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ABSTRACT

This paper presents an efficlient algorithm for find-
ing the diameter of a point set on mesh-connected parallel
computers. The running time of the algorithm is O(n#**(1/2)*%
log{(n)}.

1. INTRODUCTION

A mesh~connected parallel computer of size n is a
set of n synchronized processing elements (PEs) arranged in
an n**{1/2) x n**(1/2) grid. Each PE is conhépted via bi-di-
rectional unit-time communication links to its four neighbours,
if they exist (see Fig.l).

Each processor has a fixed number of registers and
can perform standard arithmetic and comparisons in a constant
time. It can also send the contents of a register to a neigh-
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bour and receive a value from a neighbour in a designated re-
gister in O(l) time units. Each PE in the‘leftmdgt column has
an I/0 port. Thus, we can ’load’ § in‘O(n**(l/Z)} time units
such that each processor contains exactly one arbitrary point
of §.

Each PE contains a unique identification register
(ID), the contents of which correspond to that PE’s‘snage—like
index (see Fig.2). '
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For the algorithm presented in this paper, we shall
assume that there initially exists n or fewer planar points,
distributed one point per PE on a MCC (mesh-connected computer)
of size n. Each planar point p 1is represented by its Cartes-
ian coordinates p.x and p.y. Any figure is represented by the
Cartesian coordinates of O(n) planar points, distributed O(1l)

_points per processor on a MCC. For some of the problems that
allow more than one figure as input, each point will also have
an assoclated label to indicate which figure it is a member of.

To simplify the exposition of our algorithm we shall
asgume that n=4**k for some integer k and all points have
distinct x~ and y-coordinates.
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We shall use the standard MCC data movement operat-
ions: rotating data within a row (column) sorting, compression
of data, Random Access Read (RAR) and Random Access Write
(RAW) . We shortly describe them (see [2,3,4] for details).

1) Rotating data within a row (column)

For each row (column), every PE can transmit a fixed
number of pieces of information to all other PEs in its row
(column) in O(n**(1/2)) time.

2) Sorting

Thompson and Kung [7] have shown that n elements,
distributed one element per PE on an MCC of size n, can be
sorted in O(n**1/2)) time. In particular, the elements can be
sorted into a snake-like ordering is illustrated in Fig.2.

3) Compression

Suppose that in an MCC of size n, m of the PEs
each contain a fixed amount of information that needs to be
exchanged in an efficient manner. In O(n**1/2)) time, the O(m)
relevant pieces of information from these m PEs can be
placed into a subsquare of size m where communication time
will now be O(m**(1/2)).

Two other common data movement operations for the
MCC are the random access read (RAR) and random access write
(RAW) . These operations involve two sets of PEs, the SOURCES
and the DESTINATIONS. Source PEs send a fixed number of re-
cords, each consisting of a key and one or more data parts (a
record may also be null). Destination PEs receive a fixed num-
ber of records sent‘by the source PEs. We allow the possibili-
ty that a PE is both a source and a destination.
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4) Random access read (RAR)

In an RAR, we require that no two records sent by
source PEs have the same key. Each destination PE specifies
the keys of the records it wishes to receive, or it specifies
a null key, in which case it receives nothing} Several desti-
nation PEs can request the same key. A destination PE may
specify a key for which there is no source record, in which
case it receives a null message. The RAR is accomplished
through a fixed number of sort steps and rotations in
O(n**(1/2)) time.

5) Random access write (RAW)

In an RAW the destination PEs do not specify the
keys they want to receive. They merely indicate their willing-
ness to receive. At the end of the RAW, the number of records
received by a destination PE is between zero and a fixed num-
ber requested. Each key is received by exactly one destination
PE. If two or more source PEs send records with the same key,
then a destination PE will receive the minimum such records.
(In other circumstances, one could replace the minimum with
any other commutative, associative, binary operation.) The RAW
is accomplished through a fixed number of sort steps in
O(n**(1/2)) time.

Sorting [7] and the component labelling algorithm
[4] are basic algorithms which provide an efficient solution
to some geometric problems given in [2,3].

O(n**(1/2)) is a lower bound of each algorithm on
MCC since it cannot be faster than the time it takes tc com-
bine information starting at opposite corners of the mesh.

The diameter of a set S of n points in the plane
is the distance between two points form S that are farthest
apart. We shall give an O(n**(1/2)*log(n)) time MCC algorithm
for finding the diameter of S. A seguential one described in
[5] works in optimal O(n*log(n)) time.
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2. COMPRESSION OF DATA AND BINARY SEARCH

Let a function f be defined on a set S containing
0(n) elements (points, line segments,...). The function f is
unimodular on S if there is an order of elements from S such
that there are two elements A and B and £ 1is nonincreasing
from & to B and nondecreasing from B to A. For a given funct-
ion £ the elements with the minimum (or maximum)} value of f
can be determined by a binary search in log(n) steps by com- ’
paring the value of f for the middle element and two neigh-
bouring elements, discarding half of elements from considera-
tion and compressing of the remaining data. The running time
of the algorithm is expressed by T(n)=T(n/2)+c*n**(1/2) whose
solution is O(n**(1/2)).

Let us consider the problem of determining the el-
ements with the minimum (or maximum) values for O(n) different
unimodular functions in parallel. Binary search in this case
differs from the one described above in that multiple binary
searches are occurring simultaneously. In each step for each
function, half of the elements can be discarded but there is
no straightforward way how to avoid bottleneck during compres-
sing the remaining data. If the algorithm continued its work
without compressing the data then the communication time would
not be cut in half during each iteration of the algorithm and
because of log(n) steps the total running time would be
O(n**(1/2)*1log(n)). With a correct compression technique, the
algorithm will be completed in O(n**(1/2)) time. '

So, in each particular case we have either to find a
way of compressing the data to avoid bottleneck or use an ad-
ditional log(n) factor in the running time of the given algo-
rithm.

