ZBORNIK RADOVA " REVIEW OF RESEARCH

Prirodno-matematitkog fakulteta Faculty of Science
Univerziteta u Novom Sadu University of Novi Sad
Serija za matematiku, 16, 1(1986) Mathematics Series, 16, 1(1986)

COINCIDENCE POINTS FOR SET-VALUED MAPPINGS IN CONVEX METRIC SPACES

Olga Had2ié, Ljiljana Gajié

University of Novi Sad, Faculty of Science,
Institute of Mathematics, Dr I. Djuridida 4,
21000 Novi Sad, Yugoslavia

ABSTRACT

In this paper a generallzatlion of the well-known flixed point
theorem of Assad and Kirk for multivalued mapplings In convex metric spaces
Is given. The multivalued verslon of the Palais-Smale condition is intro-
duced and applied in the proof of Thearem2,, which contains an existence
result on colncldence polnts for set-valued mapplings In metric spaces with

a convex structure.

1. INTRODUCTION

Since Assad and Kirk published their paper [1] many
authors proved fixed point theorems or theorems on coincidence
points in metric spaces with a convex structure or in convex
metric spaces [2], [5], (61, [7]1, (8], [9], [10], [11], [121.

Let us recall that a metric space (M,d) is convex {f
for each x,y€ M with x #y there exists 2z €M, x#z¢#y
such that

d(x,z) + d(z,y) = d(x,y).

In (1] the following result is obtained.

THEOREM A. et (M,d) be a complete convex metric space, X a nonempty
closed subset of M,f:K+CB(M) (the family of all nonempty
closed and bounded subsets of M ) so that f{(8K)cK and f ‘is a contrac-

tion mapping ( in respect to the Hausdorff metric H ). Then there exists
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Z€K such that z€fz.

Itoh [7], Khan (8], Baskaran and Subrahmanyam [2]

" and Had¥ié [6] .(for singlevalued, f ) obtained generalizations
of Theorem A.Theorem 1, ,which will be proved in this paper, is
a theorem on the coincidence point for mappings f:K+ CB(M)
S:K+M and T:K+M, If S=T= IdlK from Theorem 1 it follows
Theorem A. A point y€K is a coincidence point for f, S
and T if

{Ty,Sy} < fy .

We shall need for the next text some notions and no-
tations. If X is a metric space, we shall denote by 2° the
family of all nonempty subsets of X . Let (X,d) be a metric
space, f:K+CB(X), S:K+X and @f+#KcX . The pair (f,S) is
said to be weakly commutative if ard only if for every y€K

ard z€K such that ye€fz and Sz€K :
d(Sy,fSz) < d(fz,Sz) .

For singlevalued mappings the notion of the weak commu-'
tativity is introduced by Sessa in [11]. There are examples of
mappings which are weakly:commutative but not commutative. If
f and S are such that for Sz€K and fzcK, fSz = Sfz then
the pair (f,$) 1s obviously weakly commutative since for
yefznK and Sz€K : ‘ :

d(Sy,fSz) =inf d(Sy,u)
u€fSz
and there exists v€fSz such that Sy=v. This implies that

infd(Sy,u) < d(Sy,v) =d(v,v) = 0<d(fz,52)
uefsz

In [12] Takahashi introduced the notion of the con-
vexity in metric spaces. Let (X,d) be a metric space and
W XxXx[0,11+X. The mapping W is said to be a convex struc-
ture if for every (x,y,A)€XxXx[0,1] :

d{u,W(x,y,1)) < Ad(u,x) + (1-3)d(u,y)

for every u€X. A metric space with a convex structure be-
. longs to the class of convex metric spaces. There are metric
spaces with a convex structure which can not be imbedded in



Cotnetidence points for set-valued mappings in ... 15§

any Banach space [12].
A metric space (X,d) with a convex structure W
satisfies condition 1II if for all (x,y,z,A)€X3x[0,1]

d(W(x,z,1),H(y,z,1)) < Ad(x,y) [10l.

If (X,d) is a metric space with a convex structure
W,xo€X and S:X+X we say that the mapping S is (W,x,)-con-
vex if and only if for every zZ€X and every A€ {(0,1):
W(Sz,xo,A) = SW(Z,Xg,A) .

By a we shall denote the Kuratowski measure of
noncompactness.

