ZBORNIK RADOVA Prirodno-matematičkog fakulteta Univerziteta u Novom Sadu Serija za matematiku, 16, 1(1986) REVIEW OF RESEARCH Faculty of Science University of Novi Sad Mathematics Series, 16, 1 (1986)

COINCIDENCE POINTS FOR SET-VALUED MAPPINGS IN CONVEX METRIC SPACES

Olga Hadžíć, Ljiljana Gajić

University of Novi Sad, Faculty of Science, Institute of Mathematics, Dr I. Djuričića 4, 21000 Novi Sad, Yugoslavia

ABSTRACT

In this paper a generalization of the well-known fixed point theorem of Assad and Kirk for multivalued mappings in convex metric spaces is given. The multivalued version of the Palais-Smale condition is introduced and applied in the proof of Theorem 2., which contains an existence result on coincidence points for set-valued mappings in metric spaces with a convex structure.

INTRODUCTION

Since Assad and Kirk published their paper [1] many authors proved fixed point theorems or theorems on coincidence points in metric spaces with a convex structure or in convex metric spaces [2], [5], [6], [7], [8], [9], [10], [11], [12].

Let us recall that a metric space (M,d) is convex if for each $x,y\in M$ with $x\neq y$ there exists $z\in M, x\neq z\neq y$ such that

$$d(x,z) + d(z,y) = d(x,y).$$

In [1] the following result is obtained.

THEOREM A. Let (M,d) be a complete convex metric space, K a nonempty closed subset of M,f:K+CB(M) (the family of all nonempty closed and bounded subsets of M) so that $f(\partial K)\subseteq K$ and f is a contraction mapping (in respect to the Hausdorff metric H). Then there exists

AMS Mathematics Subject Classification (1980):54H25.

Key words and phrases: Coincidence points, multivalued mappings, convex metric spaces, metric spaces with a convex structure.

ZEK such that ZEfZ.

Itoh [7], Khan [8], Baskaran and Subrahmanyam [2] and Hadžić [6] (for singlevalued f) obtained generalizations of Theorem A.Theorem 1, which will be proved in this paper, is a theorem on the coincidence point for mappings f:K+CB(M) S:K+M and T:K+M. If $S=T=Id|_K$ from Theorem 1 it follows Theorem A. A point $y \in K$ is a coincidence point for f, S and T if

 $\{Ty,Sy\}\subseteq fy$.

We shall need for the next text some notions and notations. If X is a metric space, we shall denote by 2^X the family of all nonempty subsets of X. Let (X,d) be a metric space, f:K+CB(X), S:K+X and $\emptyset \neq K \subset X$. The pair (f,S) is said to be weakly commutative if and only if for every $y \in K$ and $z \in K$ such that $y \in fz$ and $Sz \in K$:

$$d(Sy,fSz) \leq d(fz,Sz)$$
.

For singlevalued mappings the notion of the weak commutativity is introduced by Sessa in [11]. There are examples of mappings which are weakly commutative but not commutative. If f and S are such that for $Sz \in K$ and $fz \subset K$, fSz = Sfz then the pair (f,S) is obviously weakly commutative since for $y \in fz \cap K$ and $Sz \in K$:

$$d(Sy,fSz) = inf d(Sy,u)$$

 $u \in fSz$

and there exists $v \in fSz$ such that Sy = v. This implies that

$$infd(Sy,u) \leq d(Sy,v) = d(v,v) = 0 \leq d(fz,Sz)$$

 $u \in fSz$

In [12] Takahashi introduced the notion of the convexity in metric spaces. Let (X,d) be a metric space and $W: X \times X \times [0,1] \to X$. The mapping W is said to be a convex structure if for every $(x,y,\lambda) \in X \times X \times [0,1]$:

$$d(u,W(x,y,\lambda)) \leq \lambda d(u,x) + (1-\lambda)d(u,y)$$

for every $u \in X$. A metric space with a convex structure belongs to the class of convex metric spaces. There are metric spaces with a convex structure which can not be imbedded in

any Banach space [12].

A metric space (X,d) with a convex structure W satisfies condition II if for all $(x,y,z,\lambda) \in X^3 \times [0,1]$

$$d(W(x,z,\lambda),W(y,z,\lambda)) \leqslant \lambda d(x,y)$$
 [10].

