Z B O R N I K R A D O V A Prirodno-matematičkog fakulteta Univerziteta u Novom Sadu Serija za matematiku, 17,1(1987)

REVIEW OF RESEARCH
Faculty of Science
University of Novi Sad
Mathematics Series, 17,1(1987)

FIXED POINT THEOREMS FOR MULTIVALUED MAPPINGS IN PROBABILISTIC METRIC SPACES WITH A CONVEX STRUCTURE

Olga Hadžić

University of Novi Sad, Faculty of Science, Institute of Mathematics, Dr. I. Djuričića 4, 21000 Novi Sad, Yugoslavia

ABSTRACT

In this paper we shall introduce the notion of a probabilistic metric space with a convex structure and prove fixed point theorems for multivalued mappings in such spaces.

1. INTRODUCTION

In [16] K.Menger introduced the notion of a probabilistic metric space and there are many papers from the theory of probabilistic metric spaces(for bibliographies see the books [4], [15] and [27]).Since 1972, when V.Sehgal and A.Bharucha-Reid published the paper [29], there is an increasing interest in the fixed point theory in probabilistic metric spaces and this theory is now an important part of the stochastic analysis [1].

Fixed point theorems for singlevalued and multivalued mappings in probabilistic metric spaces are proved in [3],[5]-[14], [19] -[24],[31][32] and [37] .Some very interesting results from the theory of probabilistic metric spaces are obtained by a group of Romanian mathematicians from the University of Timisoara.

Japan mathematician W.Takahashi introduced in[35] the notion of a metric space with a convex structure. This class of metric spaces includes normed linear spaces and metric spaces of

AMS Mathematics Subject Classification (1980): 47H10.

Key words and phrases: Fixed point theorems, multivalued mappings, probabilistic metric spaces.

hyperbolic type (see the books[33] and [34]). Iterative processes on metric spaces of hyperbolic type are investigated by W.A.Kirk and K.Goebel ([33], [34]). Some fixed point theorems in such spaces are proved in [18], [25], [33], [34], [35] and [36].

In this paper we shall generalize this notion to the class of probabilistic metric spaces, give a nontrivial example of such a space and prove fixed point theorems for multivalued mappings of nonexpansive type, which are defined on such spaces.

2. PRELIMINARIES

In this section we shall give necessary definitions and notations .By Δ we shall denote the set of all distribution functions F such that F(0) = 0 (F is a nondecreasing,leftcontinuous mapping from R into [0,1] so that sup F(x) = 1).

The ordered pair (S,F) is a probabilistic metric space if S is a nonempty set and $F:S\times S\to \Delta$ (F(p,q) for p,qES is denoted by $F_{p,q}$) so that the following conditions are satisfied:

1.
$$F_{u,v}(x) = 1$$
 , for every $x>0 \Rightarrow u = v$, and F is symmetric.

2.
$$F_{u,v}(x) = 1$$
 and $F_{v,w}(y) = 1 \Rightarrow F_{u,w}(x+y) = 1$.
for every $(u,v,w) \in S \times S \times S$ and $(x,y) \in R^+ \times R^+$.

A <u>Menger space</u> is a triple (S,F,t) where (S,F) is a probabilistic metric space and t is a T-norm [27] so that:

$$F_{u,v}(x+y) \ge t(F_{u,v}(x),F_{v,w}(y))$$

for every $u,v,w \in S$ and every $x,y \in R^+$.

for every u,v,wES and every x,yER.

The (ϵ, λ) -topology is introduced by the family of neighbourhoods given by :

$$U = \{U_{\mathbf{v}}(\varepsilon,\lambda)\} (\mathbf{v},\varepsilon,\lambda) \in S \times \mathbb{R}^{+} \times (0,1)$$

where $U_{ij}(\varepsilon,\lambda)$ is defined in the following way :

$$U_{\mathbf{v}}(\varepsilon,\lambda) = \{u | u \in S, F_{\mathbf{u},\mathbf{v}}(\varepsilon) > 1-\lambda \}$$

Let A be a nonempty subset of S where (S,F) is a probabilistic metric space . The function $D_{A}(\cdot)$, defined on R^{+} by :

$$D_A(x) = \sup_{t < x} \inf_{p,q \in A} F_{p,q}(t)$$
, $x \in \mathbb{R}^+$ is called the probabilistic diameter of A and the set A is probabilistic bounded if and only if [2]

$$\sup_{\mathbf{X} \in \mathbf{R}} D_{\mathbf{A}}(\mathbf{x}) = 1 .$$

The notion of a random normed space is introduced by Sherstnev in [30]. A random normed space (S,F,t) is an ordered triple where S is a real or complex vector space,t is a T-norm which is stronger then T-norm $T_m:T_m(x,y)=\max\{x+y-1,0\}$ and the mapping $F:S+\Delta$ satisfies the following conditions:

