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ABSTRACT

In this paper the Frenet formulae of the Riemann-
-0tsuki space with respect to covarlfant and contravarlant
part of the connection are obtained.

INTRODUCTION

The basis of the theory of Otsuki spaces has been
laid down by T. Otsuki and A. MoSr. The metric used determi-
ned that the observed space is of Weyl-Otsuki”s or of Rie-
mann-0tsuki”s kind. In this paper we shadll consider the Rie-
mann-0tsuki space and we shall determine the Frenet formulae
with respect to the co-resp. contravariant part of the con-
nection. According to the following observation, we get that
only in the contravariant part of the connection the Frenet
formulae of the R-On space are different from the known Fre-
net formulae of Riemannian geometry. The difference came
from the fact that in Otsuki spaces D6§ + 0 holds.
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In all Otsuki spaces we have, with respect to the

local coordinates xl of an n-dlmen51onal differentiable ma-
nifold, an a-priori given tensor PT such that detHPlH # 0
holds and the inverse tensor Qj exists so that P: QJ ;. In

the metric Otsuki spaces the metric tensor gi5 (detHglJH £ 0)
is given so that in the W - 0n Weyl-Otsuki space

Vyg = Y8y but in the R-0_ ( Riemann -Ctsuki space)

ij i3’

(0.1) ngij = 0

holds. In Otsuki spaces the covariant differential of the
tensor T; is defined by

i_ b=-a = b sp @l _ ssn D a8 K
(0.2) DTj = P PJDTb P P (3 Tb + L ka Fb kTr)dx .
The Leibnitz formula deoces not hold for this differential. The
differential D is the basie covariant differential. The dif-
ferent coefficients of the connection are characteristic of

the Otsuki spaces, and here are

2

1
0.3 s = .
(0.3 83 1x jk ik

The coefficient of the connection ““T.°
the relation (0.1) and the coefficients of connection ‘Fjlk

are got from

ko was determined from

(0.4) , g

This relation is known as Otsuki ‘s relation.

In Otsuki spaces it is possible to determine the
covariant differentials D and D with respect only to the co-
-resp. contravariant part of the connection. So

(0.5) 'BT;: = 7. 7 ae = (3,7t + v L ¥ - er,

kK73 k73 r k7j 3 kT )dx

holds. For this basic covariant differential the Leibnitz
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formula holds. The basic covariant differential ““D can be
defined in the same way. It is characteristic that the ba-
sie covariant differential “D is identical in the case of
contravariant indices with the basic covariant differential
D, and similarly in the case of covariant indices the basic

““D is identical with the basic cova-

covariant differential
riant diffevential D.
In the following we shall use the relations

r -

(0.6)  “Dg.. = dg.. - (T + ydx®,

T
i3 ij i kgrj rj k&ip

o - _ ~, r . r k =
(0.7) Dglj = dgij ( I, - + Pj kgir)dx =0, .

(0.8) “Dgt? = - glagjr( Dglj)

(0.9) ““Dg“ = 0.

1. THE FRENET FORMULAE WITH RESPECT TO THE
CONTRAVARIANT COMPONENTS OF THE VECTORS
Let the point P of the curve C : xi = xi(s) be given
whgrs s is the arch length parameter. In that point xi : =
= H§ are the components of the unit tangent vector ¥ Apply -
ing the basic covariant differential “D on the relation

(1.1) ginlX] =

using the Leibnitz formula and the symmetry: of the tensor

g

i3 we get

R i ] i, 9, _
(1.2) ( Dgij)x yoo+ 2gin ( DX ) = 0.

From relations (0.6) and (0.7), it follows that ’5gij =

= P(lﬁﬁ X Substituting it in relation (1.2) and using
that DvJ = Dvd, we get
) )
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g..vl.('l')-v:l - v'Ds

Jy = 0.
ije o o Tr -
Let Yl be the cémponents of the unit vector v so
that
i, 01 B - yTBsd O U
(1.3) a) y'oo= ETET(DX ¥ Dér),f >0; b) 85V V 1

holds. From the above relations we can see, that v 1 y and
(1.4) K(s) = ( (Dy* - v.aﬁar)kﬁvq - vbﬁaq))i

: 1 - gr'q DX ° a o 0 b
and

(1.5) 5¥j =35¥j + xqﬁag
hold. (1.5) is the first Frenet formula of the basic covari-
ant differential applied on the contravariant components of
the vectors.

Applying now the basic covariant differential “D on
relation (1.3.Db) w1th a calculation like the one above we
get that g; v (Dv -y DGJ) = 0. This means that the vector
M is orthogonal to the dlrectlon of Dv =y DGJ, and if v
denotes the components of the unit vector orthogonal on the
plain determined by the vectors y and Vs it follows that

(1.86) Dyl - v'Ds
holds. Now we shall use that Yy 1 ¥ and apply the covariant
differential “D on the relation g, Jv vJ = 0.'A calculation
11k§ the one above with the substltutlon ’5XJ from (1.5) and
'ﬁYJ from (1.6) according to (1.1) and (1.3 b) gives

(1.7) ; @ = —f(s).

