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ABSTRACT

In this paper some section theorems are obtained.
These theorems are generalizations of section theorems from
[8] and [13]. Some applications are also given.

1. INTRODUCTION

In [8] Ky Fan generalized the KKM mapping theorem
to infinite dimensional spaces and obtained as a consequence
a section theorem leading to a proof of Tychonoff“s fixed po-
int theorem. Itoh, Takahashi and Yanagi {13] gave an element-
ary proof of this section theorem based on Brouwer”’s fixed po~
int theorem and also obtained an analogue of this section the-~
orem wherefrom they established a few existence theorems for
complementarity problems as well as nonlinear variational ine-~
qualities in¥olving uppersemicontinuous multifunctions. In
[21] Takahashi obtained a basic lemma leading to an extension
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of a variational inequality studied by Browder [%]. In § 3 we
have obtained a generalization of Ky Fan”s section theorem and
it leads to the formulation of a class of variational inequa-
lities subsuming the one considered by Takahashi [21]. An ex-
‘tension of a coincidence theorem of Jiang Jiahe [14] is yet
another application of our theorem. In § 4 another section
theorem generalizing that of Itoh, Takahashi and Yanagi [13]

is proved along with the generalization of some results on va-
riational inequalities obtained by these authors.

] For applications of fixed point theorems in the solu-
tions of complementarity problems, variational inequalities and
quasivariational inequalities Allen [1], Browder [3], Baiocchi
and Capelo [21, Coppoletta [51, Dugundji and Granas [6], Gwin-
ner {11], Karamardian {16], Juberg and Karamardian [15], Kind-
erlehrer and Stampacchia [17], Minty [18], More [19] and Mosco
{20] may be referred.

2. PRELIM{NAR(ES

Throughout the paper E denotes a Hausdorff topologi-
cal vector space, ZE the collection of nonempty subsets of E.
For H,K € E the boundary and interior of K relative to H are
defined as By(K) = K n (FK) and I (K) = K n (BH(K))C respec-
tively where A denotes the closure of A and AS the complement
of A. CK(E) denotes the set of all nonempty compact, convex
subsets of E. For any pair of topological vector spaces E and
F denote by < .,. > a bilinear form of F x E into the reals R
and by R the set of nonpositive real numbers. For any locally
convex space E we assume that the topology of E* (the dual of
E) is the strong topology and < w,x > is the value of w € E%
at x ¢ E. For any cone H in a topological vector space E, i.e.,
.H is a closed convex subset of E such that ox + gy € H for all
a>8 > 0 and x,y € H, the polar H* of H is the cone defined by

H* = { y € E% : <y,x> 2 0 for all x € H }.

Ky Fan [10] introduced the following concept of an
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upperdemicontinuous maps that include the class of uppersemi-
continuous maps in real spaces.

_ Definition\z.l. Let E be a real locally convex spa-—
ce and T a multimap of S = E into ot is said to be upperdemi—
continuous ©f for every x €S and every half space H containing
Tx there extsts a neighbourhood of x whose image under T i8
contained in H where H i8 of the form {x € E : h(x) > r} where
h ©8 a continuous linear functional not identically aero and r

any real number.

The basic section theorem of Ky Fan whose applicati-
ons can be found in Ky Fan [9], and Iohvidov [12] is as fol-
lows.

Theorem 2,1. (Ky Fan [8]) Let K be a nonempty com-
pact convex subset of a Hausdorff topological veetor space E.
Let A be a closed subset of K x K for which the following con-
ditions hold: V

(%) (x,x) €E A for every x € K,
(1%) For each x € K, {y € K : (x,y) € A}

18 convex or empty. .
Then there exists xo € K such that {xe} x K S A,

The following results on variational inequalities and
complementarity problems have been obtained in Takahashi [21]:

Theorem 2.2. (Takahashi [21]) Let H be a closed
convex subset of a locally convex Hausdorff topological vector
apace E and T a continuous mapping of H into E¥. If there exists
a compact convex set K of H such that IH(K) *+ ¢ and for each
z € BH(K) there 78 uo € IH(K) with < Tz, z-uo > 2 0, then there
exists Xo € H such that < Txg, X=%> 2 0 for all x € H.

Theorem 2.3. (Takahashi [21]) Let H be a cone in a

locally convex space E and T a continuous mapping of H into E*.
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If there extsts a compact convex set K of H such that IH(K)#¢
and for eagch z € BH(K) there 18 uo € IH(K) with < Tz, z-uo > =
2 0 then there extate x* € H such that Tx* € H%* and < Tx¥*,x* >
= 0.