(a) $F_p = H \Leftrightarrow p = \theta$, where θ is the neutral element of S and the mapping H is defined by :

$$H(x) = \begin{cases} 0, x \leq 0 \\ 1, x > 0 \end{cases}$$

(b) For every pES, every $x \in \mathbb{R}^+$ and every $\lambda \in \mathbb{R} \setminus \{\theta\}$ (K is the scalar field of S):

$$F_{\lambda p}(x) = F_p(\frac{x}{|\lambda|})$$

(c) For every p,q \in S and every x,y \in R⁺: $F_{p-q}(x+y) \geqslant t(F_p(x),F_q(y)) .$

Every random normed space is a Menger space,where $F: S \times S + \Delta$ is defined by $F(p,q) = F_{p-q}$, for every $p,q \in S$.

The notion of a metric space with a convex structure is introduced in[35] by Takahashi and we shall generalize this notion on a Menger space.

Definition 1. Let (S,F,t) be a Menger space . A mapping W:S \times S \times [0,1]+S is said to be a convex structure if for every $(x,y) \in S \times S$:

$$W(x,y,0) = y , W(x,y,1) = x$$

and for every $\lambda \in (0,1)$:

Let us prove that every metric space (S,d) with a convex structure in the sense of Takahashi is a Menger space with a convex structure.

Let (S,d) be a metric space with a convex structure W which means that W:S \times S \times [0,1] \rightarrow S so that for every $(x,y,\lambda)\in$ S \times S \times [0,1]

(1) $d(u,W(x,y,\lambda) \leqslant \lambda d(u,x) + (1-\lambda)d(u,y) , \text{for every u} \in S .$ It is known that (S,F,min) is a Menger space ,where : $F_{u,v}(x) = \left\{ \begin{array}{c} 0,d(u,v) \geqslant x \\ 1,d(u,v) \leqslant x \end{array} \right. .$

Let us prove that :

(2)
$$F_{u,W(x,y,\lambda)}(2\varepsilon) \geqslant \min\{F_{u,x}(\frac{\varepsilon}{\lambda}), F_{u,y}(\frac{\varepsilon}{1-\lambda})\}$$

for every $(u,x,y) \in S \times S \times S$ and every $(\varepsilon,\lambda) \in \mathbb{R}^+ \times (0,1)$. Suppose that $F_{u,x}(\frac{\varepsilon}{\lambda}) = 1$ and $F_{u,y}(\frac{\varepsilon}{1-\lambda}) = 1$. Then $d(u,x) < \frac{\varepsilon}{\lambda}$ and $d(u,y) < \frac{\varepsilon}{1-\lambda}$ and (1) implies that :

$$d(u,W(x,y,\lambda)) < \lambda \frac{\varepsilon}{\lambda} + (1-\lambda) \frac{\varepsilon}{1-\lambda} = 2\varepsilon$$

Hence, we have that :

$$F_{u,W(x,y,\lambda)}(2\varepsilon) = 1 = \min\{F_{u,x}(\frac{\varepsilon}{\lambda}), F_{u,y}(\frac{\varepsilon}{1-\lambda})\}$$

If
$$\min\{F_{u,x}(\frac{\varepsilon}{\lambda}), F_{u,y}(\frac{\varepsilon}{1-\lambda})\} = 0$$
 then from $F_{u,W(x,y,\lambda)}(2\varepsilon) \ge 0$

it follows that (2) is satisfied.

Furthermore from (1) we obtain ,for $\lambda = 0$ and u = y that W(x,y,0) = y and for $\lambda = 1$ and u = x that W(x,y,1) = x

Every random normed space is a Menger space with the convex structure defined by $W(x,y,\lambda)=\lambda\ x+(1-\lambda)y$, for every $(x,y,\lambda)\in S\times S\times [0,1]$. This follows from the inequality:

$$F_{u,W(x,y,\lambda)}(2\varepsilon) = F_{u-\lambda x-(1-\lambda)y}(2\varepsilon) = F_{\lambda(u-x)} + (1-\lambda)(u-y)^{(2\varepsilon)}$$

$$\geq t(F_{u-x}(\frac{\varepsilon}{\lambda}), F_{u-y}(\frac{\varepsilon}{1-\lambda})).$$

EXAMPLE Let us give a nontrivial example of a probabilistic metric space with a convex structure. Suppose that (M,d) is a separable metric space with a convex structure W so that for every $\lambda \in [0,1]$ the mapping $(x,y) \mapsto W(x,y,\lambda)$ is continuous and (Ω,A,P) is a probability space.