2, A GENERALIZATION OF THE FIXED POINT THEOREM OF ASSAD AND KIRK

THEOREM “ 1. Let (M,d) be a complete convex metric space, K a non-
empty closed subset of M, S,T:K+M. continuous map-
pings, f:K+CB(M) H-continuous mapping, 3KSSKNTK, fKNnKeSKNnTK,
(fyS) and (f,T) weakly commutative pairs and the following implications
hold:

Tx€3K = fxekK; Sxe€ak = fxek,
If there exists Q€ {0,1) so that:

H(fx,fy) < qd(Sx,Ty) , for every x,y€K,
then there exists Z€K so that:
{Tz,Sz}nfz#p .

1f S,T:M+M are continuous and:

(Z) yefx, TxeK => d(Ty,fTx)<d(fx,Tx)
(i1} yeEfx, Sx€K = d(Sy,fSx)<d(fx,Sx)

then there exists 2€K so that:

Tzefz and Sz€efz.

PROOF : Let Xx€3K. Since B3KETK it follows that there
exists py,€K such that x=Tp,.

From Tpy€93K, using the implication: Tx€3K == fx€K, we con-

clude that fpo€KNfKSSK. Let p, €K be such that Sp; =p; €

€ fpo S K. Since p;€fp, there exists p,€fp, so that

d(py,p,) < H(fpy,fp;) + q. Suppose that p,€EK. Then
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péEan(K)STK which implies that there exists- p, €K such that
szﬂpé . If pé{l( then there exists Q€3K so that:

d(Sp,q) + d(q,p,) = d(Spl.p;) .
Since Q€3KETK there exists py,€K such that q=Tp, and so:
d(Spy»Tp,) + d(Tp,,p,) = d(Sp,,p,) -
Let p;€fp, be such that:
d(p;,P3) < H(fp,.fp,) + Q2.

It is easy to see that in this way we obtain two sequences
{p,},n€N and {p)}, n€N such that

1.For every neN; piefp,
2.For every: n€N;: p, €K = py, = Tp,,
Pon EK = Tp, €3K and

a d(SPay_1+TPon) *+ 4(TPyysPsn) = d(SPon_ysPyn) -

3.For every ne€N: Pope1 €K => pjos1® SPonty
Pan+y EK == Sp, ., €3K and :

@ d(TPosSPons1) *+ 4(SPyney sPjner) = 4(T00.0500,) -
4.For every neN: '
d(PasPpyy) < H(FR,_ 4fR,) + Q.
Let Po, Py, Qo and Q; be defined by:
Po = {Pop» NEN and p,, = Tpyn}
P1 = {pyy, NEN and p,; # Tp,}
Q, = {Pyns1s NEN and Phpy = Spone1}

Qr = {Pon+;» NEN and pyp4y # SPoney}
First we shall prove that:

(pznspzn-l—l ) ¢ Pl x Ql and (pzn—l spzn) £ Ql x P1 .

JIf p,n€P, then p)#Tp,, and in this case we have that
Tp,n €3K which implies that pjny; €fp, SK. Hence pPynsy = SPonsy
which means that p,n,, €Q,. We can prove similarly that
(Pon-1sP2p) £Q, x P, .

Let us prove that for every nE€EN:
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qd(Spyy_ysTP,y) + 927
3 d{TPonsSPon+1) < or

qd(SPyy_ysTPop_p) *+ 927! + @28
and

qd(SPy,_1 5Py, ) + 9221
@ d(Spyp 15 TRyp) < or
qd(SPyp_35TPpp o) + 92072 + g20-1
If (PonsPon+1) €Po xQo  then:
d(TPyp sSPon4y ) = d(P3nsPon+1) € H(FPyn_y5fRon) + 02 €
< qd(Sp,, _,»Tp,,) + g2 .
Suppose that (PonsPon+1) €Pox Q. Then from (2) we obtain that:
4Py 5Po041) € 4(TPyysPo04a) = d(pz'n-pénﬂ"
< qd(Sp,p,_;,Tp,y,) + Q22
From the relation (p,,,Pp+;) €P, xQo we have that:
4(TPon»SPon+1) € d(TPypsPyn) + APy sPone) €
< d(Tpypn,P3n) + qd(Sp,pn_;»TP,,) + %2 «
< d(Tpyp,Pon) + d{SPyy_; ,TPoy) + 622,
Using (1) we obtain that:
d(TPonsSPon+1) < d(Spon_ysPzn) + 627