Substitufing it in (1.6), we get
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{1.8) Dy = - kvd + kyd + VDS
ST 10 1

Now we can formulate

. Lemma 1. If v <& the unit vector, then (Dv?) -
. o | i, = _ . maPy i3 -
v DGr)gijv 0 and (va erGj)g v; = 0 holda.

(The proof of the covariant case follows in $§2.)
We shall now make the following generalization.

Let for mutually orthogonal unit vectors X (L =0,...
«esspP-1) be

Byl = o J J =]
(1.9) DX z E oV +l$1 111 + X DGP

so that K = 0, and if 9 = '1,...,p-1 then

- I - o rslys JE 1
(1.100 & (gij(DqY.1 * qKe q¥a T qUaPR ) (Bg¥y * g5y o¥a
I
t=sl
- q! D t))

1.11 S O I B
(.1 ¥ pY, * pfa p¥a T p¥.P?

oA [

According to the above Lemma gijgl(ﬁgl- grﬁsi) = 0 holds and

we can to write the linear combination

(1.12) B - vID6d = agyd j 3
. P P r OX * G1Y e ¥ ap-1 p!1 *
+ K vj .
P+1 P+
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Contracting this with 833 Xl, using that X 1l v (m # &) and
m
Y is the unit vector, we get

- 5 oI - JTHsd
i = - i 3 .. .
With respect to (1.9) ap = 8i51Yq B iy i.e. if

£ %# p-1, then oy = 0, and if & = p~-1, then o = - g holds.
Substituting this in (1.12), it follows '

B, - - | J 25553
(1.13) Dg 5 p\—,1 +.Pf1 p¥1 + \6 D6q

and we can formulate

Theorem 1, If C : xi(s) i8 the curve of an R - 0,
gpace and v,% = 0,...,p~1, (P < n) are mutually orthogonal
unit vectors which satiefy the relation (1.8) and oY 18 the
unit vector orthogonal to all before and 5 =0, 5 =0 holds,
then the vector ; satiefies the relatton (1.9), too.

If we use Otsuki’slcovariant differential D, then
from the connection Dvi = Piﬁva it follows that Dv® = Q?Dvl.
Applying this on (1.9), we get
i = Pi(- i, € viy + yigP ]
(1.19) Dy 1075V, kY Y %P
with respect to £ = 0,...,{(n-1); K = 03 K = 0. We can now
state.

Theorem 2. If in the point M of the curve C in the
R - 0n space the mutually orthogonal unit vectoras X,Y,..., 21
sattefying relations (1.9) and (1.10) ao that K =0 and K = 0
hold, then (1.14) te the Frenet formula of the curve C of
the R -~ 0n space. Thie formula ie applied with respect to the
covariant differential D on the contravariant components of

the observed vectors.
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Remark 1. The relation (1.14) ie the Frenet for-
mula with respect to the covariant differential ‘D, too,
applied on the contravariagnt componente of the vectors,

One can see that the difference between (1.14) and
the known formula of Riemannian geometry is the covariant
differential of the Kronecker-§. In such a case but not only
such special ones where this differential is zero, the for-
mula (1.14) reduces to the known Frenet formula multiplied
with the tensor P;.

. Now we shall apply the basic covariant differential
““D on (1.1). Using the Leibnitz formula, the symmetry of
the tensor gi3 and (0.7), we get that g. i5Y ("va) = 0, 1.e.'
vi ”ﬁg holds. This means that we can construct_the unit
vector v 1 y so that

(1.15) ““Dyl = k*yI,
o 1 1

where the scalar 5*(5) satisfies

(1.16) k%(s) = (g ”I_)vl”ﬁvj)i >0

1 ij [} o
The relation (1.15) is the firet Frenet formula of the basic
covariant differential ““D applied on the contravariant com-
ponents of the vectors, Now we shall prove

Theorem 3. From the connection between the basic
covariant differentials D and ““D it follows that v = ? and
the value of K 18 equivalent to the value of §*.

Proof. It is easy to see that

(1.17) ““Dyt = “Dy* - viDs*
° ° o q
holds. Substituting this in (1.16) we get that according to

(1.5) E(s) =z f*(S) holds. In the following * by x(s) we shall
1
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denote that the curvature will be expressed with the aid of
the basic covariant differential ““D.-

Accbrding to the characteristics of the covariant
differential ““D, we can state

Theorem 4. With respeet to the basie covariant
differential ““D the Frenet formula of the curve C of the
R - 0, space i8 not diffevent from the known formula of the
Riemannian space. If YsVseres V. oare in point P of curve c
in a suitable way constructed mutually orthogonal unit vec-
tors, then : o
(1.18) "Dlj = pl(- c* sz vt sz)
i8 the Frenet formula with respect to the covariant diffe-
rential aéplied on the contravariant components of the obser-
ved vectors.

