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ABSTRACT

We introduce a method of investigating both topological spa-
ces and graphs through a suitable notion of homotopy for certain clas-
ses of functions of graphs into hyperspaces of topological spaces. We
show that this approach is naturally equivalent to the Demaria‘s method
which is based on the notion of homotopy for certain classes of functions
of topological spaces into graphs.

1. INTRODUCTION.

There has been a considerable research by D.C.De-
maria, M.Burzio, G.M.Gianella, C.Guido, B.Casciaro, F.Camma-
roto, L.Carini, P.M.Gandini and O.M.Amici on the theory of
regular homotopy of regular functions into graphs. This theo~
ry can be vaguely described as follows.

One first introduces a class of regular functions
from a topological space X into a graph G as functions f:X +G
for which the preimages of nonadjacent vertices are topologi-
cally separated. Regular functions £, g:X +G are homotopic
provided there is a regular function H:X x[0,1) + G such that
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H(x,0)=f(x) and H(x,1)=g(x) for every x€X. The regular homo-
topy theory is simply the study of the bifunctor [5] r which
associates to a topological space X and a graph G the set
r[X:G]; of all equivalence classes of regular functions of X
into G with respect to the equivalence relation of homotopy.
0f course the bifunctior r determines two functors: g (when -
G is regardéd fixed) and X {when X is regarded fixed) on the
category of topological spaces and on the category of graphs,
respectively. ' '

In this paper, we shall reverse the above procedu-
re and consider multivalued functions of abgraph G into a to-
pological space X instead of functions of X into G. The mul-
tivalued function ¢:G *X is regular provided the images of
nonadjacent vertices are topologically separated. Two regu-
lar multivalued functions ¥,¢:G +X are homotopic provided
there is a regular multivalued function ¢ :G -+X x [0,1] that
connects ¢ and y. Thus, we can define a bifunctor ¢ which
associates to a topological space X and a graph G the set
clG:X] of all equivalence classes of regular multivalued
functions of G into X with respect to the equivalence rela-
tion of homotopy.

Our main result shows that the bifunctors r and
c are naturally equivalent. It follows that the two approa-
ches are only formally different. However, while Demaria ‘s
regular functions could be regarded as a realization (analo-
gous to the intersection graphs [4]) of a graph in terms of
covers of a topological space into pairwise disjoint subsets,
in our approach this last condition has been eliminated. This
has some obvious advantages. For example, our point of view
makes the whole subject a part of the hyperspace theory of to-
pological spaces so that we can use the machinery of hyperspa-
.ces, multivalued functions, and their selections and easily
apply the method to other structures.

We also show that the similar statements hold for
other types of regular functions and multivalued functions
(canpletely regular and O-regular and O*-reqular for directed
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graphs), and for the case of pairs and more generally of n-

tuples.

2. R-FUNCTIONS AND R-HOMOTOPY

In this section we shall recall Demaria“s [1] no-
tion of a regular function (or an r-function) of a space in-
to a graph and the associated equivalence relation of homo-
topy for r-functions.

Let G be a graph. A pair {v,wl of elements of G
will be called a j-pair provided either v=w or v and w are
end-points of an edge in G. The pairs of vertices which are
not j-pairs are called d-pairs. '

A function f:X »G of a topological space X into a
graph G is an r-function provided £-1(v) nf l(w) =f"1(v) n
nfl(w) =9 for every d-pair (v,w) € Gx G. Two r-functions

f,9:X +G are r-homotopic (in notation f‘Zg) provided there
exists an r-function F:X xI +G (called an ‘r-homotopy) such
that F(x,0) =£f(x) and F(x,1) =g(x) for every x €X. The re-
lation of r-homotopy is an equivalence relatjon on the set
r(X; G) of all r-functions of X into G. Let [f] denote the
equivalence class of f er(x;q) and let r[X;G] denote the
quotient set. Moreover, we can consider the association
(X,G) +r[X;G] as a bifunector [5, p. 39] r:1° x6 +S, where
To is the opposite to the category 1 of topological spaces
and continuous functions, G is the category of graphs and
j-functions (i.e., finite-to-one functions which map j-pa-
irs into j~pairs), and S is the category of sets and functi-

ons. On morphisms r is defined as follows. Let (f,m) € Mor oxg
T

((X,G6),(¥Y,H)). Then r(f,m):r[X;G) +r[Y;H] is given by

r(f,m) ({g)) = [mogof] for g €r(X; G). «
For pairs the above notions are defined as follows.