Since p, €P;, and (p,,_,,Pp,) € Q) xP, we obtain that
Por_1 € Qo which means that p,, ; = Sp,,_, and so:

d(TP2psSPop+1) € d(Pyy_1sP2y) + 920 <
< 9d(Spyy,_15TPyp_p) + q2n-1 + 2n

If  (Pyp_;sPn) € QoxPo  then:

d(SPap-15TPon) = d(Poq_y3Ppy) < Ad(SPy, y5TR,, ) +G%771 .
Suppose that (p2n_1,p2n)€ Q,xP, . Then from (1) we have that:

d{Spyn_ysTPon) < d(Sp,n_ysPon) = d(Phn ;s Phn) <

. < 9d(Sp,, ,»Tp,, ) + q2n-1 .
If  (Pop_sPon) €Qy xP, then:
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d(SP2n-1+TP2n) € d(SP2n_1sP2n-1) + dP2n_y»TP2n) =
= d(SPop_1 Pigar) * (Pyny Pin) €
< d(szn-ll’pz;n-l) + qd(SPyp_y s TPypp) *+ 4277} <«
< d(SPyy 5Py 1) + d(SPoy_1s TRy o) + @271
Since p,, ; €Q, f;an (2) we obtain that:
d(SPypn_y»TPyn) < d(TPyy 5 4Pony) + Q2771
Further from p,,_;€Q, it follows that p,, , €P, which means

that Tpy, » = Poyy -
Hence:

d(SPp_15TP2n) € d(Pon_psP2n) + 9271 <
< 9d(SPyp_35TPon_p) + G272 + q2°-1

Using the above inequalities we conclude that (3) and (4) hold.
Inequalitiés (3) and (4) can be written in the form:

Zyn = TPansZoner = SPaney (NEN)
qd(zn,2n_,) + q*

or
qd(z,_,,z,.;) + q" + ¢°1,

which is inequality (*) from {1].
Then:

d(zn,znﬂ) £

n
d(zn’zn+1) <€ q2 (6+n) »
where 1

6=q2

ma.x{d(zo,zl),d(zl,zz)} .
Hence the sequence {zn}nGN is a Cauchy sequence and let
z = Linzy = £imTpyy = LimSpan+) -
n+w n+w n-+w
There exists at least one subsequence {pmk}kEN
or {pmg+ilgey Which is contained in P, or Qo respectively

since
n (Pzn‘»P2n+1)¢P1"Q1 and (pzn_l.pzn)dolel:

Suppose that there exists {pmk}kEN such that py,, €P, for
every k€N, Then

p;nk = TPonk € FPong-1 (keN) .
Let us prove that Sz€fz. Using the weak commutativity of the
pair (f,S) and the relations:
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Tpmke fpznk-an and Sp?.nk-lEK’ kKEN
we obtain that:
d{STPopzsFSPong_1) € d(fPogp_1:SPang-1) <
< d(TPynz »SPong 1) -

Since Lim d(TPZDR’Spmk"l) = 0, we obtain that
ke

£im d(STpan,fSpmk_l) =0,
koo .

From the inequality:
d(STPong»f2) € d(STPopy oFSPong 1) + H(FSPopy _14f2)

since f is H-continuous, we obtain that:
Lim d(ST ,fz) = 0.,
res ( P2ny )

Hence from the inequality:
d{sz,fz) < d(Sz,Ssznk) +d(STp2nk,fz)

using the continuity of the mapping S weobtain that d(Sz,fz)=0
and so Sz€fz, which implies that {Tz,Sz}nfz+#@.

Suppose now that $,T:M+M and that (%) and (ZZ) hold,
From 4. we obtain that for every k€N :

2
d(pénk*'l’pénk) < H(fpznk’fpznk-l) +q Tk <

2
< d(Tpyn; ,SPope—-1) *+ 4K
which implies that:

AP s 13TPonz) € 9Ty 0 sSPops 1) + 977% .

Since Lim d(sznk,sznk_l) =0, we obtain that:
ke
um pén +1 =2
and so : kv k
)] Tz = T(&im p! ) = &im Tp, .
Ko nk+l Koo 2nk+1

Using the implication (Z) for X =Poy and y=p;._nk+1 we con-

clude that: , o -
d(Tpénkn,prznk) < d(fPong s TPory) < d(pénk+1’Tp2nk)

and since iﬁﬂ d(pénk,,,l,szHk) = d(z,z)=0, we have that

a]!;,(’m d(Tp;nk”,prz“k) =0,

Further:
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d(TPngs 15F2) € d(TPynre 12FTP, ) + H(FTp,, F2)
and since &im H(pran,fz) =0, it follows that:
kaw

(6) 7;_14’2 d(Tpénk”,fz) =0,

Using (5) and (6) we obtain that d(T7z,fz)=0 since:
d(72,f2) € d(T2,Tpyp41) + d(TPyppssF2) .

