y & 0 such that
(a+B+7) (1+8+7)

(1-g-7)?
(5) H(Alx.AJy) s ad(Sx,Ty) + ﬂ[d(Sx,Alx) + d(Ty.AJy)] + 1[d(Sx.AJy) +
+ d(Ty,Aix)l. for every x,y € K.

< 1 and for every 1,J € N (1=]J):

If A:K 9 CB(M) we say that A 1s H continuous if A is continuous a&s a
mapping of (K,d) into (CB(M),H)

In this paper we shall prove a theorem on coincidence points for the
family {A;}, o, S and T if the family {A}, o 1s a generalized (S,T)
contraction.

THEOREM Let (M,d) be a complete, convex metric space, K a nonempty
closed subset of M, S and T contiruous mappings from K into M, {Alhd! a
family of mappings from K into CB(M), which iIs a generalized (S,T)
contraction family, so that the following conditions are satisfied:
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1. For every meN and every yek:
TyeK =» T(A-y nkK)s A-Ty
Syek =» S(A-y nkK)s AnSy.

2. 9KSSK n TK, AnK n KSSK n TK, for every weN and the following
implications hold:
Txe3K » Amx S K, for every meN,
Sxe€8K » Anx S K, for every meN.

Then there exists zeK such that one of the following families of
inequalities is satisfied:

d(Sz.Anz)s T%:t:d(Tz,Sz), for every meN

d(Tz,A-z)s %—:t:d(Tz,Sz), for every meN.

If T,S:M > M, A, is H contimuous, for every leN and for every ye€K and meN:

1
TyeK =» T(A.y) < A.Ty; Syek =» S(A-y) < AmSy
then {Tz,Sz} n A.z # @, for every meN.

Proof: Let xe8K. Since 8K € SK n TK it follows that there exists poex
such that Tp0=x. Further, from Tpoeal( and the implication TuedK =» Alus‘-l( we

conclude that A ,p.SK. From A KnKSSKNTK we have that Alpossx and hence

1Po 1
- ,
thgrw&sts pleK such that Sp1 = pleAIpo.
,
Let pzeAzp1 so that

¢ e 1-g8-y < latB+y) (1+48+7)
d(PI'pZ) s H(AIpo.Asz) + o8 k, k _(I-B-v)a .

If péeK from péeAZKrKsTK it follows that there exists pzeK so that

TpZSpé. If péﬂ{ then there exists pzeK so that szeax and

d(SpI.sz) + d(sz.pz) = d(Spl,pz).
Let paeAapz so that

, , 1- =
d(py.p;) s H(Ap,, Ap,) + i%:_r K2

If péeK from péeAQKnK S SK it follows that there exists p3eK 80 that
Sp3=pé. If péel( then there exists paeK so that Sp3€8K and

d(Tp,, Sp,)+d(Sp,, p3) = d(Tp,,p3).
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Continuing in this way we obtain that there exlst two sequences

{pn}nsﬂ and {p;}nﬁﬂ such tﬁat:
1. For every neN, p;eAnpn‘1

2. For every neN the following implications hold:
pZnEK ® Pan” Tp2n;
p2n+1EK ? Ponet™ Sp2n+1;

p2n¢ K= TpZneaK and

d(Spy 10 TRy,) + alTpy . py) = d(Sp, 4. Poy

p2n+1¢!( = Sp2n+1eal( and

)

d(Tp2n, Sp2n+1) + d(Sp2n+1. pén+1) = d(TpZn. pénﬂ) .

