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ABSTRACT

In this paper we shall introduce the notion of a pro-
babillistic metric space with a convex structure and prove fixed
point theorems for multivalued mappings in such spaces.

1. INTRODUCTION

In [16] K.Menger introduced the notion of a probabilistic
metric space and there are many papers from the theory of proba-
bilistic metric spaces(for bibliographies see the books [4] ,

{15] and [27] ).Since 1972 ,when V.Sehgal and A.Bharucha-Reid
published the paper [29] ,there is an increasing interest in the
fixed point theory in probabilistic metric spaces and this theory
is now an important part of the stochastic analysis [1] .

Fixed point theocrems for singlevalued and multivalued
mappings in probabilistic metric spaces are proved in [3],(5]-[14],
(19] -[24],031][32) and [37] .Scme very interesting results
from the theory of probabilistic metric spaces are obtained by a
group of Romanian mathematicians from the University of Timisoara.

Japan mathematician W.Takahashi introduced 'in[ 35] the
notion of a metric space with a convex structure . This class of
metric spaces includes normed linear spaces and metric spaces of
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hyperbolic type (see the books[33] and [ 34] ).Iterative processes
on metric spaces of hyperbolic type,are\investigated by W.A.Kirk
and K.Goebel ([33] , [34] ).Some fixed point theorems in such
spaces are proved in [18],[25],[33],[34],[35] and [ 3¢]

In this paper we shall generalize this notion to the class
of probabilistic metric spaces, give a nontrivial example of such a
space and prove fixed point theorems for multivalued mappings
of nonexpansive type,which are defined on such spaces-
2. PRELIMINARIES

In this section we shall give necessary definitions and
notations .By A we shall denote the set of all distribution
functions F such that F(0) = 0 (F is a nondecreasing,leftconti-

nuous mapping from R into [0,1] so that sup F(x) = 1).

. XE R
The ordered pair (S,F) 1is a probabilistic metric space

if S is a nonempty set and F:SxS+A (F(p,q) for p,g€s is

denoted by Fp q) so that the following conditions are satisfied:
14

1. Fu,v(x)

1 ,for every x>0 » u = v, and F is symmetric.

2. Fu,v(x? =1 and Fv,w(y) =] = Fu’w(x+y) =1 ‘
. + + !
for every (u,v,w) € S x § x § and (x,y}) € R x R..

A Menger space is a triple (S,F,t) where (S,F) is a
probabilistic metric space and t is a T-norm [27] so that :

Fulv(x+y) > t(Fu'v(X1,Fvlw(y))
for every u,v,wES and every Xx,yER ,

The (eg,))-topology is introduced by the family of neighbour-
hoods given by : :

U ={U (e M}y ¢, 0 esxrTx(0,1)

where Uv(e,k) is defined in the following way :
UV(E,A) ={u|u€S,I-‘u v(t»:)>1-A }o.
r
Let A be a nonempty subset of S where (S,F) is a probabilistic
metric space . The function DA(-),defined on R+ by :
DA(x) = sup inf F (t) x€R"

t<«x p,qg€A Pr
is called the probabilistic diameter of A and the set A is

probabilistic bounded if and only if [2]
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sup DA(x) =1 .,
XER
The notion of a random normed space is introduced by Sherstnev

in [30] . A random normed space (S,F,t) is an ordered triple

where S is a real or complex vector space,t is a T-norm which
is stronger then T-norm Tm:Tm(x,y) = max {x+y-1,0} and the
mapping F:S+ A satisfies the following conditions :
(a) Fp= He p = 8 ,where € is the neutral element of S
and the mapping H is defined by : g

0 ,xg0
H(x) = .
1 ,x>0
(b) For every p€S,every x€R' and every A € K\ {8}( K is the
scalar field of S):

= X
FAp(x) = Fp(lkl)

(c) For every p,q€S and every x,y€R+ H
F +y) 2t (F F .
P'q(* y)2t( p(x), q(y))

Every random normed space is a Menger space,where F:SxS-+A
is defined by F(p,q) = Fp—q ,for every p,q€s .

The notion of a metric space with a convex structure is
introduced in[35] by Takahashi and we shall generalize this

notion on a Menger space .