If (X,d) is a metric space with a convex structure $W,x_0\in X$ and $S:X\to X$ we say that the mapping S is (W,x_0) -convex if and only if for every $z\in X$ and every $\lambda\in (0,1)$:

$$W(Sz,x_0,\lambda) = SW(z,x_0,\lambda)$$
.

By α we shall denote the Kuratowski measure of noncompactness.

2. A GENERALIZATION OF THE FIXED POINT THEOREM OF ASSAD AND KIRK

THEOREM 1. Let (M,d) be a complete convex metric space, K a non-empty closed subset of M, S,T:K+M continuous mappings, f:K+CB(M) H-continuous mapping, $\partial K \subseteq SK \cap TK$, $fK \cap K \subseteq SK \cap TK$, (f,S) and (f,T) weakly commutative pairs and the following implications hold: $Tx \in \partial K \implies fx \in K$.

If there exists $q \in (0,1)$ so that:

$$H(fx,fy) \leq od(Sx,Ty)$$
, for every $x,y \in K$.

then there exists ZEK so that:

$$\{Tz,Sz\} \cap fz \neq \emptyset$$
.

If $S,T:M \rightarrow M$ are continuous and:

(i)
$$y \in fx$$
, $Tx \in K \implies d(Ty, fTx) \le d(fx, Tx)$

(ii)
$$y \in fx$$
, $Sx \in K \implies d(Sy,fSx) \leqslant d(fx,Sx)$

then there exists ZEK so that:

Tzefz and Szefz.

PROOF: Let $x \in \partial K$. Since $\partial K \subseteq TK$ it follows that there exists $p_0 \in K$ such that $x = Tp_0$.

From $\mathsf{Tp}_0 \in \partial \mathsf{K}$, using the implication: $\mathsf{Tx} \in \partial \mathsf{K} \Longrightarrow \mathsf{fx} \in \mathsf{K}$, we conclude that $\mathsf{fp}_0 \in \mathsf{KnfK} \subseteq \mathsf{SK}$. Let $\mathsf{p}_1 \in \mathsf{K}$ be such that $\mathsf{Sp}_1 = \mathsf{p}_1' \in \mathsf{Ep}_0 \subseteq \mathsf{K}$. Since $\mathsf{p}_1' \in \mathsf{fp}_0$ there exists $\mathsf{p}_2' \in \mathsf{fp}_1$ so that $\mathsf{d}(\mathsf{p}_1',\mathsf{p}_2') \leqslant \mathsf{H}(\mathsf{fp}_0,\mathsf{fp}_1) + \mathsf{q}$. Suppose that $\mathsf{p}_2' \in \mathsf{K}$. Then

 $p_2' \in K \cap f(K) \subseteq TK$ which implies that there exists $p_2 \in K$ such that $Tp_2 = p_2'$. If $p_2' \notin K$ then there exists $q \in \partial K$ so that:

$$d(Sp_1,q) + d(q,p_2') = d(Sp_1,p_2')$$
.

Since $q \in \partial K \subseteq TK$ there exists $p_2 \in K$ such that $q = Tp_2$ and so:

$$d(Sp_1,Tp_2) + d(Tp_2,p_2') = d(Sp_1,p_2')$$
.

Let $p_3' \in fp_2$ be such that:

$$d(p_2',p_3') \leq H(fp_1,fp_2) + q^2$$
.

It is easy to see that in this way we obtain two sequences $\{p_n\}$, $n\in \mathbb{N}$ and $\{p_n'\}$, $n\in \mathbb{N}$ such that

- 1. For every $n \in \mathbb{N}$; $p'_n \in fp_{n-1}$
- 2. For every $n \in N$: $p'_{2n} \in K \implies p'_{2n} = Tp_{2n}$ $p'_{2n} \notin K \implies Tp_{2n} \in \partial K$ and

(1)
$$d(Sp_{2n-1}, Tp_{2n}) + d(Tp_{2n}, p'_{2n}) = d(Sp_{2n-1}, p'_{2n})$$
.

- 3. For every $n \in \mathbb{N}$: $p_{2n+1}^{\dagger} \in \mathbb{K} \implies p_{2n+1}^{\dagger} = Sp_{2n+1}$ $p_{2n+1}^{\dagger} \notin \mathbb{K} \implies Sp_{2n+1} \in \partial \mathbb{K}$ and :
- (2) $d(Tp_{2n}, Sp_{2n+1}) + d(Sp_{2n+1}, p'_{2n+1}) = d(Tp_{2n}, p'_{2n+1})$.
 - 4. For every n∈N:

$$d(p'_n, p'_{n+1}) \le H(fp_{n-1}, fp_n) + q^n$$
.