3. For every neN

P n 1-B-y
d(pn,p ) s H(Anp A ) + k

n+1 n-1' “n+1Pn

We shall prove that there exists zeK so that z=lim Tp2n=
n-xo

Let PO,Q 'Pl'Ql be define in the following way:

Fo = {pzn‘ neN and po= TPZn} :
% = {psz neN and P, Sp2n+1} '

Py =Pz

] neN and p2n¢ TpZn} ,

N
¢ = {p2n+1; neN and Ponir® SPoner} -
It is easy to prove that the following implications hold:

Pon € Py 2Py, €Q a0d by g €Qy 5

Pon1 €Q 2Py €Fy andp, ,eFy.

ey -

lim szn+1 .
n-xo
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Hence, we have the following possibilities:
(PonPans1) € Foxlg ¢ (Papr Popey) € Fp¥Qy

(PonrPoner’ € Py¥Gg -
a) If (pZn'p2n+1) € Pon0 then from (5) we have

- ’ ’ 2n I-B-y
d(TPy s SPopyy) = AR5 Ponyy) 5 HlAyPon 10 ApniiPay) * K Togn =

= ad(SPZn—l' TPZn) * B[d(SPZn—l' A2np2n—1) * d(T})Zn'A2n+1p2n)] *

2n 1-8-y
+ yld(Sp,y 1Ay gPyy) *+ d(TRyn, Aypoy )]+ KT iy S ad(Spy, o0 TRy )

+B1d(Sp, _;, Tp,y ) + d(Tp, ,Sp, )] + vId(Sp, 1.Sp, 1) + d(Tp, , Tp, )]+

k2n 1-B-y

Tigey 5 A(SPy, 12 TPyp) + (B+)A(Sp,, TRy, ) + (B+y)d(TR,,,Spyp,y) *

2n 1-B-y
1+g+y °
This implies that
a+B+y 2n 1
4P, SPansy) = Togy 4(5Pon-1+TP2n) * ¥ 13p55 -

4 =
b) If ) € Pon1 then d(TPZn'Sp2n+1) = d(TPZn'p2n+1)

(pZn’p2n+1

)+ k2n 1-g~y

) = H(AZnPZn—l'AZnHPZn 1+8+y

= ’ ’
4(P5n Pans1
which implies that

oty 2n 1
d(TPy SPyyq) 3 Togy HSPa 1 TPa) * K7 gy

c) If (p2n,p2n+1) € PleO we shall prove that

< (1+8+y) (a+B+y)
(l-B-y)2

2n-1 1 2n 1

d(TP,,+ SPonyy) d(Spy,_ 12 TPypp) + K T+Bey Tegvy
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We have

’ ’ -B-y
d(pZn'pZnﬂ) = H(AZnPZn-l’Aan-lpZn) + 1+8+y k = "'d(SPZn—l'TPZn) +

BlASPy 1 AonPan-1) * 4(TPpn Ay qPap)l + 71d(SP, 1u Ay 1Po) + A(TRy,

-B 7 2n_ Fa ’
AanPan-1)1 + 1egey K= @d(Spy . Tey) + BIA(SPy 4. p5) + d(TPy . Py )]

. . 1-B-y 20 _
v 71y o Poney) * TRy Pop)] ¢ gy KT = adlSpy TRy ¢

Bld(Spy 1:P5,) + d(Tpy.Spy )] + 7Md(Sp, .S, ) + d(Tp, .p) )]

1-g~y .2n 5 s

Topey © 5 @Sy paTRy,) + BlA(SRy 1.P5,) ¢+ d(Ty,Spy 00 +

yld(Sp, .,Tp, ) + d(Tp, .Sp, ..) + d(Tp, ,p, )] + B2 2n _ (o)
2n-1' P2p '2n’ “Pan+1 Pop:Pop 1++y

d(Spyq 12 TRy,) + BA(SP,, 12Poy) + (B+2)A(TP,,,Spy, Lg) + 7d(Tp,  Py)