A coincidence theorem of Jiang Jiahe [14] for upper-
demicontinuous multimaps is given below.

Theorem 2.4, (Jiang Jiahe [14]) Let K be a compact
convex 8et in aq locally convex space E, Let F,G : K ~+ 2 pe
two upper-—demicontinuous mappings such that for any x € K, F(x)
and G(x) are nonempty closed convexr sets and either F(X) or
G(x) 78 compact. Suppoee that for any x € E and any continuous

linear functional ¢ on E {nfe(x-y) 2 0 Zmplies .4inf ¢(u-v) 2 0.
v€EE u€F{x)
vEG(x)
Then there exists xo € K suech that F(xe) N G(xe) # U.
The following is a section theorem analogous to Theo-

rem 2.1 where we have distinct topological vector spaces.

Theorem 2.5. (ltoh, Takahashi and Yanagi [13]) Let
K4 be a nonempty compact convex subset of a locally convex
space E and Ka a closed convex subset of a Hausdorff topologi-
cal veetor space F. Let A be a subset of Kq % Ka. having the
following properties:

(i) A 18 olosed

(%) For any v € Ka, {x € K4 : (x,7) € A} <s nonempty
and convex

(i27) For any x € K1, {y € Ka : (x,¥y) € A} 18 convex or
empty. ‘

Then there exis8ts xo € K1 8uch that {xo} % Ka € A.

Some results on variational inequalities and comple-
mentarity problems proved in [13] have been stated below.

Theorem 2.6. (ltoh, Takahashi and Yanagi [13]) ez
H be a nonempty closed convex subset of a Haudorff topological
vector space E, F locally convex. Let T : H = CK(F) be an upper-
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gemicontinuous map and £ : H » R a lower semicontinuous convex
funetion. Suppose that there extists a nonempty compact convex

set K of H with IH(K) # ¢ such that-< .,. > 18 jotntly conti-

nuous on F x K and for each z € BH(K) there 78 u € IH(K) Sfor

which 4inf < wyz-u > 2 f(u) - f(z).
wET(z)
Then there exists xo € K and wo € T(xo) such that

< Wwo, X-%0 > 2 f(xo) - f(x) for every x € H.

Theorem 2.7. (ltoh, Takahashi and Yanagi [13]) ILet
H be a cone in the real n dimensional space R and T : H -
-+ CK(R™) an uppersemicontinuous mapping for which there ig a
eonatant ¢ > 0 such that < w-v, x > 2 clxll2 for all x € H,
w € T(x) and v € T(0). Then there exists xo € H and wo € T(xo)
such that wo € H* and < wo, %o > = 0.

3. A GENERALIZATION OF A SECTION THEOREM
OF KY FAN AND ITS APPLICATIONS

The following theorem includes Theorem 2.1.

Theorem 3.1. Let K be a nonempty compact, convex
subset of a Hausdorff topological vector space E. Let A S K¥KxK .
and g : K o K such that the following conditions are satisfi-
ed. '

(1) For every y € K, {x € K : (gx,y) € A} Zs closed

(27) For every x € K, (gx,x) € A,

(iii). For each x € K, {y € K : (gx,y) &€ AY 4is empty or
convex.

Then there extsts %o € K such that {gxo} x K < A.

Proof. Suppose that for any x € K, there exists
Yy € K such-that (gx,y) € A. For each y € K, let

A(y) = {x € K : (gx,y) € A} then we have K = U A(y). By (i)
y€EK
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A(y) is open in K for each y € K. Since K is compact there
exists a finite number of points {y1,yz,...,yn} of K such that
. n _

K = _U A(yi)\ .
i=1
Let {31,33,...,Bn} be a partition of unity corresponding to
this covering i.e., each Bi is a continuous mapping of X into
[0,1] which vanishes outside of A(yi) while

n .
L B.(x)=1
j=1 1

for every x € K. We define a mapping p : K » K by

p{x) = Bi(x)yi.

" MB

i=1

Then p maps the simplex S spanned by the set {y1,Yz,...,yn}
into itself, p has a fixed point z € S by Brouwer”s fixed po-
int theorem. For every i with Bi(z) >0, (g(z),yi) € A. Thus
by (iii) we get :

n
(g(z),p(z)) = (glz), £ B;(z)y;) € A.
i=1
On the other hand (g(z),p(z))= (g(z),2z) € A by (ii). This is
a contradiction. Therefore there exists xo € K such that
{gxo} x K © A,

Remark 3.1. When g = identity map on K we get Theo-
rem 2.1. '

As an example which illustrates Theorem 3.1 we have
the following.