Let S be the space of all measurable mappings from into M(i.e.the space of all equivalence classes). It is well known [4] that the triple (S,F,T $_{\rm m}$) is a Menger space , if for every XES,YES , ε >0,u ε [0,1] and v ε [0,1] :

$$F_{X,Y}(\varepsilon) = P \{\omega \mid d(X(\omega),Y(\omega)) < \varepsilon\}$$

$$T_m(u,v) = \max\{u+v-1,0\}.$$

Let $\overline{W}: S \times S \times [0,1] + S$ be defined by the relation:

$$\overline{W}(X,Y,\lambda)(\omega) = W(X(\omega),Y(\omega),\lambda)$$
, for every $\omega \in \Omega$

and for every XES , YES , $\lambda \in [0,1]$.

Since X and Y are measurable mappings and W is, for every fixed $\lambda \in [0,1]$, a continuous mapping it follows that for every XES and YES, $\overline{W}(X,Y,\lambda) \in S$.

Now ,prove that for every UES, XES, YES and $\lambda \in (0,1)$:

(*)
$$F_{U,\overline{W}(X,Y,\lambda)}(2\varepsilon) \geqslant T_{m}(F_{U,X}(\frac{\varepsilon}{\lambda}),F_{U,Y}(\frac{\varepsilon}{1-\lambda}))$$
, for every $\varepsilon > 0$.

From the definition of the mapping F it follows that:

$$F_{U,\overline{W}(X,Y,\lambda)}(2\varepsilon) = P \{\omega \mid d(U(\omega),W(X(\omega),Y(\omega),\lambda)) < 2\varepsilon \}$$
.

Further, from (1) it follows that for every $\omega \in \Omega$:

$$\mathtt{d}(\mathtt{U}(\omega)\,,\mathtt{W}(\mathtt{X}(\omega)\,,\mathtt{Y}(\omega)\,,\lambda)\,)\leqslant\,\lambda\mathtt{d}(\mathtt{U}(\omega)\,,\mathtt{X}(\omega)\,)\,\,+\,\,(1-\lambda)\mathtt{d}(\mathtt{U}(\omega)\,,\mathtt{Y}(\omega)\,)\,.$$

This inequality implies that :

$$\{\omega \mid d(U(\omega),W(X(\omega),Y(\omega),\lambda)) < 2\epsilon\} \supset \{\omega \mid d(U(\omega),X(\omega)) < \frac{\epsilon}{\lambda}\}$$

$$\bigcap \{\omega \mid d(U(\omega),Y(\omega)) < \frac{\varepsilon}{1-\lambda}\}$$
 and so we obtain that :

$$\begin{split} & \mathbb{P}[\{\omega \, \big| \, d(U(\omega)\,, W(X(\omega)\,, Y(\omega)\,, \lambda) \!) \! < \! 2\epsilon\}] \geqslant & \mathbb{P}[\{\omega \, \big| \, d(U(\omega)\,, X(\omega)\,) \! < \! \frac{\epsilon}{\lambda}\,] \} \\ & \mathbb{n}\{\omega \, \big| \, d(U(\omega)\,, Y(\omega)\,) \! < \! \frac{\epsilon}{1-\lambda}\}] \quad \text{Since for every } A, B \in A : \mathbb{P}(A \cap B) = \mathbb{P}(A) + \mathbb{P}(B) \\ & - \mathbb{P}(A \cup B) \text{ we obtain that:} \end{aligned}$$

$$\mathbb{P}[\{\omega \mid d(U(\omega), X(\omega)) < \frac{\varepsilon}{\lambda}\} \cap \{\omega \mid d(U(\omega), Y(\omega)) < \frac{\varepsilon}{1-\lambda}\}]$$

$$= \mathbb{P}[\{\omega \mid d(U(\omega), X(\omega)) < \frac{\varepsilon}{\lambda}\}] + \mathbb{P}[\{\omega \mid d(U(\omega), Y(\omega)) < \frac{\varepsilon}{1-\lambda}\}]$$

$$-\mathbb{P}[\{\omega \mid d(U(\omega), X(\omega)) \leq \frac{\varepsilon}{1}\} \cup \{\omega \mid d(U(\omega), X(\omega)) \times \frac{\varepsilon}{1-\lambda}\}]$$

$$\geqslant F_{U,X}(\frac{\varepsilon}{\lambda}) + F_{U,Y}(\frac{\varepsilon}{1-\lambda}) - 1$$
 ,which completes the proof of (*) .

In a Menger space with a convex structure the notion of a star-convex subset can be introduced similarly as in the case of a normed space .

Definition 2. Let (S.F.t) be a Menger space with a convex structure W:SxSx[0,1]+S and M a subset of S . The set M is said to be star-convex if there exists x EM such that :

 $W(x,x_0,\lambda)\in M$, for every $(x,\lambda)\in S\times[0,1]$

Then x is a star point of the set M .