Let P_0 , P_1 , Q_0 and Q_1 be defined by:

$$P_0 = \{p_{2n}, n \in \mathbb{N} \text{ and } p_{2n}^* = Tp_{2n}\}$$

$$P_1 = \{p_{2n}, n \in \mathbb{N} \text{ and } p_{2n}^1 \neq Tp_{2n}\}$$

$$Q_0 = \{p_{2n+1}, n \in \mathbb{N} \text{ and } p_{2n+1}^t = Sp_{2n+1}\}$$

$$Q_1 = \{p_{2n+1}, n \in \mathbb{N} \text{ and } p'_{2n+1} \neq Sp_{2n+1}\}$$

First we shall prove that:

$$(p_{2n}, p_{2n+1}) \notin P_1 \times Q_1$$
 and $(p_{2n-1}, p_{2n}) \notin Q_1 \times P_1$.

If $p_{2n}\in P_1$ then $p_{2n}^!\neq Tp_{2n}$ and in this case we have that $Tp_{2n}\in \mathfrak{d}K$ which implies that $p_{2n+1}^!\in fp_{2n}\subseteq K$. Hence $p_{2n+1}^!=Sp_{2n+1}$ which means that $p_{2n+1}\in Q_0$. We can prove similarly that $(p_{2n-1},p_{2n})\notin Q_1\times P_1$.

Let us prove that for every n ∈ N:

$$\begin{array}{c} \text{qd}(\mathsf{Sp}_{2n-1},\mathsf{Tp}_{2n}) + \mathsf{q}^{2n} \\ \text{or} \\ \text{qd}(\mathsf{Sp}_{2n-1},\mathsf{Tp}_{2n-2}) + \mathsf{q}^{2n-1} + \mathsf{q}^{2n} \\ \text{qd}(\mathsf{Sp}_{2n-1},\mathsf{Tp}_{2n-2}) + \mathsf{q}^{2n-1} + \mathsf{q}^{2n} \\ \text{qd}(\mathsf{Sp}_{2n-1},\mathsf{Tp}_{2n-2}) + \mathsf{q}^{2n-1} + \mathsf{q}^{2n} \\ \text{qd}(\mathsf{Sp}_{2n-1},\mathsf{Tp}_{2n-2}) + \mathsf{q}^{2n-1} \\ \text{qd}(\mathsf{Sp}_{2n-2},\mathsf{Tp}_{2n-2}) + \mathsf{q}^{2n-2} + \mathsf{q}^{2n-1} \\ \text{qd}(\mathsf{Sp}_{2n-2},\mathsf{Tp}_{2n-2}) + \mathsf{q}^{2n-2} + \mathsf{q}^{2n-1} \\ \text{qd}(\mathsf{Sp}_{2n-2},\mathsf{Tp}_{2n-2}) + \mathsf{q}^{2n-2} + \mathsf{q}^{2n-1} \\ \text{qd}(\mathsf{Sp}_{2n-1},\mathsf{Tp}_{2n-2}) + \mathsf{q}^{2n} \\ \text{qd}(\mathsf{Tp}_{2n},\mathsf{Sp}_{2n+1}) & \text{qd}(\mathsf{Tp}_{2n},\mathsf{p}_{2n-1},\mathsf{p}_{2n}) + \mathsf{q}^{2n} \\ \text{qd}(\mathsf{Tp}_{2n},\mathsf{Sp}_{2n-1}) & \text{qd}(\mathsf{Sp}_{2n-1},\mathsf{Tp}_{2n-2}) + \mathsf{q}^{2n} \\ \text{qd}(\mathsf{Tp}_{2n},\mathsf{Sp}_{2n+1}) & \text{qd}(\mathsf{Sp}_{2n-1},\mathsf{Tp}_{2n-2}) + \mathsf{q}^{2n} \\ \text{qd}(\mathsf{Sp}_{2n-1},\mathsf{Tp}_{2n-2}) & \text{qd}(\mathsf{Sp}_{2n-1},\mathsf{Tp}_{2n-2}) & \text{qd}(\mathsf{Sp}_{2n-1},\mathsf{Tp}_{2n-2}) + \mathsf{q}^{2n-1} \\ \text{qd}(\mathsf{Sp}_{2n-1},\mathsf{Tp}_{2n-2}) & \text{qd}(\mathsf{Sp}_{2n-1},\mathsf{Tp}_{2n-2}) + \mathsf{q}^{2n$$