Example 3.1, Let K= [0,1] c Rand g : K + K be
defined as gx = 1=-x and A={(x,y) € K x K.: vy § 1-x} . Then it
can be easily verified that g and A satisfy all the conditions
of Theorem 3.1. Clearly x5 = 1 is such that {gxe¢} x K € A. We

do not require the diagonal {{x,x) : x € K} to be contained
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in A.

As an application of Theorem 3.1 we have the fol-
lowing in which for g = identity map on K, the result is due
to Takahashi ({21], Lemma 1).

Theorem 3.2. Let E be a Hausdorff topological vec-
tor space and K € E compact and eonvex g : K =+ K and F : KxK-R

are maps with the following conditions:

(1) For every x € K, v » F(gx,y) 1s convez,
(t1) F(gx,x) 2 ¢ for every x € K for some real c,
(211) For every y € K, x » F(gx,y) is uppersemtecontinuous.

Then there exists xo € K such that F(gxo,x) 2 ¢ for

every x € K.

Proof. Let A= {(x,y) € K x K : F(x,y) 2 c}. It can
be easily verified that under assumptions (i), (ii) and (iii)
all the:conditions of Theorem 3.l.are satisfied. Hence there
exists x, € K such that {gxe}lx K< A i.e., F(gxo,x) 2 ¢ for
every x € K.

With the help of Theorem 3.2 we prove the following

result.

Theorem 3.3. Let E be a locally convex Hausdorff
topological veetor space, T : K = E¥* gnd g : K * K are maps
where K ¢ E i8 compact and eonvex with the following conditi-

ons.

(1) x = < Tgx, y-gx > 18 uppersemicontinuous for every
y € K,

(i1) x » < Tgx, x-g(x) > is lower semicontinuous.

Then there exist Xp,yo € K such that for every ye€X
< Tg(xo), y-g(xo) > 2 < Tglyo),yo=-g(yo) >.
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Proof. Define F : K X K=+ R by F(x,y) = < Tx,y-x >.
Under the assumptions (i) and (ii) F satisfies the conditions

of Theorem 3.2 with c = 4ng< Tg(x),x-g(x) > the infimum being
x€EK ’
attained at some yo € X in view of the compactness of K and

(ii). So by Theorem 3.2 there exists xo € K such that
F(gxo,y) 2 < Tg(yo),¥o-8(yo) > for every y € K, i.e.,
< Tg(xo),y-g(xo) >2< Tg(yo),yo -g(yo) > for every y € K.

Remark 3.2. When g reduces to the identity map on K
and T : K = E* continuous we get a result of Browder [u].
We extend below Theorem 3.3 to closed convex sets.

Theorem 3.4. Let H be a closed convexr subset of a
locally convex Hausdorff topological vector epace E,T : H + E*
and g * K - K where K &« H 78 compact and convex with IH(K) # 0.
Suppose (i) xw» < Tg(x),y-g(x) > ie uppersemicontinuous for
every y € K, (21} xvw < Tg(x),x-g(x) > 18 lower semicontinuous
and (ii1) for every g(z) € BH(K) there exieta uo € IH(K) with
< T(gz),uo-g(2) > < < Tg(x),x-g(x) > for every x € K. Then the-
re exist Xo,Yo € K such that < T(g(xo)),y=g(xo0) > 2 < T(glyoe)),
Yo -g(yo) > for every y € H.

Proof. By Theorem 3.3 there exist xX¢,yo € K such
that ¢ Tg(Xe),¥-8(xo) > 2 < Tg(Yo),¥o-E(Yo) > for every y € K

where < Tg{(Y¥o)3Yo=-8(¥Yo) > = 4inf < Tg(x),x~-g(x) >. If gxo € IH(K)
XEK
for every y € H, there exists A €(0,1) with Ay + (1-X)gxo € K.