In this paper we shall suppose that (S,F,t) is a Menger space with a convex structure W:S*S* [0,1]+S so that the following condition is satisfied :

(3) $F_{W(x,z,\lambda),W(y,z,\lambda)}(\lambda \varepsilon) \geqslant F_{x,y}(\varepsilon)$ for every $(\varepsilon,\lambda) \in \mathbb{R}^+ \times (0,1)$ and every $(x,y,z) \in \mathbb{S} \times \mathbb{S} \times \mathbb{S}$.

A similar condition for metric spaces with a convex structure is introduced in [25]. If (S,F,t) is a random normed space condition (3) is satisfied since :

 $F_{\lambda x + (1-\lambda)z - \lambda y - (1-\lambda)z}(\lambda \varepsilon) = F_{x-y}(\varepsilon)$, for every $(x,y,z) \in$ $S \times S \times S$ and every $(\varepsilon, \lambda) \in R^+ \times (0, 1)$.

If M is a nonempty subset of S ,by 2^{M} we shall denote the family of all nonempty subsets of S and by 2^{M}_{S} the family of all nonempty, closed subsets of M .

Let $T:M \rightarrow 2^S$ (MCS). The mapping T is demicompact if for every two sequences $\{x_n\}_{n\in\mathbb{N}}$ and $\{y_n\}_{n\in\mathbb{N}}$ such that $x_n \in M(n \in N), y_n \in Tx_n(n \in N)$ and that: $\lim_{n \to \infty} F_{x_n, y_n}(\epsilon) = 1$, for every $\epsilon > 0$

there exists a convergent subsequence $\{x_n\}$ This definition is introduced in [8]

If a singlevalued mapping is demicompact in the sense of a normed space it is also demicompact in the above sense. In the case of normed spaces it is well known that a densifying mapping is an example of a demicompact mapping .

3. FIXED POINT THEOREMS

The following fixed point theorem is a generalization of the well known Nadler's fixed point theorem [17] and it is proved in [8] .

Theorem Let (S,F,t) be a complete Menger space with a continuous T-norm t ,M a nonempty closed subset of S,T:M+2M so that the following conditions are satisfied: !

(i) For every $u, v \in M$, every $x \in Tu$ and every $\delta > 0$ there exists yETv such that :

ists yETv such that/:
$$F_{x,y}(\varepsilon) \geqslant F_{u-v}(\frac{\varepsilon-\delta}{q}), \text{ for every } \varepsilon > 0 \text{ where } q \in (0,1).$$

(ii) T is demicompact or the family $\{t_n(u)\}_{n\in\mathbb{N}}$ is equicontinuous at the point u = 1 , where

$$t_n(u) = t(t(...t(t(u,u),u)...))$$
.

 $n-times$

Then there exists at least one element xEM such that xETx .

If (S,d) is a metric space and (S,F,min) the induced Menger space the condition (i) is satisfied if:

$$D(Tu,Tv) \leqslant q d(u,v) (u,v \in M, q \in (0,1))$$

and D is the Hausdorff metric (T:M→ CB(M)) .

This was proved in [8] and since for T-norm t = min the family $\{t_n(u)\}_{n\in\mathbb{N}}$ is equicontinuous at the point u=1it follows that the Nadler fixed point theorem is a corollary of the above fixed point theorem .

Let us give an example of a T-norm t # min such that the family $\{t_n(u)\}_{n\in\mathbb{N}}$ is equicontinuous at the point u=1.

Let \overline{t} be a continuous t-norm and for every $m \in \mathbb{N} \cup \{0\}$: $I_m = [1-2^{-m}, 1-2^{-m-1}]$.

We shall define T-norm t in the following way:

$$t(x,y) = \begin{cases} 1-2^{-m}+2^{-m-1}\overline{t}(2^{m+1}(x-1+2^{-m}), 2^{m+1}(y-1+2^{-m})) \\ \text{for } (x,y) \in I_m \times I_m \\ \\ \min\{x,y\} \quad , \text{for } (x,y) \notin \bigcup_{m \in \mathbb{N} \cup \{0\}} I_m \times I_m \end{cases}$$

It it easy to see that the family $\{t_n(u)\}_{n\in\mathbb{N}}$ is equicontinuous at the point u = 1 .

Using the above theorem we shall prove a fixed point theorem for multivalued mappings which are of nonexpansive type .

Theorem 1. Let (S,F,t) be a complete Menger space with a convex structure W and continuous, T-norm t, M a nonempty, closed star-convex subset of S,T:M+2 M so that the set T(M) is probabilistically precompact (in the sense of [2]) and the following condition is satisfied: For every, u, vEM, every xETu and every $\delta > 0$ there exists YETv such that $\frac{1}{2}$

(4)
$$F_{x,y}(\varepsilon) > F_{u,v}(\varepsilon - \delta)$$
, for every $\varepsilon > 0$

Then there exists at least one element $x \in M$ such that $x \in Tx$.

