ZBORNIK RADOVA REVIEW OF RESEARCH

Prirodno-matematitkog fakulteta Faculty of Science
Univerziteta u Novom Sadu University of Novi Sad
Serija za matematiku, 16, 1(1986) + Mathematics. Series, 16, 1(1986)

ON INJECTIVE MODULES AND GENERALIZATIONS
Roger Yue Chi Ming

Univereitd Paris VII, U.E.R. de Mathdma-
tique et Informatique, 2, Place Jugsteu
75251 Paris Cedex 05, France

,
(Dedicated to Professor Yuzo Utumi on his sixtieth birthday)

ABSTRACT

In this paper two generalizations of Injectivity
are introduced and used to characterize some well-known clas-
ses of rings.

INTRODUCTION

Throughout, A denotes- an associative ring with
identity and A-modules are left unital, unless otherwise sta-
ted. J, Z stand respectively, for the Jécobson‘radical and
left singular ideal of A. Two generalizations of injectivity,
called CY and KY -injectivity, are introduced to study von
Neumann regular and Noetherian rings. Conditions are given
for two modules to have isomorphic injective hulls. This no-
te contains the following results: (1) If M is a C¥-injective
module, then any cyclic submodule has an inidective hull in M;
(2) If A has a classical left quotient ring Q such that every
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divisible torsionfree A-module is CY -injective, then Q is
semi-simple Artinian; (3) The following conditions are equi-
valent for a left non-singular ring A: (a) A is left Noethe-
rian; (b) every CY-injective A-module is KY-~injective; (c)
every CY-injective A-module is injective; (4) For any left
KY -injective ring A, A/J is von Neumann regular and J = Z;
(5) If A is semi-primary, M, N A-modules such that either
ry(Z) is isomorphic to ry(Z) or 1y () is isomorphic to

rN(J) (as left A-modules), then M and N have isomorphic in-
jective hulls. It is also shown that in certain situations,
Proper direct summands of semi-prime right KY-injective
rings possess non-trivial central idepotents.

For any A-module M, Z(M) = {z € M/Lz = 0 for some
essential left ideal L of A} is the left singular submodule
of M and M is called singular (resp. non-singular) if Z(M) =
= M (pesp. Z(M) = 0). Thus A is left non-singular iff 72 = 0.
An A-module M is called divisible if M = cM for each non-ze-
ro-divisor ¢ of A. M is called torsionfree if cy #» 0 for eve-~-
ry non=-zero-divisor ¢ of A and non-zero élement y of M. Rec-
all that A-module M is p-injective if, for any principal le-
ft ideal P of A, every left A-homomorphism of P into M ex-
tends to one of A into M. Then A is von Neumann regular iff
every left (right) A-module is p-injective. Note that p-in-
jective modules need not be flat and the converse is not true
either. However, if I is a p-injective left ideal of A, then
A/T is a flat A-module. If M is a maximal left ideal which is
a two-sided ideal of A, then AA/M is flat iff A/MA'is injec-
tive iff‘A/MA is p-injective. As usual, A is called a left
V-ring if every simple left A-module is injective. Injective
modules have been extensively studied by many authors since
several years (cf. for example, [2], [3]). We now introduce
the following twe generalizations of injectivity, the first
"one being motivated by p-injectivity.

_ Deflnltlons (1) An A-module M ie called CY¥-injee—
tive if, for any A-module Y, any oyolic submodule C of Y,



On injective modulee and generalizations 123

every left A-homomorphiam of C into M extends to one of Y
intc M; .

(2) An A-module Y is called Ki-injeetive if, for
any complement submodule K of Y, any left A-monomorphism
g : K+Y and left A~homomorphism F : K + ¥, there extists
an endomorphiem h of Y sueh that hg = f.

It is easily seen that any direet summand of a
KY -injective A-module is XY -injective.

CY -injectivity and XY -injectivity are distinct ef-
fective generalizations of injectivity. Recall that an A-mo-
dule M is continuous if every submodule isomorphic to a com-
plement submodule of M is a direct summand of M (cf. [6]).
Continuous modules generalize quasiinjective modules. Since
a continuous A-module is KXY -injective, it follows that KY -
-injeectivity does not imply CY-injectivity (cf. [1] and Pro-
position 8 below). The converse is not true either (cf. Theo-
rem 5).