‘Definition l.ret (S,F,t) be a Menger space . A mapping
W:Sxsx [0,1]1+S 45 said to be a convex structure if for every
(x,y)€ESxS :

Wi{x,y,0) =y ,Wix,y,1) = x

and for every  A€(0,1) :
(5)/F, (=x)

E‘u~‘_w(x,3r,)‘)(25)a t(Fu,x u,y- 1=
for every ¢€R" " and every (u,x,y) € S x S x S.

Let us prove that every metric space (S,d) with a convex
structure in the sense of Takahashi is a Menger space with a
convex structure .

Let (S,d) be a metric space with a convex structure W
which means that W:5xSx[0,1]+S so that for every (x,y,A)€SxSx{0,1]
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(1) d(u,W(x,y,A)gxd(u,x) + (1-1)d(u,y) ,for every ue€s .
It is known that (S,F,min) is a Menger space ,where :
0,d4(u,v)2x
Eu v(x)=
’ 1,d(u,v)<x
Let us prove that :

(%) ,Fu’y(—i—) }

(2) Fu,w(x,y,x)(2€)> min{F =X

u,x

for every (u,x,y)€ESxSxS and every (e,A)€R+x(0,l) . Suppose
E = .L e £

that Fu,x(A)e 1 and Fu,y(l-x) = 1 , Then <Vi(u,x)<.x

and d(u,y)< =% and (1) implies that :

d(uW(x,y, M) A5 + A=)y = 26
Hence,we have that :

= = i ‘ E _5_
Fu,w(x,y,k)(ze) 1 mln{Fu,x(A)’Fu,y(l-k)} .
1€ mi e € yio .
£ mln{Fu,x(A)'Fu,y(T:X)} 0 then from Fu,w(x,y,k)(zs)zo

it follows that (2) is satisfied.
Furthermore from (1) we obtain ,for A, = 0 and u = y
that W(x,y,0) = y and for A =1 and u = x that W(x,y,1) = x
Every random normed space is a Menger space with the

convex structure defined by W(x,y,A) =2 x + (l-A)y ,for
every (x,y,A)€ESxSx[0,1] . This follows from the inequality:
Fa,wix,y, ) 28 = Fuoax- (1-a%8) = Faqu-x) + (1-2) (u-y) (28
€ €
;t(Fu~x(X)’Fu—y(T:7))

EXAMPLE Let us give a nontrivial example of a probabilistic
metric space with a convex structure . Suppose that (M,d)
is a separable metric space with a convex structure W so
that for every X€[0,1] the mapping (x,y)PW(x,y,A)is
continuous and (2,A,P) is a probability space .

Let S be the space of all measurable mappings from
Q into M(i.e.the space of all equivalence classes) . It is
well known [4] that the triple (S,F,Tm) is a Menger space ,
if for every X€S,Y€ES ,e>0,u€(0,1] and veE[OD,1]
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FX,Y(E)

T (u,v) = max{u+v-1,0} ,

P {w] d(X(w),¥(w))<e}

Let W:SxSx[0,1]1+S be defined by the relation:
W(X,Y,2) (w) = W(X(w),Y(w),X) ,for every we€Q

and for every X€S ,Y€S ,A€[0,1l].
Since X and Y are measurable mappings and W is,for every
fixed A€[0,1]) ,a continuous mapping it follows that for
every X€S and YES ,W(X,Y,\)€S . "

Now ,prove that for every U€S,X€S,YES and A€(0,1)

(2¢)3T_(F,. (£),F.. (==

™) Py #(x,¥,2) m'Fu,x %) Fy, vy T3

 for every €>0.

From the definition of the mapping F it follows
that:

FU,W(X,Y,A)(ZE) =P {w]| 4(U(w) ,W(X(0),¥(w),A))<2e }
Further,from (1) it follows that for every weQ :

4(U(w) ,W(X(w),¥(w),2))< 2d(U(0) ,X(w)) + (1-2)d(U(w) ,¥Y(w)).
- This inequality implies that :

{wld(U(w'),W(x(w),Y(m) )< 2e}2{w|d(Uw) ,X(w)) < }

N {w]d(U(w), Y(w))< } and so we obtain that -:

p[{mld(U(m) WX (w),Y(w), A))<2E]']>P[{w| d(U(w) X(w))<— }
n{w|d(Uw), y(w))<———}] . Since for every A,B€A P(AnB)—P(A)+P(B)
-P(AUB) we obtain that:

P[] 4(UW),Xw))<EINW][AU0),¥ W) )]
= P[{w] d(U(w),x(w))<%}] + Pl{w] d(U(m),Y(m))<i%x}]
-Pl{w] d(U(m),X(w))éi}u {wld(U(w),X(w))=i%;i ]
FU X A)+FU Y(Tgf) - 1 ,which completes the proof of (*) .

