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ABSTRACT

This paper is a continuation of previous papers [5] and
(6] By the same author. In [6] the induced connection coeffici-
ents which appear in (1.13), (1.14) and (1.15) are determined un-
der conditions when D29 and Ds¥ are defined by (1.18) and (1.19).
In [61 it is proved that the mentioned formulae are consistent
with each other only when relation (1.21) is satisfied. This con-
dition is satisfied in the several cases. In this paper we shall
examine the special case when B3=B(x) and Ng=N§(x) i.e. when B}
and N® are not functions of X . Since we suppose (1.1) i.e. that
gaB(x,i) Bg(x) Nﬁ(x)=0 so our examination is restricted only to
those Finsler spaces in which the metric tensor has such a special
form that relation (1.1) is valid. Let us denote such Finsler spa-
ces by F . The curvature tensors in F_ are defined by (2.5), (2.6)
and (2.7). In this paper the relations between alternated diffe-
rentials of a vector field and the curvature tensors are given.
The curvature tensors and their alternated differentials are de-
composed in the direction of vectors Bg and Np.
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PRELIMINARIES

In the Finsler space fn the metric function is L(x,x).Let
us define m fields of vectors B:(x) and n-m fields _N](:(x) (o, B,y
6,8, K veee=1,2,...,n; a,b,c,d,e,£,1i,35=1,2,...,m; k,1,mn,p,
qg=nml,...,n) in such a way that these vector fields are|
linearly independent at each x and satisfy the relations

(1.1) aB a Nﬁ 0 foreach a=1,2,...,m, k =m+l,...,n.

Let us define

(12) . 9 = 94gB% BY :
(1.3) Gy = 9ueNp N
(1.4) BE = g gaBBg
(1.5) Nl; = gkm g

- g, Ba‘ and Nk have zero degree of homogeneity in x, (ga'b) and
m) are inverse matrices of (g, ) and (gkm), respectively From
(1 3) and (1.5) we have

| kK o o ke Byt = Klq -
(1.6) N, Np g gaBN.Q. p =9 9 8.

Usually, we have that:

& o péna k
(1.7 §g = BBy + N}C:NB_

The vectors dx and x are decomposed in the direction of
vectors B: and N](: in the following way

(1.8)  ax® = BY au® + N oo

" @ RO ca o

(1.9)  x* = B% 4 + N2 K
We shall suppose that

- n
0 = Fo(x!,...,x" ul,...,um, vm+l,...,vn) a=1,2,...n,

any of the solutions of system of differential eguation (1.8), to-
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gether with (1.9) define x and x as the function of u, u, v, ¥ in

the form
m mt+1 n
x% = x% (ul,..., u, v reees V)
Lo . 1 m mt+l .1 M o- Il N
x* = x* (u,...,u", v ree e VRO, L0 Y geeesV )
¢ = 1,2,l..,n

We shall suppose that the tensor and vector fields are homogene-
ous of degree zero in x.For any vector field £, we have

a

- p¥ & a .k
(1.10) £ =By & v N &

lLet us denote the absolute differential which .corresponds
to the motion from (x,x) to (x + dx, X + dX) by D.Then,we have

o a, a ] a a, k o ..k
(1.11) D" = (DBa)g + B ag® + (DNk)g + Ny agr.

We shall use the notation

(1.12) 2% = L7l(x,x) %% = 071 (B%2 + N ) = B%M2 + nMK
a k a k
where 2 = 1™} 4@ and k= LYK, From [6] we have
a _ =d a =k a
(1.13) DBY = W_(4)BG + W (d)Ng,
a _ =d o =) a
(1.14) NS = ®S(d)BY + Wlfn(d)Nk )
where
W@ =TY al +TY AY DP+A Y Dof
(1.15) Wi(d) = T ¥ du +_1"x.nax}‘+1\x , D +A Y or

