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ABSTRACT

Using the neutrix calculus we introduce and analyse

a more general product of distributiona than in[4). In parti-
cular, we find the '"a-product" x* % x~ for A + u < -1,
Ao A+u % =1,-2,... and a = -x-u-T-[-2%y]).

k4

In the following p denotes a fixed infinitely differentiable
function having the properties
(1) p(x) = 0 for |x| 21,
(11) p(x) 2z 0,

(111) p(x) = p(=x),

1
(iv) I 1p(x)dx =1.
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The function §  is defined by an(x) = np(nx) for n=1,2, ... .
It is obvious that the sequence {Sn} is regular and converges to
the Dirac delta~function §.
The following definitions and theorem were given in [4].
Definition 1. lLet hr be a distribution for r = O,}y1,2, see o We
say that

h = [ho,h1, cee sh, evel

is a distribution vector.

Ir hmi =0 for i=1,2, ... , we write
h = [ho,h1, ees b0, cer) = [ho,h1, ees 5h]
and if hi =0 for 1=1,2, «.. , We write
h = [ho] = h,.

The set of all distribution vectors is made into a vector space

by defining the sum and product by a scalar in the usual way.

pefinition 2. 1et h = [ho,h1, ceesh, +es) be a distribution
vector and let ¢ be an arbitrary test function with compact
support. We define ,(h,¢) by the sequence of real numbers

@, #) = ((igs 8)sChy s 8)s wee (B s8)s one).
Definition 3. Let h = [ho,h1, .ee 5B, «»s] be a distribution
vector. We define the derivai:.ive h' of h by

h' = [ho',h1=', PPN T

Theorem 1.1et h = [ho,h1, es sb, ees] be a distribution

vector and let ¢ be an arbitrary test function with compact
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support. Then

(b_' :4’) = - (b.:‘f")-

befinition 4. Let f and g be distributions and let 8,=6"* 8.

We say that the neutrix product f o g of f and g exists and is

equal to the distribution vector h = [ho,h1, .ee shy, ess] on the

open interval (a,b) if

N-lim 0™ (£,8,¢) = (b, ¢)

N-»w
for r = 0,1,2, ... and all test functions ¢ in D(a,b), where
N is the neutrix with negligible functions ,linear sums

1
of the functions nAlnr_ n, In*n for A>0 and r = 1525 oes

and all functions which converge to zero as n tends to infinity.

This definition of the neutrix product was introduced in ordgr
to give more information about the behaviour of the neutrix product
than was given by definition 4 of [2]. Although this is indeed
s0 for a number of important neutrix products, it fails for other
neutrix products. ' .

. In order to remedy this we have ) *

Definition 5.1t f and g be distributions and let & = & * 5 .

We say that the a-neutrix product f % g of £ and g exists

and is equal to the distribution vector h = [ho,h1, oo sh, |

on the open interval (a,b) if

N-lim (f,8.¢) = (hy,¢),

N+

N-1im n-a-r(f:€n¢) = (hr: ¢)

N>

for r=1,2, ... and all test functions .¢ in D(a,b), . where
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-1<¢<afo0,

It is immediately obvious that def'inition 5 4is equivalent to
definition 4 in the particular case a = 0.
Definition 6 .';Iet £ and g be distributions and suppose that

the a-neutrix product ¢ % g exlsts and is equal to the distribution
veotor h = [ho,h1, eee sh, «..] on the open interval (a,b). We
say that h, is the finite part of f ¢ g and then write

p.f. £ S g = h(J

on the interval (a,b).

It is obvious that by taking the finite part of an a-neutrix
product reduces definition 5 +to the original definition of the

neutrix product, see definition 4 of [2].
Theorem 2.1et £ and g be distributions and suppose that the

a-neutrix products £ 5 g and £' S g (or £ 5 g*) exist and are

equal to distribution vectors on the open interval (a,b). Then the

a-neutrix product f 38 (or £'% g) exists as a distribution

vector and
(rSg) = £'Sg + £5 ¢
on the interval (a,b).
We omit the proof of this theorem as it is almost identical to
" the proof of theorem 2 of [3].
Theorem 3.1et f and g be tempered distributions such that

the a-neutrix product £ H g exists and is equal to h on the

reel line. Then h has only finitely many non-zero terms.
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Proof. It is well-known, (see [6], theorem 12, p. 41), that

there exist integers k, k', 1 and 1* and continuous functions

F and G on the real line such that

(1) r = 8, g o glk")

and

1 < 1!
(2) [P £ xC1 « [x])%  le(x)] £ k(1 + |x])
for some K > 0 and all real x.

