Z B O R N I K R A D O V A Prirodno-matematičkog fakulteta Univerziteta u Novom Sadu Serija za matematiku, 17,1(1987)

REVIEW OF RESEARCH Faculty of Science University of Novi Sad Mathematics Series, 17,1(1987)

A NOTE ON SUBSETS AND ALMOST CLOSED MAPPINGS

Ilija Kovačević

Fakultet tehničkih nauka, Institut za primenjene osnovne discipline, 21000 Novi Sad, Veljka Vlahovića 3, Jugoslavija

ABSTRACT

The aim of the present paper is to study some properties of α -Hausdorff (α -regular, α -almost regular) subsets and almost closed mappings.

1. INTRODUCTION

Our notation is standard. No separation properties are assumed for spaces unless explicitly stated.

A subset A of a space X is <u>regularly open</u> iff it is the interior of its own closure, or equivalently, iff it is interior of some closed set. A is called <u>regularly closed</u> iff it is the closure of some open set, or equivalently, iff it is

AMS Mathematics Subject Classification (1980): Primary 54C10, Secondary 54D15.

Key words and phrases: α -Hausdorff, α -regular, α -almost regular, almost closed, continuous, α -nearly paracompact, α -paracompact, α -nearly compact.

a closure of its own interior (a subset is regularly open iff its complement is regularly closed), [6].

A mapping $f: X \to Y$ is said to be <u>almost closed</u> (almost open) iff for every regularly closed (regularly open) set F of X, f(F) is closed (open) in Y, [6].

Let X be a space and A a subset of X. The set A is α -paracompact (α -nearly paracompact) iff for every X-open (X-regularly open) cover U of A there exists an X-open X-locally finite family V which refines U and covers A, [8]([3]).

A subset A of a space X is α -nearly compact (N closed) iff every X-regularly open cover of A has a finite subcover, [7].

A subset A of a space X is Lindelöf iff every X-open cover of A has a countable subcover, [1].

A subset A of a space X is α -Hausdorff iff any two points a,b of a space X, where a \in A and b \in X \sim A, can be strongly separated, [4].

A subset A of a space X is α -regular (α -almost regular) iff for any point $a \in A$ and any open (regularly open) set U containing a, there exists an open set V such that $a \in V \subset \overline{V} \subset U$, [4]([2]).

2. RESULTS

LEMMA 2.1. Let $U = \{U_1 : i \in I\}$ be any family of α -regular (α -almost regular, α -Hausdorff) subsets of a space X. Then the sets $U = U\{U_1 : i \in I\}$ and $V = \cap\{U_1 : i \in I\}$ are α -regular (α -almost regular, α -Hausdorff).

PROOF. Obvious.

In paper [4]([2]) the author showed that if A is an α -regular (α -almost regular) α -paracompact (α -nearly paracompact) subset of a space X, U an open (regularly open) neighbourhood of A, then there exists an open (regularly open) neighbourhood V of A such that $A \subset V \subset \overline{V} \subset U$.

From this fact we can easily prove the next lemma:

LEMMA 2.2. Let A be any open (regularly open) α -regular α -paracompact (α -almost regular α -nearly paracompact) subset of a space X. Then A is closed, (A is regularly closed).

THEOREM 2.1. In any space the union of a locally finite family of open α -paracompact α -regular sets is a clo-open α -regular α -paracompact set.

PROOF. Let $U = \{U_i : i \in I\}$ be any locally finite family of open α -regular α -paracompact subsets of a space X. By theorem 9 in [8], the set $U = U\{U_i : i \in I\}$ is α -paracompact. By Lemma 2.1. U is α -regular. By Lemma 2.2. the set U is closed.

THEOREM 2.2. Let A and B be any disjoint closed α -regular and Lindelöf subsets of a space X. Then, there exist disjoint open sets U and V such that $A \subset U$, $B \subset V$.

PROOF. For each point $x \in A$ there exists an open set U_X , such that $x \in U_X \subset \overline{U}_X \subset X \setminus B$. For each point $x \in B$ there exists an open set V_X , such that $x \in V_X \subset \overline{V}_X \subset X \setminus A$. Let $U = \{U_X \colon x \in A\}$. Let $V = \{V_X \colon x \in B\}$. Since A is Lindelöf there exists a sequence $\{U_n \colon n \in \omega\}$ of elements of a family U, such that $A \subset U\{U_n \colon n \in \omega\}$. Since B is Lindelöf, there exists a sequence $\{V_n \colon n \in \omega\}$ of elements of a family V, such that $B \subset U\{V_n \colon n \in \omega\}$. Let $U'_n = U_n \setminus U\{\overline{V}_p \colon p \leq n\}$ and $V'_n = V_n \setminus U\{\overline{U}_p \colon p \leq n\}$. Since $U'_n \cap V'_m = \emptyset$ for each n and m, it follows that $A \subset U = U\{U'_n \colon n \in \omega\}$, $B \subset V = U\{V'_n \colon n \in \omega\}$ and $U \cap V = \emptyset$.