Thus < Tg(xe),Ay + (1=A)gxe = gXo > 2 < Tg(ye),yo-g(yo) >, i.e.,
< Tg(xe),y=g8(Xg) > 2 < TE(Yo)sYo=g(¥o) >. If gxo € BH(K) there
exists u, € IH(K) with

(I) Ang < Tg(x),x-g(x) >2< Tg(xe),up~glxo) >
: X€EK

by hypothesis. For every y € H there exists A € (0,1) with

A + (1-2)ug € K. Hence < Tg(xe),Ay + (1-2)uy - g(xe) > 2

2 < Tg(yolyo-g(yo) > i.e.;, A< Tglxo),y-gxo > 2 < Tg(yo),¥o ~&(¥o) >
+ (1-2)( < Tg(xe),g(%e) = uo > ). By (I) we conclude
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< Tg(xg),y-g(x0) > 2 < Tg(yo),yo-g(yo) > for every y € H.

When g = identity map on K.and T : H - E* is conti-
nuous we get Theorem 2,2.

The following nonlinear complementarity problem is a

consequence of Theorem 3.4,

Theorem 3.5. Let H € E be a cone where E {8 a local-
ly convexr Hausdorff topological vector space. If K € H i8 com-
pact and convex, T : H + E®%, g : K + K are maps with the condi-

tionsg:

() x = < Tg(x), y-g(x) > i8 uppersemicontinuous for eve-
ry y €K, _

(i1) = x = < Tg(x), x-g(x) > is lowersemicontinuous,

(111) For every g(z) € BH(K) there exigts uo € IH(K) with

< Tg(z),uo-g(z) > £ < Tg(x),x- g(x) > for every x € K.

Then there exist Xo,Yo € K with |< Tg(xo),g(xo0) >| <
< < Tg(yo),yo-g(yo) > and Tg(xo) € H*.

Proof. By Theorem 3.4 there exist X ,Yo € K with
< Tg(xo),y~gxo > 2 < Tg(yo),¥0-g(yo) > for every y € H. Taking
y = 0 and 2 gxo we get |< Tglxo),g(xo0) >| S < Tg(yo),yo-g(yo) >
and < Tg(xo),y > 2 0 for every y € H implying that Tg(xo) € H%.

Remark 3.3 When g is the identity map on K and
T : H + E* is continuous we get Theorem 2.3.

The following is an improvement of a result of Jiang
Jiahe ([14].

Theorem 3.6. Let K be a compact convexr subset of a
loecally convex space E, F and G : K + 2K are upperdemicontinu-
ous multimaps such that F(x) and G(x) are nonempty closed con-
vexr subsets of E for each x € K with the condition that either
F(gx) or G(x) 28 compact for each x € K where g : K+ K 28 a

continuous map. If for every continuous linear functional ¢
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and 0 < t <1 w(gyi - gx) >0 (1= 1,2) implies that
¢(gltys + (1-tlya) = g(x)) > 0 (I) and for every x € g(K)

with 4An§ e(x-y) 2 0 implies that .in§ ¢(u-v) < 0. Then
y€g(K) u€F(gx)
vEG(x)
there exists %X, € K such that F(gxe) N G(xe) % ¢.

Proof. Suppose that the conclusion does not hold.
Then for any x € K, F(gx) and G(x) can be strictly separated
by a closed hyperplane by separation theorem in a locally con-
vex space i.e., there are real numbers Ty and -a nonzero
continuous linear functional ¢, on E such that ¢x(u) >r, >
> ¢ (v) for any u € F(gx) and v € G(x). By the continuity of g
and upperdemicontinuity of F and G there is a neighbourhood
U, of x in K such that u, € {y € X : for every U € F(gy) and
v € Gly)w (u) > r > ¢x(v)}.Sinceat least one of F(Gy) or G(y)
is compact say F(g(y)) is compact, there is a real number Sy
such that for any u € F(gy) and v € G(y),vx(u) 2s >r > ¢ (V).
Hence ¢x(u-v) 2 S, " T, 2 0. Consequently

Ux c {y €K : ing wx(u—v) > 0}.
u€F(gy)
vEG(y)
By ‘the compactness of X there exists {X1,Xa,...,x } € X such
that U Uy, = K. Let {B } be the corresponding partition of
i=1 i i=1 n
unity. Define A as follows. A—{(x W)€E K x K : I 6 (x)¢ (gy -
i=1
- x) S 0 }. Since ¢xi,6i and g are continuous for every

y € K, the set {x € X : (gx,y) € A} is closed and (gx,x) € A
for every x € K. For each x € K, {y € X : (gx,y) € A’} is con-
vex in view of (I) for the continuous 1linear functional

v = i B;(8x)x;. Thus all the conditions of Theorem 3.1 are
i=1
satlsfled Hence there exists xo € K such that {gxo} *x X g A

i.e., Z B. (gxo)«ﬂx (gy-gxo) S 0 for every y € K.