Proof:Let x_0 be the star-point of the set M and $\{k_n\}_{n\in\mathbb{N}}$ a sequence of real numbers from (0,1) such that $\lim_{n\to\infty} k_n = 1$. For every $n\in\mathbb{N}$ and $x\in\mathbb{M}$ let $T_nx = U$ $W(z,x_0,k_n)$. We shall prove $z\in Tx$

that for every nen there exists $\mathbf{x}_n \in \mathbf{M}$ such that $\mathbf{x}_n \in \mathbf{T}_n \mathbf{x}_n$. Since \mathbf{x}_0 is a star-point of the set M it follows that U W(z,x₀,k_n) $\subset \mathbf{M}$ and so T_n $\subset \mathbf{M}$ for every nen and every $\mathbf{x} \in \mathbf{M}$. $\mathbf{z} \in \mathbf{T} \mathbf{x}$

From(3) it follows that the mapping W is continuous in respect to the first variable .Since Tx is closed it follows that Tx is compact (as a subset of TM) and so the set W(Tx,x $_{0}$,k $_{n}$) is closed for every nEN . This implies that the set T $_{n}$ x is closed for every nEN and every xEM .

We shall prove that for every u,vEM ,every xET u and every $\delta\!>\!0$ there exists yET v such that :

 $F_{\mathbf{x},\mathbf{y}}(\epsilon) \geqslant F_{\mathbf{u},\mathbf{v}}(\frac{\epsilon-\delta}{k}) \quad \text{, for every} \quad \epsilon > 0 \ .$ Let $\mathbf{u},\mathbf{v} \in M$, $\delta > 0$ and $\mathbf{x} \in T_n \mathbf{u}$. Then there exists $\mathbf{z} \in T \mathbf{u}$ such that $\mathbf{x} = W(\mathbf{z},\mathbf{x}_0,k_n)$. From (4) it follows that there exists $\mathbf{y}' \in T \mathbf{v}$ such that :

 $F_{z,y},(\epsilon') \geqslant F_{u,v}(\epsilon' - \frac{\delta}{k}) \quad , \text{for every} \quad \epsilon' > 0$ Let $y = W(y',x_0,k_n) \in T_n v$. Then we have that :

$$F_{x,y}(\varepsilon) = F_{W(z,x_0,k_n),W(y',x_0,k_n)}(k_n \frac{\varepsilon}{k_n}) \geqslant F_{z,y'}(\frac{\varepsilon}{k_n})$$

$$\geqslant F_{u,v}(\frac{\varepsilon-\delta}{k_n}) .$$

The set T(M) is probabilistically precompact .This means that for every $\epsilon>0$ and every $\lambda\in(0,1)$ there exists a finite

cover of T(M), $\{A_i^{}\}_{i\in I}$ (I is finite) such that D_{A_i} (ϵ)>1- λ , it where D is the probabilistic diameter ,which is defined by $D_A(x) = \sup_{t < x} \inf_{p,q \in A^p,q} (t)$. From this it it obvious that TM is tox p,q ϵ App,q (t) a probabilistically bounded subset of $S(\sup_{t < x} D_{TM}(x) = 1)$ and in [2] it is proved that TM is precompact in respect to the metric ρ which metrizises the uniformity of S generated by the (ϵ,λ) -topology. Hence ,the set $\overline{T(M)}$ is compact. From the continuity of the mapping W in respect to the first variable it follows that the set $T_n(M) = W(T(M), x_0, k_n)$ (neN) is relatively compact. Let us prove that T_m is a demicompact mapping.

Suppose that $\{x_n\}_{n\in\mathbb{N}}$ and $\{y_n\}_{n\in\mathbb{N}}$ are two sequences from M such that $y_n\in\mathbb{T}_mx_n$ and $\lim_{n\to\infty}\mathbb{F}_{x_n,y_n}(\varepsilon)=1$, for every $\varepsilon>0$. Then there exists a convergent subsequence $\{y_n\}_{n\in\mathbb{N}}$ and suppose that $\lim_{k\to\infty}y_n=z$. Then from the inequality

 $F_{x_{n_k},z}(\varepsilon) \ge t(F_{x_{n_k},y_{n_k}}(\frac{\varepsilon}{2}),F_{y_{n_k},z}(\frac{\varepsilon}{2}))$ it follows that $\lim_{k\to\infty} x_{n_k} = z$.

This means that the mapping T_m is demicompact .Hence, all the conditions of the Theorem are satisfied and for every new there exists $x_n \in M$ such that $x_n \in T_n x_n$.