In an analogous way it is possible to consider those concepts

also for arbitrary n-tuples.
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Let X be a topological space and let Y be a sub-
space of X. Let G be a graph and let H be a subgraph of G.
Call a function f:(X,Y) + (G,H) between pairs an r—functlom
provided £:X +G and fIY:Y-+H are both r-functions. Two 'rJ
functions f, g:(X,¥) + (G,H) are r-homotopic provided there
is an r-function F: (X xI,Y¥ xI) + (G,H) such that F(x,0) = f(x)
and F(x,l) =g(x) for every x €X. The relation of r-homotopy
is an equivalence relation on the set r(X,Y¥; G,H) of all r-
functions fram (X,Y) into (G,H). The equivalence class of
an f €r(X,Y; G,H) is denoted by [f] while r[X,Y; G,H] deno-
tes the set of all equivalence classes.

Just like in the absolute case, we can consider the
association ((X,Y),(G,H)) +r[X,Y; G,H] as a bifunctor rzztg x

x62+ S, where Tg is the opposite to the category T, of pairs
(X,Y) consisting of a topological space X and its subspace Y
and continuous functions of such pairs and G2 is the cate-
gory of pairs (G,H) consisting of a graph G and a subgraph
H of G and j-functions of such pairs.

When (X,Y) is a pair (In, in) consisting of the n-
cube and its boundary I™ and (G,H) is a pair (G,v) consis-
ting of the graph G and a vertex v €G, the set rn(G,v)=

= r[In,in); G,v] beccomes a group under the binary operation
o defined as follows. For {fl, (g] €r, (G,v), put [flo[g] = [h]
where h: (1™, 1" » (G,v) is given by the formula

£(3t, t2,...,tn), t) €10,1/3]
h(tl,...,tn) = f(l,tz,...,tn), t, €[1/3,2/3]1
g(3tl—2,t2,...,tn), t) €12/3,1}]

for every (tl,...,tn) €1
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3. C-FUNCTIONS AND C-HOMOTOPY

This section introduces a class of multivalued fun-
ctions (called c-functions) from a graph into a space and
the associated equivalence relation of hamotopy for c-func-
tions.

Let a*X denote the hyperspace of all subsets of a
topological space X and let py:X xI +X be the natural pro-

jection.

DEFINITION 3.1. A function @:G-+a*X of a graph
G into a*X is a c-function provided

(z) X=ulo(v)| vea },
and
(22) @(v) Nplw) =p(v) np(w) =¢

for every d-pair (v,w) €G xG.

Two c-functions ¢,¥:G+a*X are c-homotopic (in no-
tation, ¢ : Y) provided there exists a c-function ¢:G+a*(Xx1I) (called a
c-hanotopy) such that @(v) =px(d>(v) n(xx{0})) and Y(v) =px(¢(v) n{xx{1}))
for every ve€G.

THEOREM 3.2. The relation 4 i8 an equivalence
relation on the set c(G; X) of all c-funetions of G into X.

Proo f. a) (Reflexive) For ¢ € c(G;X), the func-
tion ¢:G~a* (X xI) defined by ®(v) =¢@(v) xI for each VEG is
a c-function and px(t(v) N (Xx{0})) =py (#(v) N (X x{1})) =w(v) for
every v €G. Hence, p=¢ .

b) (Symmetric) Suppose ¢,y €c(G; X) and q)Sl(). Let
$:G+a*(X xI) be a c-homotopy between ¢ and . Let r:X xI +
+ X xI be defined by r(x,t) = {x,1-t) for each (x,t) €eX x1I.
Define y:G +a*(X xI) by y(v) =r(¢(v)) for every veEG. One can
eacsily check that y is a c-homotcpy between y and ¢ . Hence

vy .
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c) (Transitive) Suppose o,¢,x€ c(G; X) and (pglp
and wg X. Let ¢ and Yy be c-homotopies between ¢ and y and
between y and ¥, respectively. Define maps m:X xI +X x [0,1/2]
and n:X xI +X x {1/2,1] by m(x,t) = (x,t/2) and n(x,t)=(xd1/2)+
+ (t/2)) for each (x,t) €X xI, Now, define I:G+a*(X xI) by
I(v) =m(®(v)) un(y(v)), for each v €G. Clearly, I satisfies
the condition (3.1) (1) and ¢(v) =p, (Z(v) n (X x{0}) and x(v) =

