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ABSTRACT

In this paper some common fixed point theorems in
convex and probabilistic convex metric spaces are proved.
1. INTRODUCTION

Takahashi {1] introduced the notion of convexity in
metric spaces and generalized some fixed point theorems in Ba~-
nach spaces. Subsequently, Itoh [2], Tallman [3], Naimpally,
Singh and Whitfield [4], Rhoades, Singh and Whitfield [5], and
HadZié [6] have studied convex metric spaces and fixed point
theorems.

In this paper, we shall first introduce the concept
of starshapéd subsets in a convex and probabilistic convex me-
tric space. Then we shall show some fixed point theorems for
commuting mappings of the nonexpansive type on a starshaped
subset of convex and probabilistic convex metric spaces. Our
AMS Mathematics Subject Classification (1980): 47H10.
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theorems improve and generalize the corresponding results in
{6, 9, 10, 111].

2. DEFINITIONS AND LEMMAS

befinition 1. Let X be a metric space and
T = [0,1). A mapping W : X x X x I + X 28 said to be a convex
structure on X if for every (x,y,A) € X x X x I and u € X

(1) d(u,W(x,¥,A)) € Ad(u,x) + (1-2)d(u,y),

X together with a convex structure W is called a convex metric
space. '

In the following, we assume throughout that X is a
convex metric space.

Definition 2. A nonempty subset K of X i8 gatid to
be convex if for each (x,y,A) € X x X x-I, W(x,y,2) € K,

Definition 3. A nonempty subset K of X ig called
starshaped if there exists a xo € K such that the set
{W(x,x0,2) : x € K, € T} © K. The xo is said to be a star-
-ceﬁtre of K. )

Clearly, every convex set is a starshaped set and
the inverse is not true. '

Definition 4. Let K be a starshaped subgset of X
with a etar-centre xo. , We say that K satisfies condition (B)
if for all (x,y,A) € K x K x T

A(W(x, %03 A) ,W(V,%0,2)) € Ad(x,y).
Definition 5. 4 mapping.S : X + X 28 8azd to be

(Wyxy)-convex ©f for each (x,0) € X X I, W(Sx,Xo,A) = S(W(x,
XosA)).
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Lemma 1. Let K be a starshaped subset of X with
a star-centre %o and let S : K + K be a (W,xo)-convex map- -
ping. Then the fixed point set fix (S) of S ie,& starshaped
get with a star—-centre Xo.

Proof, By (1) we have x; = W(xg,X0,A), VA € I
W(SXo0sX%Xp50) = xo. It follows from definition 5 that Sx4 =
= S(W(XosXosA)) = W(SxXgosXosA) VYA € I. Putting A = 0, we obtain
Xo = Sx¢ and so xo €§4x(S). Now for any x €44x(S) and A € I,
we have

W(x,x0,A) = W(Sx,X0,A) = S(W(X,X0,A)).

Thus the set {W(x,%Xo0,A) : x € £ix(S), A € I} c §4x(S), i.e.
§4x(S) is a starshaped set with the star-centre xo.

Definition 6, A continuous mappinge £ : K + K Zs
satd to be a-densifying if for any bounded D « K with a(D)>0,

al{f(D)) < a(D),
where a 18 the Kuratowski measure of noncompactness.

For terminologies, ﬁofations and properties of Men-
ger spaces (X,F,t), the reader may consult [7].

Definition 7. Let (X,F,t) be a Menger space. A
mapping W : X x X x I + X i8 said to be a convex structure if
for all (x,y,u,A) € X x X x X x (0,1),

(+5<))

(25) 2 t(Fu ,y 1_A 3

[
Fu,W(x,y,)\) ,x(i)’Fu

for cach € 2 0 and W(x,y,0) = y, W(x,y,1) = x.

Definition 8. 4 nonempty set K « X i8 said to be a

starshaped subset of a Menger space (X,F,t) with a convex struc-
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ture W 1f there exists a %o € K such that the set
{W(x,Xo0sA) : X € K, A € T} € K. The xo i8 called a star-:

-centre of K.

Definition 9. A starshaped subset K of Menger spa-
ce (X,F,t) with a convex strusture W satisfies condition (8B)
if for all (x,y,A) € X x X x (0,1),

(xe) 2 Fx (e).