Since $T_n x_n = \bigcup_{z \in Tx_n} W(z, x_0, k_n)$ it follows that there exists

 $z_n \in Tx_n$ such that $x_n = W(z_n, x_0, k_n)$. Then we have that :

$$F_{x_n,z_n}(\varepsilon) = F_{z_n,W(z_n,x_o,k_n)}(\varepsilon) \ge t(F_{z_n,z_n}(\frac{\varepsilon}{2k_n}),F_{z_n,x_o}(\frac{\varepsilon}{2(1-k_n)})) =$$

=
$$t(1,F_{z_n,x_0}(\frac{\varepsilon}{2(1-k_n)})) = F_{z_n,x_0}(\frac{\varepsilon}{2(1-k_n)})$$
, for every $n\in\mathbb{N}$.

Since TM is probabilistic bounded we have that for every $z \in TM$, $\lim_{n \to \infty} F_{z_n, z}(\frac{\varepsilon}{4(1-k_n)}) = 1$ (for every $\varepsilon > 0$). Using the inequality:

$$F_{z_{n}, x_{0}}(\frac{\varepsilon}{2(1-k_{n})}) \ge t(F_{z_{n}, z}(\frac{\varepsilon}{4(1-k_{n})}), F_{z, x_{0}}(\frac{\varepsilon}{4(1-k_{n})}))$$

and $\lim_{n\to\infty} F_{z,x_0}(\frac{\varepsilon}{4(1-k_n)}) = 1$ (for every $\varepsilon>0$) it follows that

 $\lim_{n\to\infty} F_{z_n,x_0}(\frac{\varepsilon}{2(1-k_n)}) = 1 \quad \text{(for every } \varepsilon>0\text{). Hence we have that:}$

(5) $\lim_{n\to\infty} F_{x_n, z_n}(\varepsilon) = 1 \text{ (for every } \varepsilon > 0 \text{) }.$

Since $z_n \in Tx_n$ and the set $\overline{T(M)}$ is compact there exists a convergent subsequence $\{z_n\}$ and let $z = \lim_{k \to \infty} z_k$.

Then (5) and the inequality:

$$F_{x_{n_k},z}(\varepsilon) \geqslant t(F_{x_{n_k},z_{n_k}}(\frac{\varepsilon}{2}),F_{z_{n_k},z}(\frac{\varepsilon}{2}))$$

implies that $\lim_{k\to\infty} x = z$. Let us prove that zeTz . We shall

prove that $z \in \overline{Tz}$,which implies, since Tz is closed, that $z \in Tz$.

Let $\varepsilon>0$ and $\lambda\in(0,1)$. We shall prove that there exists betz such that beU_z(ε , λ). Let us take in (4) that $\delta=\frac{\varepsilon}{4}$, $u=x_{n_k}$ and v=z. Then there exists b_tetz such that:

$$\mathbf{F}_{\mathbf{z}_{n_{k}}}, \mathbf{b}_{k}(\frac{\varepsilon}{2}) \geqslant \mathbf{F}_{\mathbf{x}_{n_{k}}}, \mathbf{z}^{(\frac{\varepsilon}{4})}$$

Suppose that $\eta(\lambda)$ be such an element from the interval (0,1) that we have the following implication:

$$x>1-\eta(\lambda) \Rightarrow t(x,x)>1-\lambda$$
.

If $n_{\mathcal{O}}(\varepsilon,\lambda) \in \mathbb{N}$ is such that :

$$\mathbf{F_{z,x}}_{n_k}(\frac{\varepsilon}{4}) > 1 - \frac{\eta(\lambda)}{2}, \mathbf{F_{z,z}}_{n_k}(\frac{\varepsilon}{2}) > 1 - \frac{\eta(\lambda)}{2}, \text{ for every } k > n_o(\varepsilon,\lambda)$$

it follows that :

$$\begin{aligned} \mathbf{F_{z,b_k}}(\varepsilon) \geqslant & \mathsf{t}(\mathbf{F_{z,z}}_{n_k}(\frac{\varepsilon}{2}), \mathbf{F_{z_{n_k},b_k}}(\frac{\varepsilon}{2})) \geqslant & \mathsf{t}(1-\frac{n(\lambda)}{2}), 1-\frac{n(\lambda)}{2}) > 1-\lambda \\ \text{and so } & \mathbf{b_k} \in \mathbf{U_z}(\varepsilon,\lambda) \cap \mathbf{Tz} \end{aligned} \text{ Since Tz is closed ,we conclude that } \mathbf{z} \in \mathbf{Tz}.$$

Using Theorem 1 we can prove the following theorem.