In a Menger space With a convex structure the notion of
a star-convex subset can be introduced similarly as in the case
of a normed space .
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befinition 'z, Let (S,F,t) be a Menger space with a convex
structure W:SxSx[0,11+S and M a subset of S . The set| M is said
to be star-convex ©f there existsxOEM‘euch that @

W(x,X_,A)€EM ,for every (x,r)€sx[0,1] .
Then X ie a star point of the set M .

In this paper we shall suppose that (S,F,t) is a Menger space
with a convex structure W:SxSx [0,1]+S so that the following
condition is satisfied :

(3) FW(x,z,A),W(y,z,A)(AE);Fx,y(E)
for every (e,X)€R*x(0,1) and every (x,y,2z)€SxSxS .

A similar condition for metric spaces with a convex structure
is introduced in ([25)]. If (S,F,t) 1is a random normed space
condition (3) is satisfied since :

FAx+(1—A)z—Ay-(1—A)z(A€) = Fx_y(e) ,for every (x,y,z)€

SxSxS and every (e,A)ER+x(0,1) .

If M is a nonempty subset of S ,by ZM we shall denote
the family of all nonempty subsets of S and by 2§ the family
of all nonempty,closed subsets of M .

Let T:M +ZS (Mcs) . The mapping T is demicompact

if for every two sequences {xn}nEN and {yn}nEN such that
xn€M(n€N),ynETxn(n€N) and that :
lim Fx , {e) =1 ,for every e> 0
o n'“n
there exists a convergent subsequence {x_ } .This
Tk keN

definition is introduced in [8] .

If a singlevalued mapping is demicompact in the sense of a
normed space it is also demicompact in the above sense.In the
case of normed spaces it is well known that a densifying
mapping 1is an example of a demicompact mapping .

3. FIXED POINT THEOREMS

The following fixed point theorem is a generalization of
the well known Nadler’s fixed point theorem [17] and it is
proved in [8) .
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Theorem - Let (S,F,t) be a complete Menger space with a
continuous T-norm t M a nonempty closed subsect of_S,T:M+22
8o that the following conditions are satisfied:

(1) For every u,veEM,every x€Tu and every 8§>0 there
exigts YETV such that|: »
' =6 '
Fx,y(s)zFu_v(—a—),for every € >0 whereqg€(0,1).
(i2)'T is demicompact or the fami?y '{tn(u)}nEN is
equicontinuous at the point u=1 ,where
tn(u) = t(t(... t(t(u,u),u)....)) .

n-times

Then there exists at least one element X€M gyeh that XE€ETX .

If (5,d) is a metric space and (S,F,min) the induced

Menger space the condition (i) is satisfied if:
D(Tu,Tv)gqg d(u,v) (u,veM ,qg€(0,1))

and D is the Hausdorff metric (T:M+ CB(M)) .

This was proved in [g] and since for T-noirm t = min
the family {tn(u)}neN is equicontinuous at the point u =1
it follows that the Nadler fixed point theorem is a corollary
of the above fixed point theorem .

Let us give an example of a T-norm t # min such that
the family {tn(u)}n€N is equicontinuous at the point‘u =1 .

Let t be a continuous t-norm and for every meNy{0}:
1 =0-2"",1-27" )

We shall define T-norm t in the following way:
l_zim+2—m-lz(2m+1(x_1+2—m),2m+1(y_1+2—m))
for (x,y)€ ImxIm

t(x,y) =9

m

min{x,y} for (x,y)€ mgNU{O}I xIm.

It it easy to see that the family {tn(u)}n€N is equi -
continuous at the point u = 1 . '
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Using the above theorem we shall prove a fixed point
theorem for multivalued mappings which‘are of nonexpansive
type . . .
Theorem 1. Let (S,F,t) be a complete Menger space with .

a convex structure W and contznuous T= norm t,M a nonempty,closed .
gtar-convex subset of S,T: M+2c 8o that the set T(M) is probabi-
listically precompact (i{n the sense of [2] ) and the following
condition is satisfied:For every; u,veM, every x&Tu and every 6> 0

there ezistsiyeTv such that }

(4) Fx,y(E)ZFu,v(E'G) 1for every >0,

Then there exists at least one element X€M such that X€Tx .