We start with various properties of CY -injective
modules. Obviously, CY=-injectivity implies p-injectivity but
the converse is not true, as shown by our first proposition.

Proposition 1. Let M be a CY-injective A-module.
Then any eyelic submodule has an injeoctive hull in M. In

particular, every cyelic CY¥-injective A-module 18 injective.

Proof. Let C be a cyclic submodule of M, E an in-
jective hull of C. If g, j are the inclusion maps of C into
M and C into E respectively, there exists a left A-homomorph-
ismh : E + M such that hi = g. For any d € ker h N C, d =
= g(d) = hj(d) = h(d) = 0 and since C is an essential left
submodule of E, then ker h = 0 which implies that h is a mono-
morphism, whence h(E) (s~ E) is an injective A-module contained
in M. This shows that C has an injective hull contained in M
(because C ¢ h(E)). In case M is cyclic, then it is obvious

+hat M is injective.
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Corollary 1.1, (a) A e a left V-ring iff every
aimple A-module t8 CY~-injective;

(b) A is left self-injective regular tff every fi-
nitely generated left ideal of A is a CY-injective A-module.

Recall that a ring Q is a classical left quotient
ring of A if
(i) At Qs
(ii) every non-zero=-divisor of A is invertible
in Q;
(iii) every element of Q is of the form q = b la,
a, b€ A, b being a non-zero-divisor,
As usual, a left (right) ideal of A is called reduced if it
contains no/ non-zero nilpotent element. '

‘Remark 1. (a) Let A have a classical left quotient
ring Q. Then Q is injective iff Q is CY-injective. Consequen-
tly, if A is left non-singulap with AQ CY -injective, then Q
is left self-injective regular and is the maximal left quoti-
ent ring of Aj; ’

(b) If A is left Noetherian such that each prime
factor ring contains a non-zero CY -injective left ideal, then
A is left Artiniang; )

(¢} A is a division ring iff A is a prime ring con-
taining a non-zero reduced CY-injective left ideal (cf. (8,
Proposition 6]). '

Proposition 2. A direot sum of A-modules ts CY-in-
Jeotive £f and only if each direct summand is8 CY-injective.

Proof. Given M = ig& i where each Mi(i € I) is a
CY ~injective A-module, we prove that M is Cy-injective. Let
"N be an A-module, ¢ € N, f : Ac » M a left A-homomorphism,
vy = f(2) = Y1 * Y50 * o-0 * Vipo Vi3 € Mij’ 1<3j<yp. If
pj : M » Mij is the natural projection for each j, 1 < 3j € r,

then pj f i Ac > Mij and since Mij is CY¥ -injective, there
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exists a left A-homomorphism hj : N+ Mij which extends pjf.

Define h : N » M by h(u) = he(u) + ... + hp(u) for all u € N.
Then h{ec) = paflec) + ... + prf(c) = Yiq bt e H Y Y which
shows that h extends f to N. This proves that M is CY ~injec-

tive. Conversely, using the natural injection and projection,
it is easily seen that a direct summand of a CY -injective A-
-module is CY-injective.

It is well-known that A is left Noetherian iff any
direct sum of injective A-modules is injective.

Corollary 2.1. If every Y -injective A-module is
injective, then A is left Noetherian. Consequently, A 18 a
principal left <deal nring iff every finitely generated left
ideal of A is prineipal and every CY-injeetive A-module is

injective.

Corollary 2.2. The following conditions are equi—'
valent: (a) A is a left Noetherian left V-ring whose quasi-
-injective and CY-injective modules are injective;

(b) An A-module is quasi-injective iff it is CY-in-
jective. (ef. [2, Proposition 20.43]).

Remark 2. If A has non-zero left socle S, than S
is a (W-injective A-module iff eQery minimal left ideal is
injective. Therefore, A is simple Artinian iff A is prime
with a non-zero socle which is a left and right CY-injective

A-module.

Remark 3. If A is von Neumann regular, then every
cycliec submodule of a projective CY -injective A-module is in-

jective.