i=1
n

For¢ = L Bi(gxo)¢xi a continuous linear functional we have
i=1

?(gxo-gy) 2 0 for every y € K and hence  4nf v (gxo-2) 2 0.
z€g(K)
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But for every i with Bi(gxo) >0, gxo € Uy; where

inf Py (u-v) > 0
uEF(g(z)) ~+- °
veEG(z)
where z = gx,. Thus
n .
ing ¢ (u-v) 2 Bi(gxo) ing ¢, (u=v) >0

u€F(g(z)) i=1 ue€F(g(z)) i
vEG(z) vEG(z)

which contradicts our hypothesis. Hence there exists x, € X
with F(gx,) 0 6(x,) * ¢.

Remark 3.4. When g reduces to the identity map on K
we get Theorem 2.4 due to Jiang Jiahe [14].

Lk, GENERALIZATION OF A SECTION THEOREM DUE
TO ITOH, TAKAHASH! AND YANAG!I AND A CLASS
OF VARIATIONAL TYPE INEQUALITIES

When we have distinct topological vector spaces the
following is a generalization of Theorem 2.5.

Theorem 4.1. [Let Ky be a nonempty compact, convex
subset of a locally convex space E and Ka a nonempty closed
convexr subset of a Hausdorff topological veetor space F. Let
A be a subset of Ky X K3 and 8 a continuous self map on K
such that the following eonditions are satisfied:

(1) A 18 closed

(it) For any y € Ka, {x € K¢ : (gx,y) € A} # ¢ and
convez :

(t11) For any x € K¢, {y € Ka : (gx,y) € A} <is empty

or convex
Then there exists xo € K with {gxo} X Ka & A.

Proof. Suppose that the assertion of the theorem is
false. Then, for each x € K4, there is y € Ka such that
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(gx,y) € A. Denote A(y) = {x € K4 : (gx,y) € A} for any vy € Ka,
then there exists a finite covering {A(yi)}2=1 of K and a par-

tition of unity {8.}%

;tia1 corresponding to this covering. Set

n : ‘

p(x) = I Bi(x)yi for any x € Kq. Then p is a continuous map-
i=1

ping of K4 into Ka., Define a mapping T : K¢ =+ 7K1 by T(x) =

= {u € K4 : (g(u),p(x)) € A} then by (i) and (ii) T(x) is non-
empty convex and compact for every x € K, (By the continuity
of g and closedness of A, T(x) is a closed subset of XKy, for
every x € Kq). Using the continuity of g, p and (i) it can be
verified that T is uppersemicontinuous. Hence T has a fixed
point z € K1 by Fan”s fixed point theorem [7]. Thus (g(z),p(z))
€ A. On the other hand by (iii) (g(z),p(z)) € A. This contradic-
tion proves the theorem. ,

When g = identity mapping on K4, we obtain Theorem

Throughout the rest of this section H is a closed
convex subset of a Hausdorff topological vector space E and F
a Hausdorff locally convex space, K & H a compact convex set
with IH(K) * ¢. g maps H continuously into itself leaving K in-
variant, f : H » R a real valued continuous convex function and
T : H -~ CK(F). The bilinear form <-,*> is jointly continuous on
F x K.

Theorem h.2. Suppose the following conditions are
satisfied for the maps wi (i = 1,2,3) of H into ttself leaving
K tnvariant.

(z) The maps VYag and Y1 are continuoue where Y1 18 affine
and Tg 12 uppersemicontinuous on K.

(ti) For every x € K, there exiets w € T(g(x)) such that
< w,Pa(x) = Yalgx) > 2 flgx) - f(x).

(iiz) For Ya(x) € B, (K) there exigts y € I4(K) euch that
inf < wybalgx) - $aly) > 2 fly) - £(gx).
wET(gx)

(Zv) fg 2 fyas and Ya * g = Ya .+ Y53 -
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Then there'exiets xo € K and wo € T(gxo) such that
< Wo,P1(x) - Yal(gxe) > 2 flgxo) = f(x) for every x € H.