= px(Z(V) N(Xx{1})) for every v €G. Hence, I is a c-homotopy
c .
between ¢ and ¥ , and therefore ¢ = , provided we prove that

I also satisfies the condition (3.1) (ii).

e

Let (v,w) €EGxG be. a d-pair. Then I(v) nZ(w) =

=Im(e(v)) un(@(v))1n[m(¢(w)) un(y(w))] =AUBUCUD, where
A=m(¢(v)) Nm(d(w)), B=m(d(v})) nn{yg(w)), C=n(P(v)) nm(d(w)),

and D=n(P(v))Nn(Y(w)). Since ¢ and Yy are c-functions and m
and n are homeomorphisms, A=D=f@. We claim that B=§¢g (and
analogously, that C =g).

" Indeed, suppose B # @. Then there is an x €X such
that (x,1/2) €B. It follows that (x,1) €ed(v) and (x,0)€ ¢(w).
Hence, X pr(w(w) N (Xx{0}))=y(w =py (¢(w) N (X x {1})) and

(x,1) € ¥(w). However, this is impossible because ¢ is a c-
function so that mn d(w) =9 '
' For a c-function ¢:G+a*X, let [p] denote the equi- -
valence class of ¢ with respect to the relation z (called
a c-homotopy cclass'of © ) and let ¢[G;X] denote the quotient
set c(G;X) / =. '

Moreover, we can consider the association (X,G) =
»c[G; X] as a bifunctor c:1°x G+ 8 provided we define c on

morphisms as follows. Let (f,m) eMorTOG ((X,G6),(Y,H)). Then

c(f,m) :c[G;X] +c{H;¥] is given by c(f,m) ({¢]) =[¥], where

‘@ €c(G;X) and y (w) =v £ (o(v)) for wen.

vem=1 (w)
The above notions are defined for pairs as follows.
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In an analogous fashion they can be also introduced for n-
tuples. ‘
Let X be a topological space and let Y be a sub-
space of X. Let G be a graph and let H.be a subgraph of G.
A c-function ¢:G. a*X is a c-function: from (G,H) 1239_(X,Y)
(in notation, ¢:(G,H) * (X,¥)) provided ¢w(v) cY for  every
‘v €H. Two c-functions o¢,y: (G,H) + (X,Y) are c-homotopic pro-
vided there is a c~-function ¢:(G,H) » (X xI,¥ xI) such that
o(v) =p, (& (v) N (X x{0})) and Y (V) '=px( Hv) n (X x{1})) for

every v €G. One can prove that the relation of c-homotopy
is an equivalence relation on the set c(G,H; X,Y) of all c~
functions fram (G,H) into (X,Y). The equivalence class of a
¢ €c(G,H3X,Y) is denoted by [¢] while ¢[G,H;X,Y] denotes the
set of all equivalence classes. Just like in the absolute
case, we can consider the association ((X,Y), (G,H)) »
c{G,H,X,Y} as a bifunctor czzfg XG, » S.

When (X,Y) is the pair (In, ™) and (G,H) is the
pair (G,v), the set c_(G,v) =clG,v; 1",1") becomes a group
under the binary operation o defined as follows. Let
m,q:I" +I" be defined by mEyseeert ) = (£,/2,€,,...,t ) and

q(tl,...,tn) = ((1+tl)/2,t2,....,vtn). Now, for [el}, [¥] €cn(G,v)

put [@lof{y]} =([X] where the c-function x:(G,v) + (In,in) is
given by the formula x(w) =m(p(w)) Ug(y(w)) for every w€G.