Then (1) 4implies for arbitrary test function ¢ with

compact support

(£,6,8) = (<0)(E,(g,)"))

11 6(x - t/n) p "+ (5) atax.

= (-1 )kjé‘.:o 1;) nk'+d r” F(x)¢(k'j)(x)f

It now follows from (2) that

[(£.8,¢)l &

kK re . 1 ' t
e e S ISR P Bl O

J= -0 - *

= o(nk‘l'k'j'
Thus
|55 (28,00 = O(n k")

and 8o

n

N-lim 077 (f,g,¢) = Umn7(£,8 ¢) = 0

Ne=>co N->oo
for r > k+ k'. The result of the theorem follows.

The proof of this thecrem can be modified to give

Theorem 4. 1let £ and g be distributions such that the a-neutrix product
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£ % g exists and 1s equal to h on the finite open intervel (a,b).

Then h has only finitely many non-zero terms.

. Definition 7.1st £ and g be distributions and let gn=g"8n.

We sey that the a—product £s g of £ and g exists and is

equal to the distribution vector h = [hO"h1’ ees sh, ess) on the

open interval (a,b) if ‘

(£18,8) = (8, 8) + 2 (., 60™% + ¢,
rs

where en=0(n°‘) 1f =1 <a <0 and e >0 if a = 0.
for all test funotions ¢ d4n D(a,b).

In particuler if h =0 for r=1,2, ... we simply say

that the product f o g of f and g exists and write
fog = ho

on the interval (a,b).

It follows that this definition of the product f » g 1s
“equivalent to definition 4 of the product f o g given in [1].
Further, we note that if the product f = g exists and equals

3

0’ then the a—product f by g exists and is equal to h, for

0
all « with -1< « £0,.

We also note that if the a-product of two distributions £
and g exists and is equal to the distribution vector h, then
_ the a-neutrix product of f and g exists and 1s equal to h,
although the converse does not hold. It follows that theorems 2, 3

and 4 also hold for the a~product.

Definition 8. Let £ and g be distributions and suppose that
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the a-product f % g exists and is equal to the distribution

vector h = [hO’h‘l' eee sh, ++«] on the ‘open interval (a,b). We
say that h, 1is the finite part of f % g and then write

p.f.f%g = hy

on the interval (z,b).

The following theorem holds, see [5].

Theorem 5. The O-product xj’ 2 x_")k_q exists and

x}8xA o B(Le) = DBy, a)ih(hed), s b (8,q)]
for gq= 1,2, ... and A # 0,1,£22, ... , where

_mcosec(nmA ) 8(r.1—1 )’
2(g-1)!

r(A+g-i)wcosec(wr) o Es(q-:i.—1 )’
rea)(q-1-1)r >

I' denotes the gawma function and

Py = P(i)(o)

hi(Aa‘-I) =

for 1 =0,1,2, «u0 »

In particular, the product x_'_A ° x_"A"1 exists and
x+)‘ ° x_")""l = - *wcosec(mA)d

for A;‘O,t‘l,tZ, erse o
We now prove the following theorem.

Theorem 6.1et A, g be real numbers such that A, p, A+ u #
-1,~2, «vo and A +pu < -1, Then the a-product

Ao _p

x °o X exists and
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(x>} §x* = nOK)

(03h1 ()\:l-‘): vee ,’hq(A J“')]J

where gq=[-A-u)], a==-A-p-q-1,

hy(Am) = 2("—21—’-)‘—%:11-)-( )%, i(A,u)s(q“i),
q 1

ai()‘s“ )

. 1 .
(1 Pr(Aepris2) j' uA+y+p+1+1p (p) (u) du
P(A+pepris2) 0

for 1 =1, ... ,q and B denotes the beta function.

Proof. Suppose first of all that A > -1 ‘and choose positive

integers p, g such that -1 < p+p and -1< A +u+g< 0.

‘‘hen
xH - I (u+t) (=1)P(x ! #+p)(p)
I'(u+pst)
and putting
H - U
(x )n = x " *3§
we have

.[1/11 t )‘“‘P s (P)( a 2 1/
Tlurptt) (. 1)P(x ) = . (t-x no (¥)at,  x&1/n,

r(ust)
0, x> 1/n .