Proof. Let A= {{x,y) € XK x X : Sup < w ,pa(y) -
' wE€T(x)
- Ya(x) > 2 f(x) - f(y). By (ii) (gx,x) € A for every x € K

and thus A is nonempty. Since ¥1 is affine and f is convex,
{y € K: (gx,y) € A} is convex for every x € K and by the
continuity of Vag and the uppersemicontinuity of Tg, {x € K :
(gx,y)EA} is closed for every y € K. Thus all the conditions
of Theorem 3.1 are satisfied. Hence there exists xo € K such
that {gxo} X K € A. i.e.,

() Sup < w,¥i(x) - Ya(gxe) > 2 flgxe) - f(x)
wET(gxo) .
for every x € K. .
Now, define B = {(w,x) € T(gxoe) x K : < w,p,4(x) -
- Yalgxo) > 2 f(gxo) - f(x)}. B is nonempty in view of (I).
Since Y4 and f are continuous, B is closed. By (I) and the af-
fineness of ¢4 it can be verified that B satisfies all the
conditions of Theorem 4.1, (with g = identity in that theorem).
So there exists wo € T(gxe) such that {wo} x K c B, i.e.,

(II) < wWo,Pa(x) - palgxo) > 2 f(gxo) ~ f(x)

for every x € K.
If Yalx,) € IH(K), for each x € H we can choose A
(0 < A < 1) so that Ax + (1 - A)pa(xe) € K. By II

< Wo,Pa(x) = Yalgxe) > 2 A(f(gxe) - £f(x)) +
+ (1 - AN)[f(gxe) = F(P3(x0)) + < wo,Pa(gxe) -
- Y1Pal(xe) >]‘

By (iv) < wo,P1(x) - valgxe) > =2 f(gxe) - f(x) for every x € H.
Suppose Pa(xo) € BH(K); by (iii) there exists yo €

€ IH(K) such that inf < w,wz(gxo) - Va(yo) > 2 f(y@)-f(gxo).
) w€T(gxo)
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Since wo € T(gxo), < Wo,¥al(gxo) =~ Y4(yo) > 2 f(yo) - flgxo).

Now if x € H, for yo € IH(K) there exists A €(0,1) such that

Ax + (1 - A)yo € K. By (II) < wWo,¥1(dx + (1 - Ayo) -

- Yalgxe) > 2 f(gxo) - f(Ax +(1 - A)yo) from which it follows
that -

A< Wo,¥a(x) = Yal(gxe) > 2 A(flgxe) - £f(x))
+ (1 - M [f(gxo) - f(yo) + < Wo,wﬁ(gxo) - Y1(yo) >]

By (iii) and (iv) < wg,¥1(x) = ¥algxo) > 2 f(gxe) ~ f(x) for
every x € H.

Remark 4.1. When T is single valued the lowersemi-
continuity of f is sufficient to draw the conclusion of Theo-
rem 4.2, ‘
' For particular choices of ¥1, Y2 and ¥s we obtain
the following results. ’

Theorem 4.3, BSuppose the following conditions hold:

(<) T 78 uppersemicontinuous
(it) For x € BH(K), there exists y € IH(K) such that
ing< wyx-y'> 2 fly) - f(x).
WwET(x)

Then there exiats xo € K and wy € T(x,) such that < Wgo,X-Xgo > 2
2 f(xo0) - £f(x) for every x € H. '

Proof. In Theorem 4.2 set Y1 = Ya = Ya = g = identi-
ty on H. It can be verified that all conditions of Theorem 4.2
are satsified under the assumptions (i) and (ii) and we have
the required result.

Remark 4.2. In the proof.of Theorem 2.6, though the
authors have assumed f to be merely lowersemicontinuous, it ap-
pears -that not only the lowersemicontinuity of f, but also that
of - f (which leads to the continuity of f) is indispensable.
Theorem 4.3 is a modification of Theorem 2.6.
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The;rem 4.4. Suppose we have the following condi-

tions.

(<) Tg 28 uppersemicontinuous on K,

(¢Z) For every x € K, there exists w € T(gx) suchkh that
< wy,x-g?x > 2 fgx) - £(x),

(ii7) For g2(x) € B (K) there exists y € IH(K) sueh that

ind < w,g?x-y > 2 fy - f(gx) and

wET(gx)

(iv) fg 2 fg2.

Then there exists X, € K and wo € T(gxe) such that
<Wg ,X-g2(x0) > 2 f(gxe) - f(x) for every x € H.

Proof. In Theorem 4.2, put Y, = identity on H,
Ya = g and Y3 = g2. For this choise of v (i = 1,2,3) under
the assumptions (i) - (iv) it can be verified that all the
conditions of Theorem 4.2 hold. Hence there exists x, € K and
wo € T(gxo) such that < wg,x-g2x0 > 2 f(gxe) - f(x) for every
x € H, :

Theorem 4.5. Suppose we have the following assumpt-

iong on T and g.