4. R-HOMOTOPY VERSUS C-HOMOTOPY

The main results in this section (Theorem 4.1))
shows that the bifunctors ¢ and r are naturally equivalent.
It follows that r-homotopy and c-~hamotopy are two equivalent
approaches in the investigation of properties of topological
spaces using graphs and in the investigation of properties
of graphs using topological spaces.
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THEGREM 4.1, There ie a natural equivalence 8
between bifunctors c and r. '

Proo¢£. In order to prove the theorem, for
each topological space X and each araph G, we shall define
a bijection 8 =6 (X,G):c[G;X] +r(X;G] such that for every

morphism (f,m) € Mor ((x,G),(¥,H)) the diagram

%G

c(f,m)
c[G; X] —————» c[H;Y] _
8 (X,G) | | 8 (¥,H),

r[X;6] ———— r[Y;H] ‘
r(f,m) .

t
]
i

commutes. This will be acccmpiished in the following six lem-
mas. '

DEFINITION OF 8(X,G): Let [¢] €c[G;X]. For each
x eX let (p—l (x) ={vea| xep(v)} . We can consider ol as a
function of X into the hyperspace aG of all non-empty sub-
sets of G,

LEMMA 4.2. Every selection £:X +G of the funetion
w-l 78 an r-funection.

Pr oo f. Recall that f is a selection for (p-l

provided f(x) €(p-1 (x) for every x € X. Hence x € p(f(x)) for
every X €X.

Let (v,w) €Gx G be a d-pair. Since ¢ is a c-func-
tion, o(v) nelw) =f. But, £ 1(v) co(v) and £ (W) colw) so
that £ (v) n £ 1 (w)=g. Hence, £ is an r-function.

LEMMA 4.3. Every two selections f,, f,:X+G of

, -1 ,
- the fumnetion © are r-homotoptie,

Proof. Define a function F:X xI »>G as follows.
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£,(x),  (x,t) €xx(0,1/2)
Flx,t) = . '
fz(x), (x,t) €xxf1/2,1]

We claim that F is an r-hoamotopy between £, and £,
In order to verify this claim it clearly suffices
to show that F satisfies the condition (3.1) (ii).

Consider a d-pair (v,w) €GxG, Then m ﬁF-1 (w)=
= AUBUCUD, where A=PnR, B=Pns, C=Q0nR, D=QnNS,
p=f£"(v) x10,1/2), o=£;' () x (1/2,1], R=£]" () x[0,1/2],
and S=f;1 (w) x[1/2,1]1. since .f.1 and £, are r-functions, A=

=D=@. We claim that B=¢§ (and, analogously, that C=f).

Indeed, if (x,1/2) € B, then fo_l(V)ﬂf_1 (W)Co(v)no(w).

However, the intersection @(v) ng(w) is empty because ¢ is a
c-function and (v,w) is a d-pair. Hence, B=¢.

LEMMA 4.8. Let ,y:G+a*X be c-functions and let
f:X+G and g:X+G be selections of gp-lzx-»aG and w-l:x-»aG,
r

respectively. If o=y, then f=g. .

Proof. Let ¢:G+a*(X xI) be a c-haomotopy be-
tween ¢ and y. Let F:XxI +G be a selection for the function

¢_1:X x I +aG. We shall prove that F,:X +G defined by Fo(x-) =

0
= F(x,O)‘ (for x €X) is a serlection for (p_l. Then it follows
from the Lemma 4.3. that f =Fg- Since one can similarly show

that g ZFI' it follows that 'fig.

Let x €X. Since F is a selection for tb—l, F(x,0) €
efb-l (x,0). Hence, (x,0) ¢¢(F(x,0)) and x€§x(¢(F(x,0)) n(xx{0}))=
= ¢(F(x,0)). Finally, we get Fy(x) =F(x,0) € ' (x), i.e. that

Fo is a selection for q;_l
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It follows from the Lemmas 4.2.-4.4. that the fun-
ction 8 =8(X,G):c{G;X) »r[X;G] which associates to a class
{0] €c{G;X] the r-homotopy class [f] of any selection f of
the function ¢ ' is well-defined.

LEMMA 4.5, The function @ 18 one-to-one.

Proo f. Consider (o], [\bc] €c{G;X]. suppose
8(lwl) =0 ([v]). We shall prove that ¢ =7 .