Proof:Let X, be the star-point of the set M and {kn}n€N a
sequence of real numbers from (0,1) such that lim kn =1 .

n->w
For every n€EN and x€M let T x = V W(z, xo,kn) We shall prove
Z€ETx
that for every n€N there exists anM such that anTﬁxn .

Since X, is a star-point of the set M it follows that

U W(z,x ,k ) «M and so Tnxc M for every n€N and every x€M .
Z€Tx

From(3) it follows that the mapping W is continuous in respect
to the first variable .Since Tx is closed it follows that Tx
is compact (as a subset of TM) and so the set W(Tx;xo,kn) is closed
for every n€N . This implies that the set Tnx is closed for every
n€EN and every x€M .

We shall prove that for every u,ve€éM ,every x€Tnu and

every 6>0 there exists y€T v such that :
5-6 :
E-0 > .
Fx,y(e)a Fu,v‘ k ) for every €e> 0
Let u,veM, 6>0 and xGTnu .  Then"there exists z€Tu such that

X = w(z,xo,kn) . From (4) it follows that there exists y'€Tv

such that :
[
’ r_ O ’
) Fz’y,(e ) Fu,v(e kn) ,for every ¢€’'>0 .
Let y = w(y',xo,kn)GTnv . Then we have that :

€ €
F £) = F k. —)2 F (
x,y( ) W(z,xo,kn),w(y’,xo,kn)( nkn)’ z,y’ Eg

The set T(M) is probabilistically precompact .This means
that for every €>0 and every A €(0,1)there exists a finite
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cover of T(M),{Ai}iEI( I is finite) such that DAi(€)>1-A , 1€I
where D is the probabilistic diameter ,which is defined by

DA(x) = sup inf F (t) . From this it it obvious that TM is
' t<x p,qEAP’q

a probabilistically bounded subset of S(iup DTM(x)= 1 ) and in
[2] it is proved that TM is precompact in respect to the
metric p which metrizises the uniformity of S generated by
the (¢,A)-topology . Hence ,the set T(M) is compact . From the
continuity of the mapping W in respect to the first variable it
follows that the set Tn(M) = W(T(M),xo,kn) (n€EN) is relatively
compact . Let us prove that T, is a demicompact mapping .
Suppose that {xn}nEN and {yn}nEN are two sequences from
M such that ynEmen and lim F )Y (e) =1 ,for every €>0.
n-+e n’“n
Then there exists a convergent subsequence{ynk} of the sequence

{y_} and suppose that 1limy_ = 2 . Then from the inequality
n neN " LY
F ()2 t(F 5),F (£)) it follows that lim x_ =z .
X sZ X_ .Y 2 v, +2°2 » D
n. n, o n nk ) k- k

This means that the mapping T, is demicompact .Hence,
all the conditions of the Theorem are satisfied and for every n€N

there exists X, €M such that xneTnxn .
Since Tnxn =y W(z, xo,k ) it follows that there exists

z€Tx
zn€Txn such that x, = W(zn,xo,kn) . Then we have that :

F () = F (e) 2t (F (z5) /F, (5= )
X 1z, zn,W(zn,xo,kn) z 02, 2k z /X 2(1 kni

£ . 3
= t(1,F (v—=7)) = F ( — ) ,for every n€N .
! Z 0%y 2(1 kn) z X, 2(1 kni

Since TM is probabilistic bounded we have that for every

€ :
Z€TM ,lim F (—T—:———) = 1 (for every ¢>0) .Using the
In-)m Zn,z 4 1 kn)

inequality :

t(F (——=r—),F [

F - ’
2,12 4(1 kn) Z,Xy 4(1- k

(sree——) 2 )
anxo 2(1_kn) )