 $(p_{2n-1}, p_{2n}) \in Q_1 \times P_0$ then:

$$\begin{split} &d(\mathsf{Sp}_{2n-1},\mathsf{Tp}_{2n}) \leqslant d(\mathsf{Sp}_{2n-1},\mathsf{p}_{2n-1}') + d(\mathsf{p}_{2n-1}',\mathsf{Tp}_{2n}) = \\ &= d(\mathsf{Sp}_{2n-1},\mathsf{p}_{2n-1}') + d(\mathsf{p}_{2n-1}',\mathsf{p}_{2n}') \leqslant \\ &\leqslant d(\mathsf{Sp}_{2n-1},\mathsf{p}_{2n-1}') + qd(\mathsf{Sp}_{2n-1},\mathsf{Tp}_{2n-2}') + q^{2n-1} \leqslant \\ &\leqslant d(\mathsf{Sp}_{2n-1},\mathsf{p}_{2n-1}') + d(\mathsf{Sp}_{2n-1},\mathsf{Tp}_{2n-2}') + q^{2n-1} \;. \end{split}$$

Since $p_{2n-1} \in Q_1$ from (2) we obtain that:

$$\mathsf{d}(\mathsf{Sp}_{2n-1}\,,\mathsf{Tp}_{2n}) \,\leqslant\, \mathsf{d}(\mathsf{Tp}_{2n-2}\,,\mathsf{p}_{2n-1}^{\,\prime}) \,+\, \mathsf{q}^{2n-1} \;.$$

Further from $p_{2n-1} \in \mathbb{Q}_1$ it follows that $p_{2n-2} \in \mathbb{P}_0$ which means that $\mathsf{Tp}_{2n-2} = \mathsf{p}_{2n-2}'$.

Hence:

$$\begin{split} & d(\mathsf{Sp}_{2n-1},\mathsf{Tp}_{2n}) \leqslant d(\mathsf{p}_{2n-2}',\mathsf{p}_{2n-1}') + \mathsf{q}^{2n-1} \leqslant \\ & \leqslant \mathsf{qd}(\mathsf{Sp}_{2n-3},\mathsf{Tp}_{2n-2}) + \mathsf{q}^{2n-2} + \mathsf{q}^{2n-1} \;. \end{split}$$

Using the above inequalities we conclude that (3) and (4) hold. Inequalities (3) and (4) can be written in the form:

$$\begin{split} &z_{2n} = \mathsf{Tp}_{2n}, z_{2n+1} = \mathsf{Sp}_{2n+1} \ (n \in \mathbb{N}) \\ &d(z_n, z_{n+1}) < \left\{ \begin{array}{l} \mathsf{qd}(z_n, z_{n-1}) + \mathsf{q}^n \\ & \text{or} \\ &\mathsf{qd}(z_{n-2}, z_{n-1}) + \mathsf{q}^n + \mathsf{q}^{n-1} \end{array} \right., \end{split}$$

which is inequality (*) from [1].

Then:

$$d(z_n, z_{n+1}) \leqslant q^{\frac{n}{2}} (\delta + n),$$

where

$$\delta = q^{\frac{1}{2}} \max\{d(z_0, z_1), d(z_1, z_2)\}.$$

Hence the sequence $\left\{z_{n}\right\}_{n\in\mathbb{N}}$ is a Cauchy sequence and let

$$z = \lim_{n \to \infty} z_n = \lim_{n \to \infty} T_{p_{2n}} = \lim_{n \to \infty} S_{p_{2n+1}}.$$

There exists at least one subsequence $\{p_{2n_k}\}_{k \in \mathbb{N}}$ or $\{p_{2n_k+1}\}_{k \in \mathbb{N}}$ which is contained in P_0 or Q_0 respectively since $(p_{2n_k}, p_{2n+1}) \notin P_1 \times Q_1$ and $(p_{2n-1}, p_{2n}) \notin Q_1 \times P_1$.

Suppose that there exists $\{p_{2n_k}\}_{k \in \mathbb{N}}$ such that $p_{2n_k} \in P_0$ for every $k \in \mathbb{N}$. Then

$$p'_{2nk} = Tp_{2nk} \in fp_{2nk-1} (k \in N)$$
.