(%) g 18 affine and Tg i8 uppersemicontinuous on K

(11) For every x € K, there exists w € T(gx) such that
< W,gx-g2x > 2= f(gx) - f(x), '

(ii1) For gx € BH(K) there exists y € IH(K) such that
ing < w,g2x ~ gy > 2 f(y) - f(gx) .
wET(gx)

Then there exists Xo € K and wo € T(gxXo) suach that
< Wo,g8X = Eg2Xg > 2 flgxe) - f(x) for every x € H.

Proof. 1In Theorem 4.2 take Y4 = Y2 = $3 = g. Under

the given hypotheses, for the particular choice of s it can

be verified that all the conditions of Theorem 4.2 are satis-
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fied. So there exists x, € K and wo € T(gxy;) such that
< W ,8%X - B3x, >2 f(gxy) - f(x) for every x € H.

For convenience we shall assume in the rest of the
section that Tg is uppersemicontinuous on H.

Theorem 4.2 still holds if in the place of F we ta-
ke E%, the dual of E a locally convex space and denote by
< wy,x > the value of w € E*¥ at x € E.

Theorem 4.6. TIf H <8 a closed convex subset of a
locally convex epace E,K & H compact and convex with IH(K) * .
If g, wi (i = 1,2,3) are maps of H into itaself leaving K Zinva-
riant where g i8 continuous, f : H + R a continuous convex
funetion, T : H + CK(E*) with

() The maps Yag and Y, are continuous where Y, 8 af-
fine and Tg <8 uppersemicontinuous,

(i2) For every x € K, theie exists w € T(gx) such that
< wyWalx) - Palgx) > 2 f(gx) ~ £f(x),

(22<) For Ya(x) € BH(K) there exists y € IH(K) such that
ing < wypalgx) = paly) > 2 £f(y) - £f(gx).
wET(gx)
(iv) fg 2 fYs and ¥a * g = V1 * Ya.

Then there exists %o € K, wo € T(gxo) such that
< W sP1(x) = Yalgxe) > 2 flgxe) - £(x) for every x € H.

Given below are multivalued versions of nonlinear
complementarity problems.

Theorem 4.7. Let H be a cone of a locally convex
space E, X ¢ H compact and convex with IH(K) * ¢, f : H*> R™
18 a continuous convex funetion, with £(0) = 0, T : H + CK(E¥)
and g, wi‘(i = 1,2,3) are maps of H into itself leaving K in-
variant with g continuous satisfy the following conditions:
(i) The mape Yag and V4 are continuoue where V. is line-

ar and Tg uppersemicontinuous,
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(ii) For every x € K, there exists w € T(gx) such that
< wo¥q(x) = ¥algx) > 2 f(gx) - f(x).

(t11) For Ya(x)€ BH(K) there exists y € IH(K) such that
ind < w,P2(gx) - Pa(y) > 2 fly) - f(gx)
weT(gx)
(iv) fg 2 fYa and Ya = g = P41 ¢ Pa.

{a) Along with the above conditions tf f : H » R~ is
such that £(Ax) = Af(x) for every x € K and A 2 1, then there
exists Xo € K and wo € T(gxo) such that < wo, Palgxe) > =
= - f(gxe) and for every x € H, < wo,¥1(x) > 2 0.

(b) Along with the hypothesés (i) - (iv) if £ : H +~ R~
28 8uch that f(x+y) £ f(x) for every x,y € H, then there exigts
Xo € K and wo € T(gxo) such that 0 £ < wy,P2(gxe) > < - £f(gxo?)
and < wo,¥1(x) > 2 0 for every x € H.

Proof. By Theorem 4.6 there exists xo, € K and wg €
€ T(gxe) such that

(1) < wo,Pa(x) - Palgxo) > 2 f(gxo) - f(x) for every x€H.
Setting x = 0 we get < wo,Pa(gxo) > £ - f(gxo).

In the case (a) taking x = 2¥a(xo) in (I) we have <Wo,Pa(gxo)> 2
> - f(gxo) by using (iv) and f(Ax) = Af(x) for X > 1 and x € H,
Thus < wo,P2(gxe) > = - f(gxe) and for x € H, < wo,P1(x) > 2

2 - f(x) 20 for every x € H.