X=a or x=m, y=d or y =k,

The induced differentials Dg2, ng are defined by D2 = B: peg®

Be* = X pE® ang

a

(1.16) pE® = Bg pe® + N® BeS

R

For 3% we have

a _ o =.d a =k
(1.17) DL = Bd DL+ Nk DL,
d ana Bk

where Dt will be defined by
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=.d d =*q c =*d L
(1.18) D™ = 4o~ + Fo c du” + ro zdv

- k k =*k c =%k L
(1.19) DL = 42 + Po c du” + Po 3 dv

—*x -*x a —*x m _1-*x

. = = T

(1.20) roy rayz +1"my2, L y

x= dor x =k, y=¢ ory= 2.

As it was proved in [6],relation (1.17) is consistent with (1.18)
- (1.20) iff

K o a . a B _
(1.21)  [(3,8%) 62 + @, 8 ¢ 02 = 0.

In fh this condition is cbviously satisfied.

In [6] the induced connection coefficients I and A are deter-
mined. From 2 DL® = 0, using (1.1),(1.17), we obtain

9, (BIL® + N¥e%) (8] 5eP + NE Doty = g0 Be? + g bt Be* = 0
i.e.

=b . = b _
(1.22) 2, DeP +2, B0t = 0,

For DE® and sz , we have
a
a

k
Q

(1.23) DE® = B2 pe%= at? + ﬁg(a) P+ ﬁ§ (@) £*

(1.24) bk = §¥ g% agk + (@ + we(a) E™
From (1.16) it is obvious that D2 and ﬁak are components of Dg®
in the directions of B: and Nﬁ, respectively.

2. ALTERNATED DIFFERENTIALS EXPRESSED BY
" CURVATURE TENSORS

If A is another absolute differential, corresponding
to the motion from (x,x) to (x+8x,x+6%), then we have
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(2.1)

where

(2.2)
(2.3)

(2.4)

where

(2.5)"

(2.6)

(2.7)

[ap)e® = ([ap]B)E® + B][sa]E® +

([ap]NSYEX + N2 [sa] ",

a e a sm a a
[AD]Ba Q. (éi(S)Be + Qa(dé)Nm + DB,

]

[AD]N;: ﬁlf (@8)BY + ?),‘:‘ (as)NT + DN“

gy = 3 Y ek
8.¥(a,8 = 5 RY, [aPsu®) +RY, (aPs1 4 RY,  [a¥ev] +

p Y

b+ ,c =y b+ 5y %0C1e 5 ¥
Y laPig 1+ B, lad A + Y, [afEeC1+3Y, (aXaet 1+

38Y [Be°aiC1+ 57 L[ DPERT + 25 Y (B mY

kg,
x €{a, k} ye{e, m},
ixyzw = 2((3[w |¥c| z] ~ d f:()fzf:r? - élf:{)[,:z :7%
-;‘Ez ﬁdlwl * f:f[z f% W)t
LAY, TSR S, T -

y —*k - . _*k —*f N -* —*2’

S5Y _q13 F'Y_3Y 4 . o* b : =*d . .n
szcd'L%vrxz;chmz*'Pkd[(awrb‘zi)ﬁ +(awrnz)V]+
AY [, T bz)ub+(a r wIANE

4

A = 20 Billat B Bai'ul® Alfe Rl

and each of the indices x,y,z,w belong to one of the sets
{a,b,c,d,e,...} or {k,l,m,n,...}.0 B: and DNIO{‘ are infinitesi-
mals of a higher order and have the form ‘ :
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a _=e a m
(2.8) 0B =75°(a,88% +5,™a,6N ,

a = e O L o7 M2 cyn®
(2.9) UNP = @p (d,tS)Be + Op (d,G)Nm ;-
(2.10) g8 =[B% + 1A R+ A% TOleaad +