Let us prove that $Sz \in fz$. Using the weak commutativity of the pair (f,S) and the relations:

$$Tp_{2nk} \in fp_{2nk-1} \cap K$$
 and $Sp_{2nk-1} \in K$, $k \in N$

we obtain that:

$$d(STp_{2nk}, fSp_{2nk-1}) \le d(fp_{2nk-1}, Sp_{2nk-1}) \le d(Tp_{2nk}, Sp_{2nk-1})$$

since
$$\lim_{k\to\infty} d(\mathsf{Tp}_{2n_k},\mathsf{Sp}_{2n_k-1}) = 0$$
, we obtain that $\lim_{k\to\infty} d(\mathsf{STp}_{2n_k},\mathsf{fSp}_{2n_k-1}) = 0$.

From the inequality:

$$d(STp_{2nk},fz) \leq d(STp_{2nk},fSp_{2nk-1}) + H(fSp_{2nk-1},fz)$$
,

since f is H-continuous, we obtain that: $\lim_{z \to 0} d(STp_{2nL}, fz) = 0$.

Hence from the inequality:

$$d(Sz,fz) \leq d(Sz,STp_{2n_{\nu}}) + d(STp_{2n_{\nu}},fz)$$

using the continuity of the mapping S we obtain that d(Sz,fz) = 0 and so $Sz \in fz$, which implies that $\{Tz,Sz\} \cap fz \neq \emptyset$.

Suppose now that S,T:M+M and that (i) and (ii) hold.

From 4. we obtain that for every $k \in \mathbb{N}$:

$$d(p'_{2nk+1}, p'_{2nk}) \le H(fp_{2nk}, fp_{2nk-1}) + q^{2nk} \le qd(Tp_{2nk}, Sp_{2nk-1}) + q^{2nk}$$

which implies that:

$$d(p'_{2nk+1}, Tp_{2nk}) \le qd(Tp_{2nk}, Sp_{2nk-1}) + q^{2nk}$$
.

Since $\lim_{k\to\infty} d(\mathsf{Tp}_{2nk},\mathsf{Sp}_{2nk-1}) = 0$, we obtain that:

 $\lim_{k\to\infty} p_{2n_k+1} = z$

and so: $k \rightarrow \infty$

(5)
$$Tz = T(\lim_{k \to \infty} p'_{2nk+1}) = \lim_{k \to \infty} Tp'_{2nk+1}.$$

Using the implication (i) for $x = p_{2n_k}$ and $y = p'_{2n_k+1}$ we conclude that:

$$\mathsf{d}(\mathsf{Tp}_{2nk+1}^{\prime},\mathsf{fTp}_{2nk}^{}) \leqslant \mathsf{d}(\mathsf{fp}_{2nk}^{},\mathsf{Tp}_{2nk}^{}) \leqslant \mathsf{d}(\mathsf{p}_{2nk+1}^{\prime},\mathsf{Tp}_{2nk}^{})$$

and since $\lim_{k\to\infty} d(p'_{2nk+1}, Tp_{2nk}) = d(z,z) = 0$, we have that

$$\lim_{k\to\infty} d(\mathsf{Tp}_{2nk+1}',\mathsf{fTp}_{2nk}) = 0.$$

Further:

$$\mathsf{d}(\mathsf{Tp}_{2nk+1}^{\prime},\mathsf{fz}) \leqslant \mathsf{d}(\mathsf{Tp}_{2nk+1}^{\prime},\mathsf{fTp}_{2nk}) \,+\, \mathsf{H}(\mathsf{fTp}_{2nk},\mathsf{fz})$$

and since $\lim_{k\to\infty} H(fTp_{2nk}, fz) = 0$, it follows that:

(6) $\lim_{k \to \infty} d(\mathsf{Tp}_{2n_k+1}^!, \mathsf{fz}) = 0.$

Using (5) and (6) we obtain that d(Tz,fz)=0 since:

$$d(Tz,fz) \leq d(Tz,Tp'_{2n+1}) + d(Tp'_{2n+1},fz)$$
.

From d(Tz,fz)=0 we conclude that $Tz \in fz$.

COROLLARY (THEOREM A) [1] Let (M,d) be a complete convex metric space, K a nonempty closed subset of M,

f:K+CB(M) so that for every $x \in \partial K$, $fx \in K$ and:

 $H(fx,fy) \leq qd(x,y)$, for every $x,y \in K$

where $q \in (0,1)$. Then there exists $z \in K$ such that $z \in fz$.