1-g-» k2n
1+B+y

From this we obtain that:

d(Tp2n'5p2n+1) = d(TPZn'pén) + d(pZn’pénd-l) s (1+) d(TPZn‘F’Zn)

p 1-g-y . 2n
+ (a+y)d(Sp2n_l.Tp2n) + Bd(SPZn—l'pZn) + (B+7)d(Tp2n,Sp2n+1)] + Tigiy k

and since <1 and d(SpZn_I.Tp2n)+d('l'p2n.pén) = d(Sp2n_1.pé,‘) we have that

1+B+y 2n 1
TPy, SPony1) = 1oy SPan-17P2n) * & 13wy -

It is easy to see that pén_1=Sp2n_1, since p2nEl-"1 implies that p2n_1EQ0

and so:

1+B+y d(p! 2n

d(Tpy,. SPopyq) = Top=y HPop-q:Pay) * K

_1
1+8+y °
that d(p; . ) s BB
Similarly as in case b) we can prove Pon-1+Pan 1-B-y
2n 1
© APy 1 TPa) * K 1aEy
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which implies that

1+8+y  a+B+y 2n-1 1 2n 1 _
d(TP,vSPone1) = 1oy gy 4Pon 1 TP ) * K7 1! * K7 1wy
= (148+y) (atB+y) 2n-1 1 2n 1
(1872 4Py TPon-2) * ¥ T3 * & Tegey

Similar inequality can be obtained for d(Sp2n_1.Tp2n) and as in the Itoh

paper it follows that there exists zeK so that

lim szn_1 = lim Tp2n a z.
n-xo n-m

Since pZnEPI implies that pzl_“leqo and p2n—1‘°1 implies that pZnEPO
we conclude that there exists at least one sequence {Tpan}k & °F

{sp,. _.} such that:Tp €A, D, _..
an 1MkeN 211k 2n 2nk 1

5 for every ke or Sp2nk_1 €

for every keN.

€ Aan-lp 2nk-2

Suppose that there exists a sequence {n

ktkep Such that Tp, e
k

for every keN.

A211kpan—1

Since from condition 1 it follows that Sl'p2 keN we

n € AanSpan_l '

have that d(STpan,Amz) s H(AanS]:a2 Amz) for every keN and every meN.

mt
Further, for chnk:
H(Aansznk_l, Az2) s ad(Ssznk_l.Tz) + B[d(SSPan_l.AanSPan_l) +
+ d(Tz,A 2)] +y[d(SSp2nk_l.Amz) + d(Tz, AanSP -1
and since STp, e Sp,_ _, we have that
an A2nk an 1
H(AankSpan_l,Amz) s ad(SSpan_l.Tz) + B[d(SSpank_l,Ssznk) + d(Tz,A 2] ]+

+y[d(SSp2nk_l,Amz) + d(Tz,ST,_ )} .

2y
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This implles that

lim d(STp, A z) = d(Sz,A z) S ad(Sz,Tz) + @ld(sz,Sz) + d(Sz,Tz) +
k- nl: ’

+ d(Sz.Amz)] + y[d(Sz,Amz) + d(Tz,s2)]
and so

arBry
d(Sz,Az) = e d(Tz,Sz), meN.

We shall prove that from the assumptlon:

»

T:M > M and TyeK » T(Amy) < AmTy. meN

1t follows that TzeAz, for every meN.

First, we shall prove that

(8) lim d(Tp,_ ,Ap,. ) =
k- an n an

keN we have that

0.

Since Tp2

€ P 4
oy © *on,Pan -1
d(Ampansznl)( s H(Ampznk. AanPan—I)
since Tp € P,  _,- Further,

20, A2nk 2n, -1
H(A p, . P, _,) S @d(Sp, _.,Tp, ) + Bld(Sp, _..,A, p, _.)+
nan A2nk2n.k1 2nk1 an 2nk1 2nk2nk1
d(TPan'AmPan)] +y [d(Span_l,Ampan) + d(Tp2nk,A2nkp2nk_1)]

and since sz nk € AanPan-l we have that

d(Ampan,Tpan)s ad(Span_1,Tp2nk) + B[d(SPan—l’sznk) + d(Tpan.Ampznk)]