Theorem 2. Let (S,F,t) be a complete Menger space with a convex structure W and continuous T-norm t such that the family $\{t_n(u)\}_{n\in\mathbb{N}}$ is equicontinuous at the point u=1, M as in Theorem 1. T a demicompact mapping from M into the family of all nonempty, and compact subsets of M such that $\overline{T(M)}$ is bounded and the condition (4) is satisfied. Then there exists xEM such that xETx. Proof: As in the proof of Theorem 1, let for every nEN and every xEM: $T_n x = U W(z, x_0, k_n)$. Since the set Tx is compact, for every xEM it follows that Tx is closed, for every nEN and every xEM.

xEM it follows that $T_n x$ is closed ,for every nEN and every xEM . From the equicontinuity of the family $\{t_n(u)\}_{n\in\mathbb{N}}$ at the point u=1 we obtain that the mapping T_n satisfies all the conditions of Theorem 1 . Hence, there exists, for every nEN, x_n EM such that

 $\overset{x}{\underset{n}{\in}}\overset{x}{\underset{n}{\in}}\overset{x}{\underset{n}{\in}}$. Since TM is bounded ,as in Theorem 1 it follows that :

$$\lim_{n\to\infty} F_{x_n,z_n}(\epsilon) = 1$$
 , for every $\epsilon > 0$

where $z_n \in Tx_n$,for every $n \in N$. Since the mapping T is demicompact we obtain the existence of a convergent sequence $\{x_n^{}\}$. The rest of the proof is as in Theorem 1 .

Corollary Let (S,d) be a complete metric space with a convex structure W such that for every; $(x,y,z) \in S \times S \times S$ and every $\lambda \in [0,1]$:

$$d(W(x,z,\lambda),W(y,z,\lambda)) \leq \lambda d(x,y)$$
.

Let $0\neq M \subset S$, The a demicompact mapping from M into the family of all nonempty and compact subsets of M,TM be a bounded subset of the space. S and the set M closed and star-convex. If for every uEM and vEM:

$$D(Tu,Tv) \leq d(u,v)$$

there exists at least one element $x \in M$ such that $x \in Tx$. Proof: The triple (S,F,min) is a Menger space where:

$$F_{x,y}(\varepsilon) = \begin{cases} 1 & d(x,y) < \varepsilon \\ 0 & d(x,y) \ge \varepsilon \end{cases}$$

and the topology induced by the metric d is the $(\varepsilon_i\lambda)$ -topology . Further, for t = min the family $\{t_n(u)\}_{n\in\mathbb{N}}$ is equicontinuous at the point u = 1 .From the definition of the Hausdorff metric D it follows that for every $\delta>0$, every u,v \in M and every $\times\in$ Tu there exists y \in Tv such that :

(6)
$$d(x,y) < d(u,v) + \delta$$

Inequality (6) implies that for $d(u,v) < \epsilon - \delta$ we obtain that $d(x,y) < \epsilon$. Then from the definition of the mapping F it follows that (4) is satisfied. Hence, all the conditions of Theorem 2 are satisfied and so there exists xEM such that xETx.

Remark In the books [33] and [34] further information on the existence of a fixed point for nonexpansive mappings defined on some types of metric spaces with a convex structure may be obtained.

REFERENCES

- [1] A.T.BHARUCHA-REID, Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc. 82(1976), 641-657.
- [2] GH.BOCSAN and GH.CONSTANTIN, The Kuratowski function and some applications to the probabilistic metric spaces, Sem. Teor. Funct.si Mat.Apl., Timisoara No.1, 1973.
- [3] GH.CONSTANTIN, On some classes of contraction mappings in Menger spaces, Sem. Teoria Prob. Apl., Timisoara No. 76, 1985.
- [4] GH.CONSTANTIN,I.ISTRATESCU, Elemente de Analiza Probabilista si Aplicatii, Editura Academiei Republici Socialiste Romania, Bucuresti, 1981.
- [5] O.HADŽIC, A fixed point theorem in probabilistic locally convex spaces, Rev. Roum. Math. Pures Appl. 23(1978), 735-744.
- [6] O.HADŽIC, Fixed points for mappings on probabilistic locally convex spaces, Bull. Math. Soc. Sci. Math. Rep. Soc. Roum. T 22 (70), No. 3(1978), 287-292.
- [7] O.HADŽIC, A fixed point theorem for multivalued mappings in random normed spaces, L'Analyse Numerique et la Theorie de l'Approximation T 81(1979), 49-52.
- [8] O.HADŽIC, Fixed point theorems for multivalued mappings in probabilistic metric spaces, Mat. vesnik 3(16)(31), 1979, 125-133.
- [9] O.HADŽIC, Fixed point theorems in probabilistic metric and random normed spaces, Math. Sem. Notes, Kobe University Vol.7(1979), 261-270.
- [10] O.HADŽIC, Some theorems on the fixed points in probabilistic metric and random normed spaces, Boll. Unione Mat. Ital., (6),1-B(1982),381-391.
- [11] O.HADŽIC, Fixed point theorems for multivalued mappings in uniform spaces and its applications to PM-spaces, An. Univ. Timisoara, seria st.matematice, Vo.XXI, fasc. 1-2, (1983). 45-57.
- [12] O.HADŽIC, M. BUDINCEVIC, A class of T-norm in the fixed point theory on probabilistic metric spaces, Zb.rad. Prir.-mat.fak., Novi Sad 9(1979), 37-41.
- [13] T.L.HICKS, Fixed point theory in probabilistic metric spaces, Zb.rad. Prir.-mat.fak., Ser.mat., Novi Sad 13(1983), 63-72.
- [14] I.ISTRATESCU, Fixed point theorems for some classes of contracton mappings, Publ. Math, Debrecen 25(1978), 29-33.
- [15] V.I.ISTRATESCU, Introducere in Teoria Spatiilor Metrice Probabiliste cu Applicatii, Editura Technica, Bucuresti, 1974.
- [16] K.MENGER, Statistical metric, Proc. Nat. Acad. Sci. USA, 28 (1942), 535-537.
- [17] S.B.NADLER, Multivalued contraction mappings, Pacific J.Math. 30(1969), 475-488.
- [18] S.A.NAIMPALLY, K.L.SINGH and J.H.M.WHITFIELD, Common fixed points for nonexpansive and asymptotically nonexpansive mappings, Comm. Math. Univ. Carolinae 24,2(1983),287-300.