PROOF: It is obvious that for S=T=Id|K all the conditions of Theorem lare satisfied.

3. A COMMON FIXED POINT THEOREM IN METRIC SPACES WITH A CONVEX STRUCTURE

In this section we shall need the following definition which is given in [5].

DEFINITION 1. Let (X,d) be a metric space, $A,S:X \to 2^X$ and $K \subseteq X$.

The mapping A is said to be (α,S) -densifying on the set K if and only if for every $M \subseteq K$ such that $S(M),A(M) \in B(X)$ the following implication holds:

 $\alpha(S(M)) \leqslant \alpha(A(M)) \implies \overline{M}$ is compact.

REMARK In [4] the definition of the Palais-Smale condition for the singlevalued mappings is given. We shall recall this definition. Let X and Γ be metric spaces and $p,q:\Gamma+X$. The pair (p,q) satisfies the Palais-Smale condition if for every sequence $\{y_n\}_{n\in\mathbb{N}}$ from Γ the relation

$$\lim_{n\to\infty} d_{X}(p(y_n),q(y_n)) = 0$$

implies that there exists a convergent subsequence $\{y_{n_k}\}_{k \in \mathbb{N}}$ of the sequence $\{y_n\}_{n \in \mathbb{N}}$.

From this definition it is obvious that if in Definition 1, the mappings S and A are singlevalued and A(K) is bounded, the following implication holds:

A is (α,S) densifying on $K \Rightarrow$ the pair (A,S) satisfies the Palais-Smale condition on K (i.e. the pair $(A|_K,S|_K)$ satisfies the Palais-Smale condition, where $A|_K$ and $S|_K$ are the restrictions of A and S on K respectively).

Indeed, if A is (α,S) densifying on K and A(K) is bounded then from:

$$\lim_{n\to\infty} d_{X}(S(y_{n}),A(y_{n})) = 0$$

it follows that $\alpha(SL) = \alpha(AL)$ (this can be proved easily), where $L = \{y_n \ , \ n \in \mathbb{N}\}$, which implies that \overline{L} is compact. Hence the pair $(A|_K, S|_K)$ satisfies the Palais-Smale condition.

Let us remark that in [4] the notion of a condensing pair (p,q) of singlevalued mappings is given, which is similar to Definition 1 if the mappings A and S are singlevalued. If $q:\Gamma+2^X$ and $p:\Gamma+X$, we can introduce the Palais-Smale condition in the following way.

DEFINITION 2. The pair (p,q) satisfies the Palais-Smale condition if for every sequence $\{y_n\}_{n\in\mathbb{N}}$ from Γ , the relation: $\lim_{n\to\infty} d_X(p(y_n),v_n)=0 \text{ , for some } \{v_n\}_n\in\mathbb{N}$

such that $v_n \in q(y_n)$ $(n \in N)$, implies the existence of a convergent subsequence $\{y_n\}_{k \in N}$ of the sequence $\{y_n\}_{n \in N}$.

The set of coincidence points for the pair (p,q) is defined by: $K(p,q) = \{y, y \in \Gamma \text{ and } p(y) \in q(y)\}$.

and for $\varepsilon > 0$ we shall define an ε -coincidence point for the pair (p,q) in the following way.

DEFINITION 3. A point $y \in \Gamma$ is an ε -coincidence point for the pair (p,q) if there exists an element $v \in q(y)$ such that $d_Y(p(y),v) < \varepsilon$.

Similarly as in [4] (Proposition 2.3)we can prove the following proposition.

PROPOSITION: Let (Γ, d_{Γ}) and (X, d_{X}) be metric spaces, $q: \Gamma + 2^{X}$ a closed mapping and $p: \Gamma + X$ a continuous map-

ping. Let for every/ $\varepsilon > 0$ the pair (p,q) have an ε -coincidence point and satisfy the Palais-Smale condition. Then $K(p,q) \neq \emptyset$.