In case the condition (b) holds, taking x = 2¥a(xe)
in (I) and using (iv) and f(x + y) < f(x) for every x,y € H we
get < wo,¥a2(gxo) > 2 0. Thus 0 < < wg,Yal(gxe) > 5 - flgxe). For
every x € H, taking x + ¥a(xe) in the place of x in (I) and
using the conditions on f, wi (i= 1,2,3) it follows that
< Wo,Pa(x) > 20 for every x € H.

Remark 4.3. When g, by (i = 1,2,3) are chosen as the

identity maps on H Theorem 4.7 ((a),(b)) are those obtained in
Itoh, Takahashi and Yanagi ([13), Theorems 3.3, 3.4) for conti-
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nuous f.
When £ = 0 we get the following result.

Theorem 4.8, If H 28 a cZaaed convex subset of a
locally convex space E, K € H compact and convex with IH(K)*¢,
T : H+ CK(E*) and g, by (i=1,2,3) are maps of H into tteelf
leaving K invariant with g continuous such that the following
eonditions hold

(i) The mape Yag and Y1 are continuous where Y41 i8 line-
ar and Tg 18 upperasemicontinuous

(i7) For every x € K, there exists w € T(gx) such that
< w,Pq(x) =~ Palgx) > 20
(iit) For Ya(x) € BH(K) there exists y € I, (K) such that
inf < w,¥al(gx) - Y«(y) > 2 0 and
wET(gx)
(Zv) Ya * g = Pa * Ya.

Then there exists Xo € K, Wo € T(gXe) wWith < wo,¥a(gxe) > = 0
and < wWo,¥1(x) > 2 0 for every x € H.

The choice Y1 = Y2 = g = Y3 in finite dimensional’
Euclidean space 8" leads to the following result generalizing
the corresponding result due to Itoh, Takahashi and Yanagil
{131].

Theorem 4.10. Let H be a cone in the real n dimen-
etonal space R™ and T : H » CK(®™), g : H+ H a continuous 1li-
near map with lg(z)l S lz| for every z € H and Tg i8 upperse-
micontinuous. Suppose there exists ¢ > 0 and 0 % vo € T(0)
with

(r) < W~ vo,g(x) > 2 cllxll2 for every x € H and for
every w € T(x),

If for every x € H, there exists w € T(gx) suech that

(II) < w,gx - g2x > 20
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then there exists X, € H and w, € Tg(x,) Ssuch that
< Wo,82(x0) > = 0 and < wWo,g(x) > 2.0 for every x € H.

Proof. If O € T(0) = T(g(0)) the conclusion holds.
Otherwise, define K = {x € H : lIxll £ lvell/c}. K is a nonempty
compact convex set. Under the given hypotheses, all the con-
ditions of Theorem 4.9 except (iii) are easily verified for
the choice Y1 = Y2 = g = Ya. If g(x) € BH(K) then

cligxll2 = Hvolll g(x)} _and hence

inf < wyg2x > 2 cligxll2 + < vo,g3(x) > =
wET(gx)

= Hvoll fgxll + < veo,g2(x) >

i.e., ing < w,g®(x)> 210
wE T(gx)

for the interior point u = 0. By Theorem 4.9 there exists
%o € K and wo € T(gxo) such that < wo,g2x§'> = 0 and for eve-
ry x € H < wy,g(x) > 2 0. :
When g is the identity map on K and T : H » CK(™
is uppersemicontinuous we obtain the c¢orresponding theorem of
Itoh, Takahashi and Yanagi ([13], Theorem 3.6).
The following example illustrates Theorem 4.10.

Example 4.1. Let H = R% the cone of nonnegative vec-
tors in R2 g : H + H be defined by g(x,y) = (y,x) for every
(x,y) € H. Define T : H+ R2 by T(x,y) = (x2 + x +y - 1 - cosx,
x* + x+y -1 - cosx). It can be verified that T and g satisfy
all the conditions of Theorem 4.10. The set {(x,y) : y2 +y +
+ x - cosy = 0} = A forms the solutions set, namely for every
(x0,Y0) € Ay, < T(g(xo,¥0)), g£23(Xg,¥0) > =0 and for every
(x,¥) € Hy, < T(E(Xg,Y0))»8(X,¥) > 2 0. (x0,¥0) = (2,0) is
one such solution.
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REZIME
JEDNO UOPSTENJE TEOREME 0 PRESEKU KY FANA
| PRIMEMA NA VARIACIONE NEJEDNAKOSTI
U ovom radu su dobijene neke teoreme o preseku. Ove
teoreme uop3tavaju teoreme o preseku iz [8) i [13]. Date su
takodje i neke primene. ~
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