> -1,= +b = =*n.7,
(L% + 1 3B B+ pyxn I ](s8-c8) 4

= X b - X n
Ay b(ca-da)z + Ay n(sd—da)z '

xe{elm}l YE{E;P}-

Introducing the notation
XY = BY 5 FY Py
Ffd =ty L Fh Y
I‘x[.'z [;d\w] + I‘xl.'z rz w])
after same calculation, we cbtain

(2.12) 7Y - ®Y a zY = T Y-
RY . = RY  o®+RY o 2 (3, T¥

_ 4 _*y *f _ *
g Tl Tyy - 2y r[z Tl

So (2.5) has the form

>
b

. RY =r Y -y-d =y
(2.13) szw szw+Axd ozw+Axk 0 zw

THEOREM 2.1. [AD]E and [EB]EX are the components of
[AD]E in the direction By and Nj respectively. i.e.

(2.14) [ap]g® = 5% [ZB]¢® + n& [ZB]6"

PROOF.Substituting (2 2), (2.3), (2.9) and (2.10) into
(2.1), we obtain
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(ap}e® = [a,%(a,86)£ + §,°(a,86)£°] BS +

(2.15) .
o P a S P o a
2 Pa,8)e% + 9 P(a,6)87] Ny + D8
where
De* = ([6ale® + 5. °(d,8)€% + éke(d,c)gk) BY +
(2.16) )

([sd]e™ + B,™(a,8)€% + ekm(d,c)ék) NS .
On the other hand, starting from (1.23) we have‘.
[55]€2 = &(BE) + W_2(8)56C + @, 2(8)Be - as6 =
(6@, 3(a) + R 2ORS @)+, (5)F," (@) -a/86)E° +

(8, 2 (@) +7 2 (8) WE () +RW2 ()@, " (@) - a/s)ek +

[sa]e?,

(2.17) [AD]® = ﬁba(d,s)zb + ﬁka(d,d)ak + Df;a '

where

(2.18) 2 = [8a]€2 + §.2(d,8)E° + 5 2(a,8) 6" .
In a similar way we obtain

(2.19)  [BB]€" = B(q,8)° + B F1a,6)E™ + DE°

where

(2.20)  »E* = [sale* + 8. *(a,86) 6P + 8 X(a, )™ .
Substituting (2.18) and (2.20) into (2.16), we get
(2.21) D% = B2pe® + N2 pek

Substituting (2.17), (2.19) and (2.21) into (2.15), we hawve (2.14)

which proves Theorem 2,1.
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THEOREM 2.2. [2D]g, ana [AD]¢, are the components of
[AD]Eu in the direction of B2 and N_ , respectively.

PROOF. For the covariant vector field we should have

k

2 and DN, . It may be proved that

DB o

(2.22) B = - HA(@B P - F @) WK

k

- k b =k 2
o = - W o(Q)By - Wot(aN o,

(2.23) DN
and these formulae are consistent with (l1.1) and (1.7).

If ﬁea and Bak are defined by

(2.24)  pg = B2 D g, + N: B, ,

then

(2.25)  Dg, = a5, - W, (dg, - W K(arg

(2.26)  Dg, = dg - (g - BAE,,

In a similar way as in Theorem 2.1, we obtain

(2.27) [ap)eg B2 [EDle, + w5 [BDlg,,

where

(2.28)  [EB]g, = - 8,°(d,8)0 8, - 8,5(a,8)8, ,
(2.29)  [BBlg = - §°(a,8)g - @0,

3. ALTERNATED DIFFERENTIALS EXPRESSED BY
COVARIANT DERIVATIONS

Starting from [5],

X =.a a =.b a =

(3.1) Bg® = £ auP + £2|, D2° + Eafmdvm + g2 D",
-k _ .k b . .k = k kK, =

(3.2) BES = g%, a® + ¢ 5P + & FR-UANN l_mm‘“
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and using

=.a _ 58 ;0 _ na /0 o B
be* = BY DE* = BY (£%, dxB * |B DL®),
(3.3)

Dk Nt pE® = Nt (6% a® + £%1, pefy .