FW(x,xo,l),W(y,xo,A) Y

for every ¢ 2 0.

Definition 10. Let (X,F,t) be a Menger space with
a convex structure W. A mapping S : X + X 78 satd to be (W,x,)-
-convex if for each (x,A) € X x I, W(Sx,X0,A) = S{W(x,X%0,A)).
Using a similar argument as in Lemma 1, we can easily
pProve

Lemma 2. Let (X,F,t) be a Menger space with a con-
vex structure W, and let K be a starshaped subset of X with
a star-ceéntre Xo. If 8 : K+ K ¢8 a (W,xo)~convex mapping,
then the fixed point set {i{x(S) of S ie a starshaped subset

with a star-centre Xo. .
3. MAIN RESULTS

Theorem 1. Let K be a closed starshaped subset of
a complete convexr metric space (X,d) with a star-centre Xo
and K satisfy condition (B). Suppose that £ : X * K Z¢ a non-
expangive mapping, i.e. for each x,y € K

d(fx,fy) £ d(x,y),

f(x) 8 bounded and there exists m € N (the set of all positi-
ve integers) such that £ is a-densifying on {W(x,xo,A) : x €
€ f(X), A\ € I}. Then f has a fized point in K.
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Proof. Let {kn}nEN be a sequence of real numbers
from (0,1) such that £4im kn = 1 and for each n € N, define

n-+w
fnx =‘W(fx,x°,kn), ¥x € K.
Since K satisfies condition (B), we have that for all x,y € X
d(fnx,fny) = d(W(fx,xo,kn),W(fy,xo,kn))

< knd(fx,fy) < knd(x,y).

By Banach”s contraction theorem, for each n € N, there exists
X, € K such that X,

fnxn. Furthermore,

d(xn,fxn) d(fnxn,fxn) z d(W(fxn,xo,kn),fxn)

< knd(fxn,fxn) + (1-kn)d(fxn,x0)
and since f(K) is bounded, it follows that
Lim d(xn,fxn) = 0.

n-+o

Since f is nonexpansive, we have

m-1 :
k. .
d(xn,fmxn) < ] a(f xn,fk+1xn) < md(x ,fx )
k=0
and so
. . m )
(2) ﬁi: d(xn,f xn) = 0.

Let us prove that the set {W(fx,xo,A) : x € K, X € (0,1)} is
bounded.
This follows from the inequality

d(u,W(fx,x0,A)) < Ad(u,fx) + (1-2)d(u,xe)

for all (u,x) € XK x K and since f(X) is bounded. From X, * fnxn’
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vn € N, we have that {xn}nEN < {W(fx,%x,5A) 1 x € K, A € (0,1))
and so the set {xn}n€N is bounded. Furthepmore, for any € > 0
we have from (2) that

m m
a({xn}neN) < o(B(f ({xn}nEN)’e)) Sal(f ({xn}neN))+e
where :
B(A,e) = {x € K : d(x,A) < €} (A e K) (see [8))
and so
m .
a({xn}nEN) < a(f ({xn}nGN))'

This implies that a({xn}n€N) = '0 and there exists a conver-

( = %
gent subsequence {X, [y ey* Let £im Xn) = x*. Then from
k koo
d(x*,fx*) < d(x*,xnk) + d(xnk,fxnk) + d(fxnk,fx*)
and (2), since f is continuous, it follows that x* = fx*.

Theorem 2. Let X be a closed starshaped subset of
a complete convex metric space (X,d) with & star-centre Xo .
and K satisfy condition (8). Suppose that f,g,5,T : K> K
8uch that S and T commute with £ (or gl), f(K) (or g(X)) s
bounded and the following conditions are satisfied

(t) There exists m € N such that f" is a-condensing on
{W(x,%X0sA) : x € £(K), A € T} and for all x,y € K,
d(fx,gy) < (Sx,Ty),

(i) S and T are'(w,xo)-convex and continuous.

Then there exists x% € K such that x® = fx#* = gx% = Sx* = Tx*.

