Z B O R N I K R A D O V A Prirodno-matematičkog fakulteta Univerziteta u Novom Sadu Serija za matematiku, 17,1(1987) REVIEW OF RESEARCH
Faculty of Science
University of Novi Sad
Mathematics Series, 17,1(1987)

ON THE LATTICE OF L-VALUED SUBALGEBRAS OF AN ALGEBRA

G. Vojvodić and B. Šešelja

Institute of Mathematics University of Novi Sad, Dr Ilije Djuričića 4, 21000 Novi Sad, Yugoslavia

ABSTRACT

The notion of an C-valued (i.e. fuzzy) algebraic closure system over a set is defined, where C is a complete lattice. If C is algebraic, then an C-valued algebraic closure system determines an algebraic lattice.

For a given algebra A=(A,F), the set $\overline{S_{\mathcal{L}}(A)}$ of its \mathcal{L} -valued subalgebras is an \mathcal{L} -valued algebraic closure system over A (and thus $(\overline{S_{\mathcal{L}}(A)},\subseteq)$, is an algebraic lattice), if \mathcal{L} is complete, and consists of compact elements only.

1. Let $A \neq \emptyset$, and let $\mathcal{E} = (L, \land, \lor, 0, 1)$ be a complete lattice. Let $\overline{A} \subseteq \overline{F(A)}$, i.e. $\overline{A} = \{\overline{A}_i : \overline{A}_i : A \to L, i \in I\}$ is a family of \mathcal{E} -valued sets on A (i.e. fuzzy sets on A). Then \overline{A} is an \mathcal{E} -valued closure system over A, if \overline{A} is closed under the arbitrary intersections (note that the intersection and the union of \mathcal{E} -valued sets are defined by means of the lattice operations: If $\{\overline{A}_j \mid j \in J\} \subseteq \overline{A}$, then

and

AMS Mathematics Subject Classification (1980): Primary 03E72, Secondary: 08A30.
Key words and phrases: Fuzzy sets, lattices.

for every a \in A). As usual, we set A \in \overline{A} (A is here identified with its characteristic function: for every a \in A, A(a) = 1 \in L).

If $\bar{X} : A \rightarrow L$ is an arbitrary £-valued set on A, then

$$[\bar{X}] \stackrel{\text{def}}{=} \cap (\bar{B}|\bar{B} \in \bar{A}, \text{ and } \bar{X} \subseteq \bar{B}).$$

We say that \overline{X} : $A \rightarrow L$ is generated by \overline{X} in \overline{A} . It is obvious that:

- (a) $[\bar{X}]$ exists for every $\bar{X}: A \rightarrow L$;
- (b) $[\bar{X}] \in \bar{A}$;
- (c) $[\bar{X}]$ is the smallest (in the sense of \subseteq) in \bar{A} , containing \bar{X} ;
- (d) If $\bar{X} \subseteq \bar{Y}$, then $[\bar{X}] \subseteq [\bar{Y}]$;
- (e) $[[\bar{X}]] = [\bar{X}].$

Lemma 1.1. If \bar{A} is an L-valued closure system over A, then (\bar{A}, Ξ) is a complete lattice.

Proof. \bar{A} contains the greatest element (A), and it is closed under the arbitrary intersections. \Box

The algebraic E-valued closure system over A (E-ACS over A) is a family $\bar{A}=\{\bar{A}_{\underline{i}}|\ \bar{A}_{\underline{i}}:A\to L,\ i\in I\}\subseteq \overline{F(A)},$ such that:

- (I) \bar{A} is an f-valued closure system over A, and
- (II) If $\emptyset + \bar{\beta} \subseteq \bar{A}$, and $\bar{\beta}$ is a directed family in the sense of \subseteq (that is, for every two element (and thus for every finite) subset of $\bar{\beta}$ there is an upper bound in $\bar{\beta}$), then

$$\begin{array}{ccc} \mathbf{U} & \mathbf{\bar{B}_k} \in \mathbf{\bar{A}}. \\ \mathbf{\bar{B}_k} \in \mathbf{\bar{B}} \end{array}$$

In the following, \bar{A} is an f-ACS over A.

The proofs of the following two lemmas are straightforward (they are similar to the proofs of the corresponding propositions in [4]).