Further, by (1.2),(1.3), we have

B ;o _ po pa a .m
(3.4) By, £4g = Ba &p * M E\b,

B ,a _ 0 a m
(3.5) Nk £ 18 Ba Ea\k + Nm £ 1k
(3.6) B €%, = By &%y + Ng £7,,
(3.8) NP % = B3 £ + MO EMy .

Using (1.7) and (3.4) - (3.7), we get
and (3.4)-(3.7), we get

SO S
k a ,a . m
Ng (Bg &y *+ Np £ ).
(3.9) %5 = B2 (BY 2la + ¥ X[y +

o X

(B2 £, + N ™)),

From (3.3)-(3.6) or (3.8) and (3.9), we canficasily obtain

a _ aB
€ p = &g Ba By
m I« 1 m_fB
(3.10) = &g Na Bp
£y = £l N N8
k B "a k °

In the same way for the ocovariant vector field Ea' we have
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= o B
E‘Eub EalB Ba b

Q

B
(3.11) . Epqp = %018 m

By

L . s
tmlx = Ealg ¥m Mk

We shall express [3D] £® ana [AD] £° using the covari-

ant derivations. Starting from (3.1), we have
- a . (o] = C ‘ (o] o = e+
EBE® = F.axblcdubéu +Ealb|c BPsu! + g2 a™ su +aa\m‘c. DL Su

imic

aPe + Ealmlk BeMsk +

a b =.b a
Elpx & s + Ealblk BPsF + £ mik

Ealblc dlezc + Ea|b_lc szl'\'ﬂ.c + Ealmlc dV‘nMc + Ealmlc -mmA_lc +
L k = - - .
i AP B + &%yl B + gl & B g%y BETES 4

== a b a <= a, ==,m
EalnAD\P+€ |, 0% +5mADJ“+5 {m 202"
from whidh we can get, after some calculation,

(aD] €2 = aiblc][dub su] +2 Eéf\blc} [P 2] +
2Ea[lblk] [P /] + zaanlk] [aP 5]+

G2y ey [ T 4 e ] +
267y B B + & fble] [ﬁé" RiCT +

a b 7 a k <,% |
2% i [B ¥ - deley (BF Y] + 82,

where ' .
(3.13) 8% = g% [&] u + £ 4[] 29+ @ (3] K+ &, [ #* .

We shall first calculate B2, As
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g2 o[80] v? = €2 4 aau® - ass =
e 4 [oad + (4 s+ TO ok + 59 30% B GRS .o
+ (T d 6u® + r Gv +Ak A2°+1'§(d2’59,9')dvk]}-{d/6}.
2, B = (62, [ + RE@aP + 7 X a6,
£, [B5]% =1e), B + RO @B + B2 5D -w/6),

ga{m[zﬁ]zms &?), [ou" + ﬁc‘“(c)ﬁzc + v'«k“‘(c)ﬁzk]} ~{a/s},

and using the evaluated expressions for . 652,b ' sDe™  from [5]

we have ‘

2= [e2 T,¢ ga B igd 41l ][d1P6u°+
L 1d [bc Im [bc] df Kobct 2t mob

+ e? f;bdk]+ i T b 7 * BlaBobk * Cln B el 6]+
LE 1d [k!z] Ealm L'km&] 268 Id o 2 %Ealm RomkP:l [dvkdvl] '
[Eald zbdc + ng zbmc - gald f*cdb - Ealm f"*cmb + Eald éc I-:’Irl:»d +

ve2l o 1" K] faf a7 +
3.1 [RaR%* Enhx Pla@yT e = TeD) * £ Gk Fp -

-7 m)][deAzk]+
a =4d a =m a s B A | *
a%b* CimAp*tE la® Ty - T 0% I QT -

-T mk)_] [dvk_Mb] +

a =d a =m a : *q
[£%q A W m A T g BTy - k£)+€|(akr ky,)][d"M'l
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4 Tx[bdc1+ia I A [BePRe ]+ [¢?| a dek‘ + €8] R0 [EeE] +

(£l i[kdz] + Ay (B 5e’] + 2, €,
where
a -1 -] o b ’
DiE = e, + Ryt 84 @) R [sd)u’ +
(3.15) [ * 2l rt e | R fed vk +

g3, (sa] P+ &2, [sa]e".