COLOLLARY 2.1. Let A and B be any disjoint closed α -regular subsets of a Lindelöf space X. Then, there exist disjoint open sets U and V such that $A \subset U$, $B \subset V$.

PROOF. Every closed subset of a Lindelöf space is Lindelöf.

In paper [5] T.Noiri proved the next theorem:

THEOREM A. If $f: X \to Y$ is an almost closed mapping of a Hausdorff space X onto a compact space Y with N-closed point inverses, then f is continuous.

In this theorem the Hausdorff property can be omitted, which we shall prove in the next theorem.

THEOREM 2.3. If $f: X \to Y$ is an almost closed mapping of a space X onto a compact space Y such that $f^{-1}(y)$ is α -Hausdorff α -nearly paracompact for each point $y \in Y$, then f is continuous.

PROOF. Suppose that f is not continuous at some point $x \in X$. Let U(x) denote the family of all open neighbourhoods of x in X. Let y = f(x). Since f is not continuous at x, then there exists an open neighbourhood V of y in Y such that $f(U) \cap (Y \setminus V) \neq \emptyset$ for every $U \in U(x)$. Thus $A = \{f(\overline{U}) \cap (Y \setminus V): U \in U(x)\}$ is a family of closed subsets of Y. This family must have the finite intersection property (if there exists a finite number of open sets u_1, u_2, \ldots, u_n such that $u_1, u_1, u_1, u_2, \ldots, u_n$ such that $u_1, u_1, u_1, u_1, u_2, \ldots, u_$

is an open set containing x and $(Y \setminus V) \cap f(\bigcap U_i) \subset \bigcap_{i=1}^{n} (Y \setminus M) \cap (f(\overline{U}_i)) = \emptyset$ which is a contradiction).

Since Y is compact, there exists a point $y_0 \in \cap \{A: A \in A\}$. Thus we have $y_0 \in Y \setminus V$ and hence $x \notin f^{-1}(y_0)$. Since $f^{-1}(y_0)$ α -Hausdorff α -nearly paracompact, it follows that, by Lemma 2.1 in [2], there exist disjoint regularly open sets U_x and U_0 such that $x \in U_x$ and $f^{-1}(y_0) \subset U_0$. Since $\overline{U}_x \cap f^{-1}(y_0) \subset \overline{U}_x \cap U_0 = \emptyset$ we have $y_0 \notin f(\overline{U}_x)$. On the other hand, since U_x belongs to U(x), we have $y_0 \in f(\overline{U}_x) \cap (Y \setminus V) \subset f(\overline{U}_x)$. This is a contradiction. Hence

f must be continuous at x. Since x is an arbitrary point of X, it follows that f is continuous.

REFERENCES

- [1] Kelley, J.L., General Topology, Van Nostrand, Princeton, 1955.
- [2] Kovačević, I., On Nearly and Almost Paracompactness (to appear).
- [3] Kovačević, I., On Nearly Paracompact Spaces, Publ. De L' Inst. Math. (N.S.) 25(39)(1979) 63-69.
- [4] Kovačević, I., Subsets and Paracompactness, Univ. u Novom Sadu, Zb.rad.Prir.-mat.fak.Ser.Mat., Univ. u Novom Sadu 14,2 (1984) 79-87.
- [5] Noiri, T., N-closed Sets and Almost Closed Mappings, Glasnik matematički 10(30) (1975) 341-345.
- [6] Singal, M.K., Singal, A.R., Almost Continuous Mappings, Yokohama Math. J. 16(1968) 63-73.
- [7] Singal, M.K., Arya, S.P., On Nearly Compact Spaces-II, Boll. Un. Mat. Ital. 4(9) (1974) 670-678.
- [8] Wine, J.D., Locally Paracompact Spaces, Glasnik matem. 10(30) (1975) 351-357.

REZIME

O PODSKUPOVIMA I SKORO ZATVORENIM PRESLIKAVANJIMA

U radu se ispituju neke osobine α-Hausdorfovih, α-regularnih i α-skoro regularnih podskupova topološkog prostora X. Daju se i uslovi kada je skoro zatvoreno preslikavanje neprekidno nad prostorom koji ne mora da bude Hausdorfov.

Received by the editors September 17, 1986.