Lemma 1.2. Let $\bar{X} : A \rightarrow L$. Then

 $[\overline{X}] = U([\overline{Y}]|\overline{Y} \subseteq \overline{X} \text{ and } \{a \in A|\overline{Y}(a) > 0\} \text{ is finite}).$

Lemma 1.3. In the lattice (\bar{A},\subseteq) ,

$$v(\bar{A}_i|i \in I) = [v(\bar{A}_i|i \in I)].$$

Lemma 1.4. Let \overline{A} be an L-ACS over A, where L is an algebraic lattice. Then $\overline{B} \in \overline{A}$ is compact in (\overline{A},\subseteq) iff $\overline{B} = [\overline{X}]$, for some $\overline{X} : A \rightarrow L$, such that $\{a \mid \overline{X}(a) > 0\}$ is finite.

Proof. Let $\overline{B} = [\overline{X}], \overline{X} : A \to L$, and $\{a | \overline{X}(a) > 0\}$ is finite. If $\overline{B} \subseteq v(\overline{A}, | i \in I)$, then by Lemma 1.3.,

$$\bar{X} \subseteq [\bar{X}] = \bar{B} \subseteq v \bar{A}_i = [U \bar{A}_i].$$
 $i \in I$

Let now for $j \in \{1,...,n\}$, $\bar{X}(a_j) > 0$, and for every $a \in A \setminus \{a_j | j \in \{1,...,n\}\}$, let $\bar{X}(a) = 0$. Then,

and by Lemma 1.2., there is $\bar{H}_j \subseteq \cup \bar{A}_i$, such that $i \in I$ {a $|\bar{H}_j(a)>0$ } is finite, and $[\bar{H}_j](a_j)>0$. Since £ is algebraic, and by virtue of the inequality

$$\bar{H}_{j}(a) \leq v \bar{A}_{i}(a),$$
 $i \in I$

it follows that

$$\bar{H}_{j}(a) \leq v \bar{A}_{i}(a).$$
 $i=1$

Since there is only a finite number of $a_{j_k} \in A$ such that $\bar{H}_i(a_{j_k}) > 0$, it follows that

$$\bar{H}_{j} \subseteq U \bar{A}_{i}$$
, where $M_{j} = m_{j_{1}} + \dots + m_{j_{n}}$.

Let $M = \bigcup_{j} M_{j}$. Then

$$\bar{X} \subseteq [U \bar{A}_{\underline{i}}],$$

$$i=1$$

and hence

$$\vec{B} = [\vec{X}] \subset [[\begin{matrix} M \\ U \\ i=1 \end{matrix}] \vec{A}_i]] = [\begin{matrix} M \\ U \\ i=1 \end{matrix}] \vec{A}_i^*] = \begin{matrix} M \\ V \\ i=1 \end{matrix}$$

Let now $\bar{B}\in\bar{A}$ be a compact element in (\bar{A},\subseteq) . Then by Lemma 1.2., and Lemma 1.3.,

$$\bar{B} = [\bar{B}] = \bigcup_{i \in I} (\bar{Y}_i | \bar{Y}_i \subseteq \bar{B}, \text{ and } \{a | \bar{Y}_i(a) > 0\} \text{ is finite}) = i \in I$$

=
$$v$$
 $(\bar{Y}_i | \bar{Y}_i \subseteq \bar{B}, \text{ and } \{a | \bar{Y}_i(a) > 0\}$ is finite) = $i \in I$ k

=
$$\bigvee_{i=1}^{K} (\bar{Y}_i | \bar{Y}_i \subseteq \bar{B}, \text{ and } \{a | \bar{Y}_i(a) > 0\} \text{ is finite}),$$

since \overline{B} is compact. Let $\overline{Y} = \bigcup_{i=1}^{k} \overline{Y}_{i}$. Obviously, $\overline{Y} \subseteq \overline{B}$, and i=1 {a| \overline{Y} (a) > 0} is finite. Hence, by Lemma 1.3.,

$$\vec{\mathbf{B}} = [\vec{\mathbf{Y}}_1] \vee \dots \vee [\vec{\mathbf{Y}}_k] = [\vec{\mathbf{Y}}_1 \cup \dots \cup \vec{\mathbf{Y}}_k] = [\vec{\mathbf{Y}}]. \square$$

Proposition 1.5. If \overline{A} is an L-ACS on A, and L is an algebraic lattice, then (\overline{A},\subseteq) is an algebraic lattice as well.

Proof. By virtue of Lemma 1.2., for every $\bar{X} \in \bar{A}$,

 $\bar{X} = U([\bar{Y}]|\bar{Y} \subseteq \bar{X}, \text{ and } \{a|\bar{Y}(y) > 0\} \text{ is finite}).$

By Lemma 1.3.,

 $\bar{X} = v ([\bar{Y}]|\bar{Y} \subseteq \bar{X}$, and $\{a|\bar{Y}(a) > 0\}$ is finite).