From d(Tz,fz)=0 we conclude that Tze€fz.

COROLLARY (THEOREM A) [1] iet (M,d) be a complete convex metric
space, K a nonempty closed subset of M,
f:K+CB(M) so that for every x€3K, fx€K and:
H(fx,fy) € qd(x,y) , for every X,Y€K
where Q€ (0,1) . Then there exists Z€K such that 2€fz,

PROOF: It is obvious that for S=T=1Id|K all the conditions
of Theorem 1l are satisfied.

3. A COMMON FIXED' POINT THEOREM IN METRIC SPACES WITH A CONVEX STRUCTURE
In this section we shall need the following defi-
nition which is given in [51.

DEFINITION 1. Let (X,d) ke a metric space, A,S:X+2x and  KEX .
The mapping A is said to be (a,5)-densifying on the
set K if and only if for every MEK such that S(M),A(M) €B(X) the
following implication holds:
alS(M)) < alA(M)) = M is compact.

REMARK In [4] the definition of the Palais-Smale condition

for the singlevalued mappings is given. We shall re-
call this definition. Let X and T be metric spaces and
p,g:"+X. The pair (p,q) satisfies the Palais-Smale condition
if for every sequence {y,l,en from r the relation

Lim dx‘P(.Yn)’Q(.Yn)) =0
neo

implies that there exists a convergent subsequénce{Ynk}ken of
the sequence {yplpen .
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From this definition it is obvious that if in Defi-
nition 1. the mappings S and A are singlevalued and A(K)!
is bounded, the following implication holds:
A is (a,S) densifying on K => the pair (A,S) satisfies the
Palais-Smale condition on K (i.e. the pair (Alg.Slx) satis-
fies the Palais-Smale condition, where A|y and S|y ‘are the
restrictions of A and S on K respectively).

Indeed, if A is (a,S) densifying on K and A(K) is
bounded then from:

Lim dy (S(yn)Alyy)) = 0
L |

it follows that o(SL)-=a{AL) ' (this can be proved easily), where
L ={y,, n€N}, which implies that L[ is compact. Hence the pair
(Alg,Slx) satisfies the Palais-Smale condition.

Let us remark that in [4] the notion of acondensing
pair (p,q) of singlevalued mappings is given, which is similar
to Definition 1 if the mappings A and S are singlevalued.
If gq: r+'2x and p:r+X, we can introduce the Palais-Smale
condition in the following way.

DEFINITION 2. The pair (p,q) satisfies the Palais-Smale condition if
for every sequence {y,l,enN from [, the relation:
Lim dy(p(yy) wy) =0, for same {vplnen
o .

such that v, € q(yn) (n€N), implies the existence of a convergent sub-
sequence {ynk}k€N of . the sequence b{yn}nEN . '

The set of coincidence points for the pair (p,q) is defined by:
K(p,q) = {y, y€r and p(y)€aly)}.

and for e€>0 we shall define an e-coincidence point for the

pair (p,q) in the following way.

DEFINITION 3. A point Y€T is an €-coincidence point for the pair
(P,q) if there exists an element veq(y) such that

dx(p(y) sv)<€ M . : '

Similarly as in [4] (Proposition 2.3)we can prove the

following proposition. '

PROPOSITION: et (r,d.) and (X,dx) be metric spaces, q:r+‘2x

a closed mapping and p:T+X a continuous map-
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ping. Let for every’ €>0 the pair (p,q) have an g-coincidence
point and satisfy the Palais-Smale condition. Then

K(piq) # 0 .

PROOF: Let €, é% (neN) and y, be an ep-coincidence
point for the pair (p,q). Let v,€q(y,) ., (REN) so

that dy(p(yn),vn) < ‘F . Then

Lim d.x‘(p(yn) Wn! =0

N>
and since the pair (p,q) satisfies the Palais-Smale condition,
there exists a convergent subsequence {ynk}k'EN of the
sequence {y,lnen . Let Limynk-y. Since &im dx(p(ynk),vnk) =0 ,
k-+eo k>

it follows that

Lim vy, = Lim p(yn;) =p(y) .

koo

From vnqu(ynk) , (keN), using the closedness of the mapping
q, we obtain that p(y)€q(y), which means that y€K(p,q).
Similarly as in [5] we shall prove a common fixed
point theorem if:
H(fx,fy) ¢« d(Sx,Ty) ,for every x,y€K,
where K is (W,x )-star convex (Xo€ K and W(K,x,,(0,1))= K)

THEOREM 2. Let (M,d) be a complete metric space with a convex

structure W with property 1I, K a nonempty closed
(W,xy) = star convex subset of M, §,T:M+M continuous (W,X,) convex
mappings, f :K+k(M) (the family of all nonempty compact subsets of M)
so that the following conditions are satisfied:

1, fK is bounded, KE SK N TK and:
Tx €K = fxeK ; SxeadK == fxekK,
2, Por every X,ye€K:
H(fx,fy) € d(Sx,Ty) .
3. The mapping f 1s H-continuous and:
SXEK == fSx=8fx ; TXEK = Tfx=fTx .
4, The mepping f is (a,S5) or (a,T) densifying.