Writing the coefficient explicitly beside [Gd]ub in (3.15)
we get the expression

-4 pa=*d _, ,az*k  *a _.c_, =*a k.-l .+ a=a., s a.,kzs*d
3,8 g B Ty -3 8 L + T A + R+ 17 (3474, dﬁc““k dEk)rb +
-1, ,28,=a ,c, 5 a..*k
+ L (BkE +AckE +A£kE)I‘b '

which is the same as the coefficient beside [_'Gd]v ub in (2.17) be-

cause we have
[sa]e® =36 [sa]uPrae2fodlvF +1g, £2[sa]e® + 13 £2[sa)e” +
(2 8 &+ 2" 3 &Y [sdln

under :.condition that Ea is homogeneous 0f degree zero in ﬁb

vk i.e.

and

bs .a n,y ,a _
(3.16) LT3 ET + 73K 0.

Comparing the coefficients of Bd]vk, [Z‘l')] P and [256]2" in (3.15)
and (2.17), we get

(3.17) g2 =D, g2

From (3.12) (3.14) and (2.16), we get
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(3.18)

(3.19)

(3.20)

a =*d a =*m _1 ,=~a d, 6 =za
g?lxly]- * &g r[x y]+ £ lmr'[xy'i- ) (Rd Xy £+ Pl'nxy £+

= d a m
Ela Ry * Eln oxy»
a =d a s+ m =*d =*d
2E['|xly]*'E‘aldl%cy*_‘slmAxy'FE'Ic'l(a T~ I‘yx)
+ e G TR-FT =52 d+52 &

m 'y x yx a

&

1sd a,l.a
[lxIY] ¢ |d [xy]+£a‘m [xy}=2's wb® t75% e,

x 6{b, k} ve{c, 2}

Relations (3.18)-(3.20) are valid if index a is substituted in them

by p(p =

m+l,...n).

4. DOUBLE ALTERNATED DIFFERENTIALS OF
CURVATURE TENSORS

In [5] we obtained@ the relations which connect the cur-

vature tensors of the Finsler space Fi and its subspaces F and
F . _pn- These formulae have the form

n

= _ § kB Yy
Radbc™ RskpgyPadb c

- § KBy
Radbk’Ra.csyBadbc

° - Sk By
szmn_RcSKB)ng,mn

and valid for the tensors P and S. Using the relation

(4.2)

o _ L0 Lok
[ B NB

a
g a8+Nk

several times, we obtain
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«
i

2 abec abc = ab d
aﬂyd abchaB +RabcnuBYNn+Rabm'dBaBN$Bé +
= a cd s cd_ s ab n
alchaNé By6+pkbch§Blgya+Rabmn aBN;nc’“
= L = c = a, e m_d
RalanaBBsNg"'FkbanJ;Bngfg"'RalmdBaNBde +

(4.3)

Relation (4.3) is valid for the tensors P and S also.
If the absolute differentials D) and D, are defined in a
similar fashion as D and A , we obtain from (4.3).