In order to determine the diameter for a point set S,
each PE containing an edge e of the H(S) (the convex hull of
S, i.e. the smallest convex figure containing S), one needs to
know one or two additional extreme points of the H(S). Namely,
N, the last extreme point(s) of S encountered as a line paral-
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lel to e, starting colinear to e, passes through the H(S).
These points are extreme values of some unimodular functions
defined on extreme points H(S) and can be found by multiple
binary searches simultaneously for each edge e.

3. DIAMETER ON A MESH

The diameter of a set is equal to the diameter of
its convex hull [1)] and the diameter of a convex figure is the
greatest distance between parallel lines of support [8].

A pair of points that does admit parallel suppofting lines
will be called antipodal. All antipodal points of an extreme
point'P(i) form an interval [P(i)’,P(1i)"] of consecutive ex-
treme points on convex hull CH(S) [5] (we call it the P(i)-in-
terval) .

First we shall find the convex hull of S by algo-
rithm described in [2) in O(n**(1/2)) time. The number of ex-
treme points of the convex hull is m<=n. Let P(l),...,P(m) be
the points of the convex hull of S ordered in counterclockﬁise
order. We assign a PE to each convex hull edge P(i-1)P (1)
(l<=i<=m, P(0)=P(m)). In the parallel we find for each edge
the extreme point which is farthest from it. There are one or
two such points. If there is one point P(j) then the point is
the right endpoint of the P(i-1l)-interval and the left end-
point of the P(i)=-interval (i.e. j=(i-l)"=i’). If there are
two such points P(j-1) and P(j) (in this case edges P(i-1)P(4)
and P(3j-1)P(j) are parallel) then the point P(j-1) is the
right endpoint of P(i-1l)-interval and the point f(j) is the:
left endpoint of the P(i)-interval (any time two polygon edges
are parallel, only the diagonals of the trapezoid they deter-
mine need be considered).

This can be done in log(m) steps using the binary
search technique (the distance from an edge is an unimodular
function) and O(m**(1/2)*log(m)) time, because the compression
of data remains as a problem in the process.

At the end of the process each extreme point P (1)
has its P(i)-interval calculated by knowing its endpoints.
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There are exactly m antipodal pairs (cf. [5]) that remain to
be examined. Each antipodal pair P(i)P(j) is contained in both
the P(i)-interval and P(j)-interval..Thus intervals contain

2m members in all. However, one interval can contain O(m) mem-
bers and thus we cannot find the greatest distance among anti-
podal pairs by storing one interval (one extreme point) per a
PE because bottleneck can appear. We are going to devise a
procedure for storing all antipodal pairs without bottleneck.
We shall use a mesh of size O0(m) (i.e. O(n)).

We shall send each antipodal pair P(i)P(j) into PE
with ordinal number i+j in snage-like ordering of PEs. We shall
show that each PE can receive at most two antipodal pairs.

Consider the natural order of antipodal pairs: P(1l)-
-interval, P(2)-interval,..., P{(m)-interval (we keep in each
interval the order from the left endpoint to the right end-
point as they are constructed). In fact, each antipodal pair
appears twice in the order. All the time, the sum of the in-
dexes i+j of the antipodal pairs increase by 1 or 2 (the lat-
ter appear twice per each pair of parallel edges; so at most
m times). The only exception is when P(1l) appears as a member
of an interval of antipodal pairs. But, it happens exactly

once. Therefore a sum k can appear at most twice.

If [P(u),P(v)] is P(i)-interval then we first send
P(i) to PEs i+u and i+v (in snake-like ordering) in parallel
for each i (l<=i<=m). This can be done in O(n**(1/2)) time by
performing an RAR (the key of a PE is the same as the ordinal
number in the snake-like ordering and each PE with extreme
point P{i) broadcast two records with keys i+u and i+v both
with data i,u,v). Now all PEs between PEs i+u and i+v can re-
ceive the index i in O(n**(1/2)) in parallel for each i by
the following: if i+u and i+v are in the same row then it is
obvious; otherwise first they inform PEs in the rows contain-
ing i+u and i+v having the ordinal number between i+u and i+v
(and the PEs in the leftmost column of the rows) about i. If
there are some rows between two containing i+u and i+v then

first PEs in the leftmost column of these rows are informed
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about 1 and afterward broadcast the information to the re-
maining PEs in these rows.

Now each PE containing one or more antipodal pairs
computes the distances in O(l) time. By an RAW one PE can know
the greatest of these distances in additional O(n**(1/2)) time.

L, CONCLUSION

Describing an optimal time MCC-algorithm for finding
the diameter of a point set remains an open problem. Our
method could be improved only by solving the compression prob-
lem during a simultaneous binary search. However it seems that
implementing such a technique in order to avoid bottleneck
(recall a PE has a fixed number of registers) is a rather dif-
ficult task. For instance, a point P from H(S) can be encoun-
tered as point N for 0(n) different edges of H(S). Such points
P and their neighbour points must be stored in O(n) compressed
squares (or a sguare in each step of the iteration has a.size
o(n)). '
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REZ IME

NALAZENJE NAJVECEG RASTOJANJA IZMEDJU TACTAKA
NA MREZNO POVEZANOM PARALELNOM RATUNARU

U radu je predstavljen efikasan algoritam za nalaZe-

nje najvefeg rastojanja izmedju tadaka za mreZno povezane pa-

ralelne radunare. Vreme izvrSavanja algoritma je O(n**(1/2)*

log(n)).
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