Proof. Let $ix(S5,T) denote the set of common fixed
points of S and T. Since S and T are (W,xo)-convex, it follows
from Lemma 1 that xo € $4x(S,T) and §4x(S,T) « K is a starsha-
ped subset of X with a star-centre xo. By the continuity
S and T, §ix(S5,T) is also closed. From (i) we have that for
all x,y € 4ix(5,T)
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d(fx,gy) < d(x,y)?

and hence fx = gx for all x € {ix(5,T) and for all x,y €
€ £4ix(S,T)

d(fx,fy) s d(x,y).

For each x € {4{x(S,T), since S and T commute with f, we have
fx = fSx = Sfx and fx = fTx = Tfx and so fx = gx € §{x(S,T).
Hence, it follows from Theorem 1 that there exists x#%* in

§4x(S,T) such that x* = fx* and so x* = fx* = gx* = Sx¥* =
= Tx*,

Remark 1. It is easy to check that Theorem 1 of
[6] is a very special case of Theorem 2.

Theorem 3. Let X be a closed starshaped subset of
a linear space X with a translation invariant metric satis-
Fying d(Ax + (1 - \)y,0) < Ad(x,0) + (1-A)d(y,0) and (X,d)
i8 ecomplete. Suppose that f, g, S, T : X + K such that S and
T commute with £ (or g), £(X) (or g(K)) i8 bounded and the
following conditionse are satiafiéd

(<) There exists m € N auqh that f i a~densifying on.
{W(x,%X0,1) : x € £(K), A € I} and for all x,y € K,
d(fx,gy) < d(Sx,Ty).

(22) S and T are contitnuous such that for each (x,\) €
€ X x 1
S(Ax + (1-A)xo0) ASx + (1-A)xo,
T(Ax + (1-A)x0) = ATx + (1-A)xo,

where xo i& a etar-centre of K.

Then there existe x* € K such that x* = fx* = gx* = Sx# = Txh,

Proof. We define the mapping W : X x X x I + X by
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W(x,y,A). = "Ax + (1-A)y.

It is easy to check that W is a convex structure on X and so
X is a complete convex metric space. Hence Theorem 3 follows

from Theorem 2.

Remark 2. Theorem 3 improves and generalizes Theo-
rem 2 of [8] and the corresponding results in [10, 11].

Theorem 4. Let K be a closed starshaped subset of a
complete Menger apace X with a convex structure W which satis-
ftes condition (B). Suppose that £ : K - K 8 such that f(K)

i8 probabilistic bounded (which means that sup Df(K)(e) =1
€20

where D (e) = sup ing F. (r), € 2 0), for some m € N

n f(K) r<e P,q€f(K) P»4q 2 s . | ’

f" 18 precompact on the set {W(x,xo,A) : x € £(XK), X € (0,1)}

where Xo t8 a star-centre'! of K and for all x,y € Kand € 2 0

(e) 2 Fx y(e).

]

(3) fo,fy

Then f has a fixed point in K.

Proof. Let {kn}nEN be a sequence satisfying the
condition in Theorem 1, and for each n € N, define fnx = W(fx,
xo,kn) for all x € K. Since K satisfies condition (B) from (3),

we have that

F = F
fnx,fny(kne) W(Ex,%0 k), W(EY ,x0 k) Fn®)

2 F (e) 2 F (e),

fx,fy X,y

for all x,y € K and n € N, Since f(K) is probabilistic bounded
- it is easy to check that the set {W(fx,xo,kn) : x € K} is also
probabilistic bounded for each n € N. From Theorem 11.2.3 of
[12] it follows that for each n € N, there exists X, € K such
that X, = fnxn. Furthermore,
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Vi = F = (2¢)
Py Lix (28) fnxn,fxn(“) Bwiex_,xo,k ), fx (2
> t(F (52),F.. . (3—=)) = t(1,F, (—E-))
fxn,fxn k. ? fxn,x° 1-En ? fxn,xol-kn.
- £
= fo ’x°<1_k —£).