. € _
and lim Fz,XO(ETT:EET) = 1 (for every ;>0 ) it follows that

n--o

. 3 - . : .
lim an’xo(z(l—kn ) = 1 (for every ¢>0). Hénce we have that:
noo

(5) lim F (e)= 1 (for every €> 0 )
n>e  *pr2p
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Since zneTxn and the set T(M) is compact there exists
}

and let 2z = lim z_ .
Dk xen kso Pk

a convergent subsequence {z
Then (5) and the inequality :
[> €
Fxn ,z(e); t(Fxn n (5)’an .z(ﬁ))
k k k X -
implies that lim X =z Let us prove that 2€Tz . We shall
ko k
prove that 2€Tz ,which implies,since Tz is closed, that z€Tz .
Let >0 and A€(0,1) . We shall prove_that there exists bE€Tz
such that be€U_(e,A) . Let us take in (4) that & = % o=y
and v = z . Then there exists bkeTz such that :

€ >
F, ,bktf);Fx ’2(1) .
n

e x

Suppose that n(A) be such an element from the interval
(0,1) that we have the following implication:

x>1-n(A) = t(x,x)>1-) .
If no(e,k)€N is such that :

F ($)>1- ﬂéi’,r

€y.1. D)
z,% (§)>1 =~ .for every k>n°(e,x)

z,Z
Nx Pk
it follows that : :

£ € o) o) _
Fap (812 E(F, , (G1F, p GN2 EA=50 1575021
k n. n k
and so'bkguz(e,x)nTz . Since Tz is closed ,we conclude that zeTz.

Using Theorem 1 we can prove the following theorem.

Theorem 2. Let (S,F,t) be a complete Menger space with a
convex structure W and continuous, T-norm t such that the famﬁzy
{tn(u)}n€N i8 equicontinuous at the point u =1 ,M as in Theorem 1,
T a demicompact mapping from M into the family of all nonempty,
and compact subsets of M such that T(M) is bounded and the
condition (4) 18 satisfied . Then there exists xXEM such that XETX.

Proof:As in the proof of Theorem 1 ,let for every ne€WN and every

| XEM :T. x = v W(z,xo,kn) . Since the set Tx is compact ,for every
Z€TX :

xX€EM it follows that Tnx is closed ,fcr every neEN and every xeM .
From the eguicontinuity of the family {tntu)}neN at the point

u = 1 we cbtain that the mapping Tn satisfies all the conditions
of Theorem 1 . Hence, there exists,for every neN, anM such that
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xneTnxn . Since TM is bounded ,as in Theorem 1 it follows
that :

lim F z (e} = 1 ,for every ¢€>0
n+o  Xpr?p

where anTxn for every n€N . Since the mapping T is demicompact
we obtain the existence of a convergent sequence {x_ } .

n
The rest of the proof is as in Theorem 1 . k keN

Corollary  Let (5,4} be a complete metric space with
a convex structure W such that for every: (x,y,2)€ SxSxS
and every A€[0,1] :

d(W(x,2,)0),W(y,z,A)) <rd(x,y) .
let @# McS , T pe a demicompact mapping from M into the family
of all nonempty and compact subsets of M,TM ' " be a bounded,
subset of the space; S and the set M closed and star-convex .
If for every €M and VEM :

D(Tu,Tv) £d(u,v)

there exists at least one element! X€ M such that x€Tx .
Proof:The triple (S,F,min) 1s a Menger space where:
1, dx,y)<e
(e) =
Y 0 , d(x,y)2e -

and the topology induced by the metric d is the (gA)-topology .
min the family {tn(U)}nEN
1l .From the definition of the Hausdorff
metric D it follows that for every &> 0,every u,veéM and every

Further, for t “is equicontinuous

at the point u

x€Tu there exists y€Tv such that :
(6) d(x,y)< d(u,v) +$§ .

Inequality (6} implies that for d(u,v)<e=§ we
obtain that d(x,y)<e .Then from the definition of the mapping F
it follows that (4) is satisfied. Hence,all the conditions of
Theorem 2 are satisfied and so there exists x€M such that_xeTx .

Remark In the books [33] and[34]1 furhter information on the
existence of a fixed point for nénexpansive mappings defined
on some types of metric spaces with a convex structure may be
obtained:
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REZ IME

TEOREME 0 NEPOKRETNOJ TATKI ZA VISEZNATNA
PRESLIKAVANJA U VEROVATNOSNIM METRIZKIM
PROSTORIMA SA KONVEKSNOM STRUKTUROM

U ovom radu uveden je pojam verovatnosnog metriékog
prostora sa konveksnom strukturom i dokazane su teoreme o ne-
pokretnoj tafki za viSeznafna preslikavanja u ovim prostorima.

Recedived by the editors August 10, 1986.