Now, by Lemma 1.4., every $[\tilde{Y}]$ is compact. \Box

- 2. Let A = (A,F) be an algebra, and $K \subseteq A$ a set of its constants (if $K = \emptyset$, we accept the empty set to be a subalgebra of A). An \mathcal{L} -valued (i.e. fuzzy) subalgebra of A ([2], [3]), where \mathcal{L} is a complete lattice, is any mapping $\bar{B}: A \to L$, such that
- (a) $K \subseteq \overline{B}$ (K is identified with its characteristics function), and
- (b) $\overline{B}(f(x_1,...,x_n)) \ge \overline{B}(x_1) \land ... \land \overline{B}(x_n)$, for all $x_1,..., x_n \in A$, $f \in F_n \subseteq F$, $n \in N$.

We shall denote the set of all \mathcal{L} -valued subalgebras of A by $\overline{S(A)}$.

Proposition 2.1. Let A = (A,F) be an algebra, and let L be a complete lattice in which every element is compact. Then, $\overline{S_{L}(A)}$ is an L-ACS over A.

Proof. $\overline{S_{\underline{c}}(A)}$ is obviously an \underline{c} -valued closure system over A. To prove that it is algebraic, consider an arbitrary directed family $\overline{B} = \{\overline{B}_{\underline{i}} | i \in I\} \subseteq \overline{S_{\underline{c}}(A)}$. If $a \in A$, then the family $\{\overline{B}_{\underline{i}}(a) | i \in I\}$ is directed in \underline{c} . Since \underline{c} is complete and algebraic, and every element in \underline{c} is compact, it follows (see [1]) that every directed family (in \underline{c}) contains its supremum. Thus,

$$(\bigcup_{i \in I} \overline{B}_i)(a) = \bigvee_{i \in I} \overline{B}_i(a) \in {\{\overline{B}_i(a) | i \in I\}}.$$

It is clear now that for $a_1, \ldots, a_n \in A$, there are $\bar{B}_1, \ldots, \bar{B}_n \in \bar{B}$, such that for $j = 1, \ldots, n$,

$$\bar{B}_{j}(a_{j}) = (\bigcup_{i \in I} \bar{B}_{i})(a_{j}).$$

 $\overline{\mathfrak{g}}$ is directed, and thus there is $\overline{\mathtt{B}}$ \in $\overline{\mathfrak{g}}$, such that for j = 1,...,n,

$$\bar{B}(a_j) = \bigcup_{i \in I} \bar{B}_i(a_j).$$

Hence, since B is an L-valued subalgebra of A,

proving that $U \bar{B}_i$ belongs to $\bar{S}_{\underline{c}}(\bar{A})$. \Box

Corollary 2.2. Let $\mathfrak L$ be a complete lattice consisting of compact elements only. Then, for an arbitrary algebra A, the lattice $(\overline{S_{\mathfrak L}(A)},\subseteq)$ is algebraic.

Proof. By Proposition 2.1., and Proposition 1.5.

REFERENCES

- [1] G. Birkhoff: Lattice theory, Providence, Rhode Island, 1967.
- [2] B. Šešelja, G. Vojvodić: Fuzzy Congruence Relations and Groupoids, Zb. Rad. Prirod.-Mat. Fak. Univ. u Novom Sadu,,15-1, (1985), 209 - 218.
- [3] B. Šešelja, G. Vojvodić: On the Lattice of Weak Fuzzy Congruence Relations on Algebras, Zb. Rad. Prirod.-Mat. Fak. Univ. u Novom Sadu, 15-1, (1985), 199 - 208.
- [4] G. Gratzer: Universal algebra, D. Van Nostand Co., N. Y, 1972.

REZIME

O MREŽI C-VREDNOSNIH PODALGEBRI DATE ALGEBRE

U radu se definiše pojam £-vrednosnog algebarskog sistema zatvaranja na skupu, gde je £ kompletna mreža. Pokazuje se da £-vrednosni sistem zatvaranja odredjuje algebarsku mrežu, ako je £ algebarska. Razmatra se i mreža £-vrednosnih podalgebri proizvoljne algebre i pokazuje se da je ona algebarska, ako je £ takva, da je njen svaki elemenat kompaktan.

Received by the editors March 17, 1986.