PROOF: Let $\varepsilon_n = \frac{1}{n}$ (n \in N) and y_n be an ε_n -coincidence point for the pair (p,q). Let $v_n \in q(y_n)$, (n \in N) so that $d_Y(p(y_n), v_n) < \frac{1}{n}$. Then

$$\lim_{n\to\infty} d_{\chi}(p(y_n), v_n) = 0$$

and since the pair (p,q) satisfies the Palais-Smale condition, there exists a convergent subsequence $\{y_{nk}\}_{k\in\mathbb{N}}$ of the sequence $\{y_n\}_{n\in\mathbb{N}}$. Let $\lim_{k\to\infty}y_{nk}=y$. Since $\lim_{k\to\infty}d_\chi(p(y_{nk}),v_{nk})=0$, it follows that

$$\lim_{k\to\infty} v_{n_k} = \lim_{k\to\infty} p(y_{n_k}) = p(y) .$$

From $v_{n_k} \in q(y_{n_k})$, $(k \in \mathbb{N})$, using the closedness of the mapping q, we obtain that $p(y) \in q(y)$, which means that $y \in K(p,q)$.

Similarly as in [5] we shall prove a common fixed point theorem if:

 $H(fx,fy) \leqslant d(Sx,Ty), \text{for every } x,y \in K,$ where K is (W,x_O) -star convex $(x_O \in K \text{ and } W(K,x_O,(0,1)) \subset K)$

- THEOREM 2. Let (M,d) be a complete metric space with a convex structure W with property II, K a nonempty closed (W,X_O) star convex subset of M, S,T:M+M continuous (W,X_O) convex mappings, f:K+k(M) (the family of all nonempty compact subsets of M) so that the following conditions are satisfied:
 - fK is bounded, K⊆SK∩TK and:
 Tx∈∂K ⇒ fx∈K; Sx∈∂K ⇒ fx∈K.
 - 2. For every $x,y \in K$: $H(fx,fy) \leq d(Sx,Ty)$.
 - 3. The mapping f is H-continuous and: $Sx \in K \implies fSx = Sfx ; Tx \in K \implies Tfx = fTx .$
- 4. The mapping f is (α,S) or (α,T) densifying. Then there exists $z \in K$ so that $Tz \in fz$ and $Sz \in fz$.
- PROOF: As in [5] let $\{k_n\}_{n \in \mathbb{N}}$ be such a sequence from (0,1) that $\lim_{n \to \infty} k_n = 1$ and $f_n : K \to k(M)$ be defined by:

 $f_n x = W(fx, x_0, k_n)$, for every $x \in K$ and every $n \in N$. We shall prove that for every $n \in \mathbb{N}$ there exists $x_n \in \mathbb{K}$ so that $Tx_n \in f_n x_n$ and $Sx_n \in f_n x_n$. It remains to be proved that T,S and satisfy all the conditions of Theorem 1. Since the set K (W,x_o)-star convex from the condition 1. of this theorem we obtain that

 $Tx \in \partial K \implies f_n x \in K$; $Sx \in \partial K \implies f_n x \in K$.

 f_nSx , if $Sx \in K$, is equal to the set Sf_nx since:

$$f_nSx = \bigcup W(z,x_0,k_n) = \bigcup W(z,x_0,k_n) = z \in Sfx$$

= $\{W(Sy,x_0,k_n),y \in fx\}$ = $\{SW(y,x_0,k_n),y \in fx\}$ = Sf_nx , for every $n \in N$. Similarly from $Tx \in K$ we obtain that $f_nTx = Tf_nx$, for every $n \in N$. It is easy to see that from $f_nSz = Sf_nz$ we obtain the inequality: $d(Sy.f_nSz) \le d(f_nz.Sz)$, for $y \in f_nz$ since

$$d(Sy,f_nSz) = inf d(Sy,z) = inf d(Sy,z) < z \in f_nSz$$
 $z \in Sf_nz$

$$\leqslant d(Sy,Sy) = 0 \leqslant d(f_nz,Sz)$$
.

Since the convex structure W satisfies condition II it follows that:

$$H(f_nx,f_ny) = H(W(fx,x_0,k_n),W(fy,x_0,k_n)) \le k_nH(fx,fy) \le k_n d(Sx,Ty)$$

for every $x,y \in K$, and hence the mapping f_n is H-continuous. Further, from the compactness of fx, for every $x \in K$ and the continuity of W in respect to the first variable it follows that f_nx is compact for every x ∈ K. From K⊆SK∩TK we obtain that fnK∩K⊆SK∩TK. Hence, all the conditions of Theorem 1. are satisfied and for every $n \in \mathbb{N}$ there exists $x_n \in K$ so that $Tx_n \in f_n x_n$ and $Sx_n \in f_n x_n$. The rest of the proof is as in the proof of Theorem 2. from [5], For the completeness we shall give the rest of the proof. Since $Tx_n \in f_n x_n$ and $Sx_n \in f_n x_n$ $(n \in N)$ there exist $u_m \in fx_m$ and $v_m \in fx_m$ ($m \in N$) so that $Sx_m = W(u_m, x_o, k_m)$ and $Tx_m = W(v_m, x_o, k_m)$. Then it is easy to prove that:

(7)
$$\lim_{m\to\infty} d(Sx_m, u_m) = \lim_{m\to\infty} d(Tx_m, v_m) = 0.$$

Hence, for every $\varepsilon > 0$ there exists an ε -coincidence point for (S,f) and (T,f). Since the mapping f is (α,S) or (α,T) densifying on the set K and the set f(K) is bounded, we conclude that the pair (S,f) or the pair (T,f) satisfies the Palais-Smale condition on the set K. Further, the mapping f is H-continuous and fx is compact for every $x \in K$ and so the mapping f is closed. Using the Proposition we conclude that $K(S,f) \neq \emptyset$ or $K(T,f) \neq \emptyset$. From the Proposition it follows that $y \in K(S,f)$ (if, for example $K(S,f) \neq \emptyset$) is of the form $y = \lim_{k \to \infty} x_{n_k}$, for some subsequence $\{x_{n_k}\}_{k \in N}$ of the sequence $\{x_{n_k}\}_{k \in N}$ of the sequence $\{x_{n_k}\}_{n \in N}$. From (T) we have that $\lim_{k \to \infty} v_{n_k} = Ty \in fy$ and so $y \in K(T,f) \cap K(S,f)$.

REFERENCES

- [1] N.A. Assad, W.A. Kirk, Fixed point theorems for set-valued mappings of contractive type, Pacific J. Math., Vol. 43, No. 3 (1972), 553-562.
- [2] R. Baskaran, P.V. Subrahmanyam, Common coincidence and fixed points (to appear).
- [3] B. Fisher, Mappings with a common fixed point, Math. Sem. Notes, Kobe University, 8 (1980), 81-84.
- [4] L. Górn Tewlcz, Z. Kucharski, Coincidence of k-set contraction pairs, J. Math. Anal. Appl., 107 (1985), 1-15.
- [5] O. Hadžić, On coincidence points in metric and probabilistic metric spaces with a convex structure, Univ. u Novom Sadu, Zb. Rad. Prir. -Mat. Fak., Ser. Mat., 15, 1 (1985), 11-22.
- [6] O. Hadžić, Common fixed point theorems in convex metric spaces, Numerical Methods and Approximation Theory, D. Herceg (ed.), Novi Sad, September 4-6, 1985, 73-82.
- [7] S. Itoh, Multivalued generalized contractions and fixed point theorems, Comm. Math. Univ. Carolinae, 18(2) (1977), 247-258.
- [8] M.S. Khan, Common fixed point theorems for multivalued mappings, Pacific J. Math., 95(2) (1981), 337-347.
- [9] S.A. Naimpally, K.L. Singh, J.H.M. Whitfield, Common fixed points for nonexpansive and asymptotically nonexpansive mappings, Comm. Math. Univ. Carolinae, 24,2 (1983), 287-300.
- [10] B.E. Rhoades, K.L. Singh, J.H.M. Whitfield, Fixed points for generalized nonexpansive mappings, Comm. Math. Univ. Carolinae, 23,3 (1982), 443-451.
- [11] S. Sessa, On a weak commutativity condition of mappings in fixed point consideration, Publ. Inst. Math. (Beograd), 32(46) (1982), 149-153.

- [12] W. Takahashi, A convexity in metric space and nonexpansive mappings, 1., Kodai Math. Sem. Rep., 22 (1970), 142-149.
- [13] L. Talman, Fixed points for condensing multifunctions in metric spaces with convex structure, Kodai Math. Sem. Rep., 29 (1977), 62-70.

REZIME

TAČKE KOINCIDENCIJE VIŠEZNAČNIH PRESLIKAVANJA U KONVEKSNIM METRIČKIM PROSTORIMA

U ovom je radu dokazano uopštenje dobro poznate teoreme o nepokretnoj tački Assada i Kirka za višeznačna preslikavanja u konveksnim metričkim prostorima. Višeznačna verzija
uslova Palais-Smalea je uvedena i primenjena u dokazu Teoreme 2,
koja sadrži jedan rezultat o postojanju tačke koincidencije za
višeznačna preslikavanja u metričkim prostorima sa konveksnom
strukturom.

Received by the editors March 17, 1986.