'+7 [t:l(sznk_1 , Ampan) +d(Tp2nk, sznk) I= “d(5p2nk—1 , sznk) +B [d(Sp2nk—1 , TPan)

+ d(Tp2nk.Amp2nk)l + y[d(sznk_l.Tpan) + d(TPan'AmPan)]
and so

arB+y
d(AmPan'TPan) = T:§:§d(5p2nk—1'Tp2nk)'
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From this we obtain that

’ atf+y
lim d(Tp,_ ,A p, ) s —==d(z,z) =0
Koo an ) an 1-8-»

and (6) is proved. For every keN there exlsts zkEAIPan such that

1
d(sznk, zk) < d(Tpank,A-pZHk) * 5

and from (5) we obtain that 1im d(Tpan.zk) = 0 which implies that
K-

lim Z.=z, since lim sz = z. Using the implication: Ty € K =»
ko ko

Since A_ 1s H
n

=» T(Amy) [~ AmTy from z € Ampznk we obtain that Tzke A.Tp

cont inuous, Am 1s closed and from the continulty of T we obtain that

Tze Amz. for every m € N.
Remark 1. We shall prove that the following inequality 1s satisfled

(7 alz, A 2) s 2P4(12,2), men.
1-8-7
We have for every m € N and k € N such that 2nk== m that

d(Tp,_ ,A_z)}s H( P,. _,-A 2) s ad(Sp, _.,Tz) + Bld(Sp,_ _,, P, _q)
anm Aan2nk1m 2nkl anlAanznkl
+ d(Tz.Amz)] + y[d(Span_l.Amz) + d(Tz'AanPan-l)l E ad(stnk-l'TZ) +

B[d(SPan—l' ) + d(Tz,Amz)] +y[d(Sp2nk_1,Amz) + d(Tz,Tpank)].

Tpank
From this we have

11(.1;: d(Tp- nk’AmZ) = d(z,Amz) s ad(z,Tz) + Bld(Tz,z) + d(z,Amz)] +

+ rd(z.Amz) + yd(Tz,2z)

which 1mplies:

d(z.Amz)(l—B-y) < (a+f+y) d(Tz,z).

Hence, (7) is proved.

Remark 2. Suppose that A. is a singlevalued mapping for every m € N and
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prove that T,S:M > M implies that z = Sz = Tz = A z, for every m € N.

k

¢2l('l'p2nk A2nk 2nk 1) s d(TpZHk,A‘AZnK) +

) = d(Tp.

For every m € N and k € N such that 2n # m we have

d(AIPan'AanSPan-l an, AnPan) + md(TPan'SSPan-l) +

*B1A(Toyy ARy, ) + S0y Aoy SPay )
y[d('l‘p2nk A2nk pan R d(SSPZHk—l'A-pan)]'

If kK > @» we obtalin that
d(z,Sz) s ad(z,Sz) + Bd(Sz,Sz) + 2yd(Sz,2z).

Since a + 28 + 2y < 1 we conclude that d(z,Sz) =
We have proved that T'M 5> M implies that Tz = Az, for every m € N.

Using the inequality

d(Sz,Te) = d(Sz,A2) = %12-*—” d(sz, Tz)

for ZB*7 . | ue obtain that d(Sz,Tz) = 0 and so

1-B-»

z2=S2z="Tz = A.z, for every m € N,
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REZIME

TEOREMA O TACKAMA KOINCIDENCIJE ZA VISEZNACNA PRESLIKAVANJA U KONVEKSNI}
METRICKIM PROSTORIMA

U ovom radu dokazana je teorema o tackama koincidencije za familiji

; {Ai}i e Viseznacnih preslikavanja 1 jednoznacna preslikavanja S i T :

konveksnim metrickim prostorima. Dobijena teorema sadr2i kao specijaln
slucajeve, teoreme iz (1], (2] i [5].
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