- [19] V.RADU, A remark on contractions in Menger spaces, Sem. Teoria Prob.Apl., Timisoara, No. 64(1983).
- [20] V.RADU, On the t-norms of Hadžic type and fixed points in probabilistic metric spaces, Sem. Teoria Prob. Apl., Timisoara, No. 66, 1983.
- [21] V.RADU, On the contraction principle in Menger spaces, Sem. Teoria Prob.Apl., Timisoara, No. 68, 1983.
- [22] V.RADU, On the t-norms of Hadžic type and locally convex random normed spaces, Sem. Teoria Prob. Apl., Timisoara, No. 70, 1984.
- [23] V.RADU, On the t-norms with the fixed point property, Sem. Teoria Prob.Apl., Timisoara, No. 72, 1984.
- [24] V.RADU, On some fixed point theorems in probabilistic metric spaces, Sem. Teoria Prob. Apl., Timisoara, No. 74, 1985.
- [25] B.E.RHOADES, K.L.SINGH and J.H.M.WHITFIELD, Fixed points for generalized nonexpansive mappings, Comm. Math. Univ. Carolinae 23,3(1982),443-451.
- [26] B.SCHWEIZER and A.SKLAR, Statistical metric spaces, Pacific J. Math. 10(1960), 313-334.
- [27] B.SCHWEIZER and A.SKLAR, Probabilistic metric spaces, North-Holland Series in Probability and Applied Mathematics, 5,1983.
- [28] B.SCHWEIZER ,A.SKLAR and E.THORP, The metrization of statistical metric spaces, Pacific J.Math. 10(1960),673-675.
- [29] V.SEHGAL, A. BHARUCHA-REID, Fixed points of contractions mappings on probabilistic metric spaces, Math. Syst. Theory, 6(1972), 97-102.
- [30] A.N.SHERSTNEV, The notion of random normed spaces, DAN USSR 149(2) (1963), 280-283.
- [31] SHIR -SEN CHANG.On some fixed point theorems in probabilistic metric space and its applications, Z. Wahr scheinlichkeitstheorie Verw. Geb. 63(1983), 463-474.
- [32] SHIH-SEN CHANG, Fixed point theorems of mappings on probabilistic metric spaces with applications, Stientia Sinica, (Series A) Vol.XXVI, No.11(1983), 1144-1155.
- [33] R.SINE(Editor), Fixed Points and Nonexpansive Mappings, American Mathematical Society, Contemporary Mathematics, Vol.18,1983.
- [34] S.P.SINGH, S.THOMEIER and B.WATSON (Editors), Topological Methods in Nonlinear Functional Analysis, American Mathematical Society, Contemporary Mathematics, Vol. 21
- [35] W.TAKAHASHI, A convexity in metric space and nonexpansive mappings I, Kodai Math. Sem. Rep. 22(1970), 142-149.
- [36] L.A.TALLMAN, Fixed points for condensing multifunctions in metric spaces with convex structures, Kodai Math. Sem. Rep. 29(1977), 62-70.
- [37] D.H.TAN,A fixed point theorem for multivalued quasi contractions in probabilistic metric spaces, Zb.rad.Prir.-mat.fak.,Ser.mat.,Novi Sad 12(1982),43-54.

REZIME

TEOREME O NEPOKRETNOJ TAČKI ZA VIŠEZNAČNA PRESLIKAVANJA U VEROVATNOSNIM METRIČKIM PROSTORIMA SA KONVEKSNOM STRUKTUROM

U ovom radu uveden je pojam verovatnosnog metričkog prostora sa konveksnom strukturom i dokazane su teoreme o ne-pokretnoj tački za višeznačna preslikavanja u ovim prostorima.

Received by the editors August 10, 1986.