2, THE FRENET FORMULAEAWITH RESPECT TO
THE COVARIANT COMPONENTS OF THE VECTORS

According to the definition v = gijggj holds and
vy are the covariant components of the unit tangent vector v
AP?lying the basic covariant differential “D on the relation
gl]Xin = 1, using Fbe Leibnitz formula and relations (0.8),(0.6)
and (0.7), we get gljgi('ﬁgj + gbﬁéy) = 0. This proved the
second part of lLemma 1 from the first paragraph. Now again,
as in the first paragfaph, we can construct the mutually

orthogonal unit vectors X (¢ = 0,1,...,n-1), so that

(2.1 “DVvs = - Kk G+ yik% G, -y DT
) 13 gVt Yy T Y DYy
-1 L+%
 holds with the remarks #** = 0, ¢#*%* = 0, and if ¢ = 0,...,n-2
[} n
then
(2.2) x#% = ( 13 (D7, +x*#5, 4 D6T) (“Dv. +x 447, +7_D6D) :
) L+ g 2] 3 j i i i )

Log_3 27 3 Lt g 3 29



The Frenet formulae of the Riemann-0tsuki ... 103

We can now formulate

s

Theorem 5. From the relation gi = gljgﬂ it follows
that the value of E** i8 equal.to the value of 3 and g s v

‘ holds.

1]
<
1]
=]
B
1]

Proof. If £ = 0 then according to v
.gj using the Lelbnltz formula from (2. 2), we get

= gi]

fk = ij T, a oz a a—?
K® (g (( nga)g + gja( by ) + - DGJ)

i
o~ b . b b— 8

(("Dg; )y~ + 853, ( DY) + g4y D“i)) .

Since ’ﬁg S(JTBS) and (1.5) holds according to (1.3 b),
it follows that r** = K- Now we shall suppose that E** = K

holds, and us1ng the calculatlon as above, we get that

L . vi g eyl
151 (g132+1 2!1 251)
Since Yj are the unit vectors here, the statement of the
first part of the theorem follows.

To prove the second part we shall use that v s g
Now we shall suppose that v E-v, (p=0,...,£), and from
(2.1), using the first par¥ of the theorem, it follows that

V. = “D + Vv Dar)
41 e kr.J

Since vy = gijvj, using the Leibnitz formula and the calcu-
lation as above, contracting by 8ia° ¥e get that

-r r _am.r
v = D + K Vv - D),
L+1 2+1 X L 8-1 X a
i.e. according to (1.11) v° = _v* holds.
L+ 41

In the following #* by f we shall denote that the
curvature will be expressed with the aid of the basic cova-
riant differential “D applied on the covariant components of
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the vectors as in (2.2).

Theorem 6. If in the point M of the curve C in
the R-0  space the mutually orthogonal unit vectors VoV
...nv are constructed so that ¥ (p = 1,...,n-1) satisfies

-1

. - 1 Py P =
(2.3) vy o= E;;( D v, +p51 v; + v D§;)
P P p-1 p-a  p-1
with
5** =0, 5** =0,
then
. = PI(- at %k - anr
(2.4) D;i Pi( E v; tx vi) ngsiQa

p-1 p+1  p+

18 the Frenet formula with respect to the covariant differen-
tial “D applied on the covariant components of the observed
vectors.

If we make the above calculation with respect to ‘the
basic covariant differential ““D, according to relation (0.9)
and the fact that in the case of covariant indices the basic

covariant differentials D and ““D are not different, it fol-
lows that this case is not different from the observation of

Riemannian space. We can only say

Remark 2. The relation

= pPI(- Kkuri Ak
(2.5) D;i Pi( ; vy ¥ pf1 vi)
p-1 p+1
18 the Frenet formula with respect to Otsuki ‘s covariant dif-

. ferential D applied on the covariant components of the vectors.

Here #*#%, by scalars, denotes that the curvature will
be expressed with the aid of Otsuki”s basic covariant differen-
tial D applied on the contravariant components of the vectors.
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From (2.5). it follows that

- ]
(2.86) KERE = (gl](ﬁv. + kt¥x 3. )(Dy, + g&#rz v.))
p+1 P P 5 p} P

holds. Using connection Dv, = ’5v. + v Dsl, we get

pf?** =-(gl](aﬁgi+ 5**332 + ;rDsi)('ﬁgj +

+ KRER g 4y 569))%.

P p—q pq 1

This means that the value of the curvatures is not different
in the case of different diffepentials. This result can be
expected because the curvature depends only on the curve and
on a suitably constructed vector frame which is unequally
determined. The Frenet formulae ‘ave different from the known
formulae of Riemannian space only if DG; + 0 holds, i.e. if
the basic covariant differential of the metric tensor is not
zero.
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REZ I ME
FRENETOVE FORMULE RIMAN-OTSUKIJEVOG PROSTORA

U radu su date Frenetove formule s obzirom na
razne kovari jante diferencijale primenjene na kovarijante,
odnosno na kontravarijantne indekse vektora.
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