Thus

I‘(u+p+1) A “ax =

oy G Lttt -

= /e xM+d j Vo (t-X)’”Psn(P)(t)dtdx
X

‘0

= /0 5 (P)(t) I M4 —x)H*P axat

Y0
~ r1/n gMurprit o (p)(t) j‘1 v'\'+1(1 —-vP*Pavat
"o » o Y
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1
B(A+i+1,u+pri) pmA it j pMHp+privd p(P)(u) du
0

I (A+i+4)0 (ueprt) n-A—u-i-1(_1)p
P{A+u+is2)

a_'i(A- sH)

where the substitutions x = tv and nt = u have been made. It
follows that '

I xf'(x_“ )nxid.x = Blu+1 A+i+d )n""""“"i"1 ai(A M),
—. ‘

Now let ¢ be an arbitrary test function with coni;.»'a.ot support.
Then

(x}x)8) = 2 |

4
, x+'\'(x_”)n-’1:—l-¢(i)(o)dx + o(nAH -
1= -—w .

qé:) B(”+1;,?—+i+1) (—1)ia-i(As“)(s(i)s¢)n_A-”—i—1 + o(na)

ié B(u»(«;,-x;;;;m) (-1)q-iaq_i(!\.#)(5(q-i): ¢)n“+i + o(x%)
and equation (3) follows for A >-=1, Q= 1,2, ... , u, At #
1,2, «eo and -1 < A+pu+q < 0.

Now assume that equation (3) holds for -p< A< 1-p,
Q= 1,2, aee s Hy A+l ;4-1,-2., eee and -1 < A+u+q< 0, ﬁhere
p 1s some positive integer. Then using thecrem 2 we have

ac Mg g

A F = (x+ x My . ux}‘%x”_1

- + -
= [O,h1'(k,p), cos )hq'(}‘:“)sol +
+ I‘[O:h“(A:F‘A): cee :hq+1(}‘:ﬂ‘1)]~

Now for i =1, ... ,q we have

: 1 1 - —141
hy '(Asu) + b (A,u-1) = Blusd,hrg-ivd) (-1)%a -(/\,u)S(q 1),
(g-i)t =
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Bl oAt g-iv2) (_qyq-ivd,
(g=1+1)!

- g+ A+g-isi) —1)2-i+1 1 (g-3+1)
A (a-1s+1)1 (1) aq_—i+1(A' )8

-1)8 (q-i+1)

+ U q-i+1 (Asu

n

X hi(A-‘\ si)e

Further

F‘hq+1 (Ayp=1) ,IJB(}I,A+1)BO(A,;1—1)8

AB([J+1,A)9,0(A-1 SH)8

Ahq-!-‘l gz\,-‘l S H)

and equation (3) follows for —p-1< A< =p, 9= 1,2, sus ,
Uy, A4 £ =1,-2, ... and -1 < A++q < 0. Equation (3) now
follows by induction for A < =1, Q= 1,2, eee 5 A, Uy A+l #
-1y~2, ¢.. and -1 < A+u+q < 0. This completes the proof of

the theorem.

Corollary.Iet A, p be real numbers such that A, u, A+p #

+1,-2, «v. and A+pu < -1. Then

pef. x_'_}‘ % x_" = 0.

The proof of this corollary is immediate.
Theorem 7. The a—product x"_A § x+p exists and

A A
(4 x* 8 xF = [x™MP,-(~1)P,(,p), o0 ,-(~ )phq()\,p)]

for p = 0,1,2, +.. and ¢=1,2, ... , where a = —A-p-g-i,

1< a<0, A#~1,~2, .. and hi()L,p) is as defined in

theorem 4 for 1 =1, ... ,q.
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Proof. Since xP ié an infinitely diffeerentiable function for

A

P =‘0,1,2:, «++ the product x, % xP is defined in the normal

sense, see [1}, and

A A
x+'\ % xP = X P o x, % (x+IJ + .(-1 ?Px P).

It follows that

Aa P _ L AD _ (4P, A& P
x x P = x (1)x+ox_

[x,*%,0, «ee ,0] = (<)°[0,8,(A,p), +-e b (Asp)]

and equation (4) follows. This completes the proof of the

theorem.

torollary. Let A be a real number such that A # -1,-2, ... and

A+p< =1, for p=0,1,2, ..o « Then

p’fo xA'%xp = X .
+ + +

The proof of this corcllary is also immediate.

We finslly point out that the product x o x* exists and

x*o x® =0 for A+u > -1, see theorem é of [4).

+ -
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REZ | ME

0 a-PROIZVODU DISTRIBUCIJA

Koristeci radun neutrixa uveden je i analiziran op-
§tiji proizvod_ distribucija nego u [4]. Specijalno, nadjen je
" -proizvod" x%} s xM za A+u < =1, A,u, A+ # -1,-2,... i
a = -A-u~-1-[-A-ul.
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