-Let f:X+G be a selection of the function tp—l and
let g:X+G be a selection of the function w'-l . Let H: X XxI+G
be an r-homotopy ‘between f and g. Define functlons X:G +a* (X x
xI), a:G+a*X, and B:G+a*X by x(v) = (v), a(v) = px(x(v) n

N(x x{0})), and B(v) =py (x(v) N (x x{1})) for every vE€G, res-
pectively. -

In order to show that ¢ and ¥ are c-homotopic we shall
prove that a = xp and B =@ . cS:l.nce X is a c—homotopy between
o and B, this would imply o =y

Let a homeamorphism m:X xI +X x [0,1/3] be defined
by m(x,t)= (x,t/3) for each (x,t)€XxI. Next, we define a functi-
onk t G-la*xx1) by k(v) =m(x(v)) ulg t(v)x[1/3,2/3]

U (p(v)x [2/3,11). We claim that k is a c-homotopy between
a and V. ) '
Indeed, let us check that the function k satisfies
the condition (3.1)(ii). The other required proverties of k
are easy to verify.

Let (v,w) €GxG be a d-pair. Then X(v) nkiw) =
= AUBUCUDUEUFUJ, where A=PnP”, B=PNQ", C=QNP~
D=QnQ°, E=QNR"°, F=RNQ°, J=RnR", P=0(v) x[ 2/3,1],

=9 (v) x [1/3,2/31, R=m(x(¥)), P =y x[2/3,1], Q" =

= g—l (w) x[(1/3,2/3] and R =m(x(w)). Since w,g—l, and x are

c-functions, A=D=J=0. We shall now prove that B=¢ and

E=@. One can analogously prove that C=¢ and F=¢. It fol-

lows that k(v) nk(w) =@. Since a similar argument shows that

k(v) nk(w) =@, we get o S.(,b . In an analogous fashion one can
" prove that B8 2(9 and thus conclude the proof.
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Suppose that there is an x €X such that (x,2/3) eC.
Then x Eg—l (v) and x € Y (w). But, g"1 (v) cy(v) so that x €

€Y(v) NY(w). This is impossible because y is a c~function.
Finally, suppose that there is an x €X such that
1

(x,1/3) €E. Then x Eg'1 (v) and (x,1) €H = (w). Hence, H(x,1) =

g(x) =w so that x€g ~ (v) ng_l (w) . However, this is impossi-
ble because g-l is a c-function.:

LEMMA 4.6. The funetion O ig onto.

Proof. Let [h] €r[X;G]. Fut <p=h—1:G+a*x.
Since w_l (x) ={h(x)} for every x €X, we see that h is a se-
.lection of ¢ '. This implies that 8([e]) =[hl.

LEMMA 4.7.  For every morphism (f,m)€EMor g ((X,G),
. T
(Y,H)) the equality 6(Y,H)oc(f,m) =r(f,m)ob(X,G) holds. .

Proeof. Let Y €c(G;X). Define x €Ec(H;Y) by
-1
X(w) =U -1 (w)f W(v)) for w\e H. Let g:Y +G be a selection

of w_]':Y +aG. It suffices to prove that mogof is a selection
of x-lzx +aG. Let yEY. Since g is a selection of w-l, we
have £(y) € y(g(£(y))) and y €€ [¥(g(E(y)))]. Hence, y €
€ x [(mygo£)]1. In other words, (m g f) (y) € )(-1 (y) for every
y€EyY. .

REMARK 4.8. Only minor changes in the above proof
are needed in order to prove the version of the Theorem 4.1
for pairs and n-tuples.

5. S-FUNCTIONS, AND E-FUNCTIONS

Demaria [1] has also introduced the notion of a
strongly reqular function (or an s-function) as a function

f:X+>G of a topological space X into a graph G which satisfies

the condition £ - (v) n gl (w) =@ for every d-pair (v,w) €G xG.
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By replacing throughout the section 2 the letter "r" with
the letter "s" we can define the notion of s-homotopy and

the bifunctor s: 1 x 6+ S, This could also be done for pairs
and more generally for n-tuples. Moreover, all statements abo-
ut r-functions and r-hamotopy hold also for s-functions and
s-homotopy. In particular, as the following lemma shows, the
relation of s-homotopy is an equivalence relation contrary

to the claim in [2,p. 142]

s
LEMMA 5.1, The relation = is an equivalence re-
lation on the set s8(X;G) of all s-funections of X into G.