Since f(K) is probabilistic bounded, for each z € K we have

ing Py .£2(€) 2 sup Aing (r) = D (e)

n€N n’ r<g P,q€f(K) P’q £00
and so
(u) dup 4ing F (e) = sup D (g) =1
€20 neN I*n»fz gz 1K)
Since
€ —_—
(5) Fex, %o T x)® t( fxn,fz(ZT—m - )’Ffz,xo(z(l—kn)))

using the continuity of t, relations (4) and ‘5),and relation
£im x_ = 1, we obtain that &im F
n-mn n-+=
each € > 0,

€ -
fx ,Xo(l-_kn) = 1 and so for

(8) Lim F

N+w

(e) = 1.
xn,fxn
Since for each n € N, X, = f X, = W(fx 1Xg » k ) € {W(x,xe,}) :
x € £(K), A € (0,1)} and £V 15 preconpact on {W(x,x%q,A)
x € f(K),A € (0,1)}, there exists a subsequence {xny b ey Of
{xn}nEN such that LLm o™ Xnj © x* € K. By (3), for each e 2 0,

each n ¢ N and each k € N, we have that

kax ,fk+1x (e).z Fx JFx (e)
n n n*>n

and so
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' £
Py ot (2 2 t(rxn,fxn<5),t(rx

€
Jex_ (73020
n n n

€
—— b——:—)) ...) .
’ xn,fxn oM 1

Hence, from t(1,1) = 1, the continuity of t and (8), we ob-
tain that

(7) Lim F

N4-m

(e) = 1, Ve > 0.

£m
Xt Xp

The continuity of t, relation (7) and the inequality

€ €
Fx ,x*(e) 2 t(Fx ,fmxn (7)’Fx*,fmxn (?))
k k

Ny n,
imply that £4m Xpy = x*, From the inequality
k+»

€ €
FX*,fx*(s) 2 t(rx*’xnk(i),t(Fxnk’fxnk(E)s

€
fonk,fx*(i)))

[ [ [
2 t(Fx* ,xnk(i) ’t(rxnk ,fxnk(u') ,Fxnk ,X* Cf;») ’

it follows that F_y ¢ (€)=l for each € > 0 and so x* = fx*.
’ .

Theorem 5. ULet K be a cloeged starshaped subget of
a complete Menger space X with a convex structure W which
satisfies condition (B). Suppose that £,g,5,T : K + K are such
that S and T commute with £ (or g), £(K) (or g(X)) <8 probabi-
listite Lounded and the following conditione are satisfied:

(1) There exists m € N such that £ (er gm) i8 precom-
pact on the set {W(xX,Xp,A) : x € £(K), A € (0,1)} (or
. {W(x,Xps2) ¢ x € g(K)y, A € (0,1))) and for all X,y € K

(8) F (e 2 F

£x s &Y (e),

Sx,Ty

(i) S and T are continuous and (w,xo)-convex‘
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Then there exists x* € K such that x* = fx% = gx*% = Sx* = Tx%,

Proof. Let {4x(S,T) be the set of common fixed

' points of S and T. Since S and T are (W,xo)-convex, from Lem-
ma 2, it follows that xo € $4x(S,T) and §4{x(S,T) is a stars-
haped subset of X with a Star-centre Xo. By the continuity of
of S and T, $4x(3,T) ié also closed. From (8) we have that
for all x,y € $4x(S,T)

(e) 2 Fx (e), for all e 20,

fo,gy ¥

and hence for all x € ${x(S8,T), £fx = gx and so all x,y €
€ §4x(5,T)

. >
fo,fy(e) 2 Fx,y(E)’Ve 2 0.
Since S and T commute with f, for each x € §{x(S5,T) we have
that fx = fSx = Sfx and fx = fTx = Tfx and so fx € §{x(3,T).
Thus, from Theorem 4 it follows that there exists x* € {{x(S,T)
such that x* = fx* and so x* = fx* = gx*® = Sx% = Tx*,

Remark 3. Theorem 5 improves and generalizes Theo-
rem 2 of [6].
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ZAJEDNILKE NEPOKRETNE TALKE NEEKSPANZIVNIH
PRESLIKAVANJA U KONVEKSNIM | VEROVATNOSNIM
KONVEKSNIM METRITKIM PROSTORIMA

U ovom radu dokazane su neke teoreme o zéjednlékoj

nepokretno] tadk! u konveksnim | verovatnosnim konveksnim met-
ri€kim prostorima,
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