= d
(4.4) [00y] Ry s = Rip oo (PRIED B S5+

([Dlnzlsb)sc Qe *

ab cdBy
= T cd = K lm
Rep ca (PRI B S8+ e+ B 0 5 YRR

There are 16.4 = 64 summands of the right hand side of (4.4).
Using relation (4.1), we have

X
Ba [py0,] BG + N¢ [D,D,] Ng =
(4.5)
-([p,0,] B}) BZ - ([D,D,]Ng) N’g

Using (4.5), (2.2), (2.3) and summing the terms which appear in
(4.4), we obtain
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Pl

abca (DREIR SR | (DN ST -

Lol

e bcad 5252(32 [y0,] BS + [D1D2]N};)‘

o)

cbca Y5<-[ \B,1BS) B2 - ([D,B,] M) NS)=

= cd P € a
Rﬁbchgyé( @ (dzd)B Qa (d2d1)Np)Ba+
= cd ,_ zse € _ 3P -
Rgbch:ya( O (&3)) Bg - & ("2‘31)“;)“];
- T e abcd_< 5P abcd_
Robca fa @I Bgys " Rpca % @d)Bigys

_ e cd_ s 5P cd
R, bed % (d2d1)Nl;Bgya Rbecd % (dzdﬂ"‘lgsgys

There are 16.2 pair of summands on the right hand side of (4.4)
which give by using the above method 16.2.4 summands. Since

5.51 & - 5 Y- P
[Dlnz]PScyuw_ Reyuw 0.2 (4,4, Ryuw Ay (dd)

-T&eyw fiye(dzdl) -I&p uw ﬁyp(dzdl) -
(4.6 5 e = =
) “Reyew S (dd) -&ypwrzup(dzdl)
“Reyuei e@q) - Regup Ju @),

where each of the indices x,y,u,w belongs to one of the set
{a,b,c,d,...} or {k,2,m,n,...}; (4.4) takes the form
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ab cd - abc
[DDZJ RuByé [Dlsﬂabcd otﬁyé-"EﬁlnzlRabanmBYNIG1
ab d g2 2 c<i
ByBlR b ma By g BG+r1D2]-Ra£cdaﬁyé+

BElRpcaMB oo Bl Rep nnBapys *

BlR g cn BN+ BBl Ry oMty

(4.7
= 1= adm d, m=E1% d
By5]R g maBa Mgy B+ LnlnzlﬁgbndNiBgN?Bs
= = 2 .cd a.f% mn
[_5192]13(2ch2836+[5102] R amnBaM yos*

BlRpmn MBS + BBl § g on g B N+

- = 2m._d o= 1= £ mn
[pfbh& znldNts YBG'F[Pﬂblaczrnnlﬁ Byés§ *
(4.7) is valid for the tensors P and S.

From (4.7), we obtain

- = 1 = _ a By
[B1B] Ryp ca= ([P1P2] Ry gy 6) Bob & 4
- = _ a By S

(4.8) [DlBZJ Rabcn™ [D Dzl a B Y 5) Bab cMn
e - - . a B v 6
[DIDZI Rk L mn ([PlDZ] Ra B v 6) Nk £ mn

From (4.7) and (4.8), we obtain

THEOREM 4.1 The necessary and sufficient conditions that
the Finsler space has a reccurent curvature tensor R of the seconc
order i.e. '

4.9 = ‘
( ) [DlDzl RGBYG KRaeyd are
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[DlDZ1 Ra becd K Ra bcad

(4.10) LDlDZ--l Ra bcn K Ra bcn

Lﬁlbz] lsk Smn " K Rk £ mn

The same theorem is true if everywhere in (4.9) and (4.10) inste-
ad of tensor R we put P or S with the same indices as those of R.
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REZ | ME

NEKE RELACIJE KOJE ZADOVOLJAVAJU TENZORI KRIVINA
FINSLEROVOG PROSTORA

Ovde se posmatraju spec}jalni Finslerovi prostori u
kojima postoje vektorska polja Bg(x) i Np(x) za koje vaii
gae(xk) B:(x) Nﬁ(x) = 0. Dato je razlaganje alternisanog diferen-
cijala nekog vektorskog polja kao i tenzora krivine u pravcu Bg i
Ng .
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