Pr oo f, We leave to the reader to check that
H is reflexive and symmetric. In order to prove that it is
transitive, suppose £,g9,h € s(X;G), fgg, and g gh. Let F and
G be s-homotopies between £ and g and between g and h, res-~
pectively. Define| a function H:X XI +G by

F(x,3t), (x,t) exx[lo0,1/3]
H(x,t) = g(x), (x,t) €xx[1/3,2/3]
G(x,3t-2), (x,t) €xx{2/3,1].

Then H is an s-homotopy between £ and h,

In analogy with the section 3, we shall say that a
function @:G-»a*X of a graph G into the hyperspace a*X of all
subsets of a topological space X is an -e-function provided
X=uf{pv)!] veal and @(v) nm = @ for every d-pair (v,w) €
€G xG. The replacement of the letter "c" with the letter "e"
in the section 3 gives us the notion of e~hamotopy and the

bifunctor e:1° xG +S. Of course, this also applies to pairs
and n-tuples.Moreover, only routine changes in the section 4
are needed to get the proof of the following result.

THEOREM 5.2. The bifunctors e and s are naturally

equivalent.
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Related to the bifunctor e is the bifunctor b de-
fined as follows. Let c*X denote the hyperspace of all clo-
sed subsets of a topological space X. A function ¢:G +c*X
"of a graph G into c¢*X is a b-function provided X =U{p(v)|ve"
€ G} and @(v) Ne(w) = @ for every d-pair (v,w) €G xG. Two
b-functions ¢,y:G +c*X are b-homotopic (in notation, o=y )
provided there is a b-function ¢:G-+c*(X xI) such that o(v)=

= py (#(v) N (X x {o})) and y(v) =px(¢(v’)ﬂ(x*‘{l})) for every

v €EG. It is clear now how we can define the bifunctor b and
that there is a "b-version" of all of the section 3.

THEOREM 5.3. The bifunctore e and b are naturally
equivalent.

Proo f. For a ¢ €e(G;X), define ¢w* € b(G;X)
by ¢*(v) =¢@(v). Then ¢* is a b-function and the formula &(v)=
=fo(v) x [0,1)] u{o*(v) x{1}] for v €G defines an e-hoamotoépy
between ¢ and ¢* . It is now routine to show that T =1(X;G):
:e[G;X] +b[G;X] given by t({0])) = [¢*) defines a natural equi-
valence between e and b.

The following corollary of the theorems 5.3 and
5.2 improves the main result in- [3].

COROLLARY. The bifunctore b and e are naturally

equivalent.

REMARK 5.5. Just like in the section 4, all of
the results in this section hold also for pairs and n-tuples.

6. DIGRAPHS

In the case when G is a directed graph (or a digraph),
Demaria considered o-regular and o*-regqular functions of a
space X into G. In order to define these classes of functions,
we shall call a pair (v,w) €GXG a j-pair provided either
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v=w or (v,w) is an edge of G. An ordered pair of elements
of G which is not a j~pair is called a d-pair.

A function £:X+G is an or-function (o*r—function)
provided £ 1 (v) nf_1 (w) =@ (f"1 (v) Nf ~(w) = @) for every
d-pair (v,w) €G xG. Of course, it is now poséible to intro-
duce or~homotopy and o*r-homotopy and bifunctors or and o*r,
Also, we can define oc~functions and o*c-functions, cor-
responding homotopies, and bifunctors oc and o*c. The met-
hod of proof in the section 4 with minor alternations allows
one to prove that oc is naturally equivalent to or and that
o*c is naturally equivalent to o*r. A similar statement is
also true for pairs and for n-tuples.
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REZ | ME

PRIRODNA EKVIVALENCIJA GRAFU ASOCIRANIH
BIFUNKTORA

Uveden je metod za ispitivanje topolo3kih prostora.i
grafova pomoéu podesnog pojma homotopije za neke klase presli-
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kavanja grafova u hiperprostore topolo3kih prostora. Pokazano
je da Je ovaj pristup prirodno ekvivalentan metodi Demaria koji
je zasnovan na pojmu homotopije za neke klase preslikavanja to-
polodkih prostora u grafove. .