Then there exists 2Z€K so that Tz€fz and Sz€fz .

PROOF : As in [5] let ({k },en be such a sequence from (0,1)
that &imk, =1 and f,:K+k(M) be defined by:
e :
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fx = W(fx,x,,k,) , for every" x€K and every né€N. We shall
prove that for every n€EN there exists Xxp€K so that
Txy, € fux, and Sx,€fpx, . It remains to be proved that T,S  and
f, satisfy all the conditions of Theorem 1 . Since the set K
"is  (W,Xo)-star convex from the condition 1, of this theorem
we obtain that: ) ‘

TXEANK => f x€K; SXxEK = fx€K.
Further f;Sx, if Sx€K, is equal to the set Sf x since:

faSx = U W(Z,%05kn) = | WZ,X0,kp) =

ZEfSx Z€eSfx
) = {w(sy’XO!kn)’yefX} = {sw(ysxoskn) 2y €fX} = anX s for every_"nEN .
Similarly from Tx€K we obtain that fTx = Tfpx, for every
neEN. It is easy to see that from f,Sz = Sf,z we obtain the
inequaldty:  q(sy,faSz)  d(fnz,52) , for ye€fnz
since

d(Sy,f,Sz) =4ing d(Sy,z) =.nf§ d(Sy,z) <

2€f Sz . 2€Sfnz

< d(Sy,Sy) = 0 g d(fuz,52) .
Since the convex structure W satisfies condition II it fol-
lows that: ' '

H(fnX,foy) = H(W(FX,Xo,kn) H(FY,Xo,kn)) €

€ kpH(fx,fy) € kn d(Sx,Ty) .
for every x,y€K , and hence the mapping fn 1is H-continuous.
Further, from the compactness of fx, for every x€K and the
continuity of W in respect to the first variable it follows -
that fyx is compact for every x€K. From KESKNTK we obtain
that fpKnKESKNnTK. Hence, all the conditions of Theorem 1. are
satisfied and for every n€N there exists x,€K so that
Tx, € foxn -and  Sxp €fpX, . The rest of the proof is as in the
proof of Theorem 2. from [5], For the completeness we shall
give the rest of the proof. Since Tx,€fuyx, and Sx, € fyxy, (nEN)
there exist - Up€fxy and vp€fxy (meEN) so that
Sxp = Wlup,X,.ky) and Txp = W(vy,x,,k ) . Then it is easy to prove
that:
m ﬁi’: d(Sxy,uy) = ,;,L‘ﬂ d(Txy,vy) = 0.

Hence, for every €>0 there exists an e-coincidence point for
($,f) and (T,f). since the mapping f is (a,S) or (a,T) densi-
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fying on the set K and the set ¥f(K) is bounded, we conclude
that the pair (S,f) or the pair (T,f) satisfies the Palais-
-Smale condition on the set K. Further, the mapping f is
H-continuous and fx 1is compact for every x€K and so the
mapping f 1s closed. Using the Proposition we conclude that
K(S,f) #8 or K(T,f) # 9. From the Proposition it follows that
y€K(5,f) (if,for example K(S,f) # @ ) is of the form y= Lun Xng »
for some subsequence {"nk}ken of the sequence

{xew - From (7) we have that Lun V“k = TyeEfy  and so

Yy E€K(T,f) nK(S,f) .
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REZ IME

TACKE KOINCIDENCIJE VISEZNACNIH PRESLIKAVANJA
U KONVEKSNIM METRIZKIM PROSTORIMA

U ovom je radu dokazano uopStenje dobro poznate teo-
reme o nepokretnoj tadki Assada i Kirka za viSeznatna presli-
kavanja u konveksnim metrikim prostorima, Vigezna&na verzija
uélova Palais-Smalea je uvedena i primenjena u dokazu Teoreme 2,
koja sadrZi jedan rezultat o postojanju talke koincidencije za
viZezna&na preslikavanja u metri®kim prostorima 'sa konveksnom
strukturom. '
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