Proposition 3. L2t A have a classical left quoti-
ent ring Q. If every divisible torsionfree A-module is CY-in-~-

jective, then Q ig¢ semi—-simple Artinian.
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Proof. Let C = Qy be a cyclic Q-module. It is
sufficient to prove that C is a direct summand of every Q-
-module M containing it. Then every cyclic Q-module will bhe
injective and the proposition will follow from {4, Theorem
3.2]. Since C is a torsionfree divisible A-module and AAy is
essential in AC, then C is injective (cf. the proof of Pro-
position 1). Therefore M= C @ P and since M is divisible,
then so is P. For any vy € P, any ¢ € Q, 9 = b~'d, b, 4 € A,
if u=qy = b-'w, where w = dy, since P = bP, then w = bv
for some v € P and hence bu = w = bv which implies u = v €
€ P &« M, showing that P is a left Q-module. Thus QM = QC @
e P which proves that C is an injective left Q-module.

Q

Corollary 3.1, If A hae a von Neumann regular
olasteal left quotient ring Q and every p—-injective torsion-
free A-modules i8 CY~-injective, then Q ie semi-simple Arti-

nian.

As usual,A is called left duo if every left ideal
is a two=-sided ideal.

Corollary 3.2, A left duo ring whose divtsible
torsionfree left modulee are CY-injective posseeges a clas-—
steal left quotient ring which is a finite direet sum of di-

vision rings.

Propositlon-4. Let A be left non-singular such
that every direct sum of the injective hulls of eyclio singu-—
lar A-modules 18 injective. Then the singular submodule of
any C¥-injective A-modyle 18 injective.

Proof. Let M be a CY-injective A-module with
_Z(M) * 0. If 0 * z € Z(M), then Az has an injective hull U
contained in M by Proposition 1 and since A is left non-sin-
gular, we know that U must be contained in Z(M). Let E deno~
te the set of the injective hulls of all cyclic singular A-
-modules contained in M. Then the set F of all independent
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families {Nj} of elements of E is an inductive set and by

Zorn”s lemma, T has a maximal member {Ni}iEIo' Now K = i%&Ni
< Z(M) and AK is injective by hypothesis, which implies
Z(M) = K@ V, If 0 # w € V, then Aw has an injective hull
W contained in Z(M). Then W A K = 0 yields a member of F

which strietly contains {Ni} , contradicting its maxima-

i€lo
lity in F. Thus V = 0 and Z(M) = K is injective.

Applying [7, Proposition 4}, we get

Corollary 4.1. If A 18 a left Noetherian ring
whose divisible singular modules are CY-injective, then A is
left hereditary.

The next result connects CY-injectivity with KY-
-injectivity. ‘

Theorem 5. The following conditions are equiva-
lent for a left non-singular ring A:

(1) A 28 left Noetherian;

(2) A is of left finite Goldie dimension and every
direct sum of the injective hulls of cyclic
singular A-modules is injective;

(3) Every CY-injective A-module is KY-injective;

(4) Bvery CY-injective A-module is injective.

Proof. Obviously, (1) implies (2).

Assume (2). Let M be a CY-injective A-module. By
Proposition 4, M = Z(M) e Q, where AZ(M) is injective and
AQ is non-singular. Since the injective hull of a non-singu-
lar A-module is non-singular, by [5, Theorem 2.5], any direct
sum of the injective hulls of cycliec non-gsingular A-modules
is injective and non-singular. As in the proof of Propositi-
on 4, it can be shown that AQ (which is also CY -injective)
is a direct sum of injective hulls of cycliec non-singular
left submodules, whence ,Q is injective and (2) implies (3).

Assume (3). If AM is CY -injective, E the injective
hull of ,M, set S = aM @ AE. Then ,S is CY -injective (Propo-
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sition 2) and is therefore KY -injective by hypothesis. If

i :M~+8,p :8 + M are the natural injection and projec-
tion (p i is therefore the identity map on M), j : M + E,

u : E+ S the inclusion maps, then there exists a map h

S + S such that huj = i. With phu = q, we have a left A-ho-
momorphism q : E + M such that qj

1}

phuj = pi, the identity
map on M, which proves that AM is a direct summand of AE.
Thus M = E and (3) implies (4).

(4) implies (1) by Corollary 2.1.

Using {2, Theorem 24.20], the next wresult may be
similarly proved.
Proposition 6. The following conditions are equi-—
valent: '
(1) A ie quasi-Frobeniusean;
(2) The direet sum of an injective and a projec-
tive A-modules i8 K¥-injective.

Looking at Theorem 5, we may ask the following:
when are KY-injective A-modules injective? The next KY -in-
jective analogue of [2, Proposition 20.4B] holds.

Remark 4. The following conditions are equivalent:
(1) Every KY-injective A-module is injective; ’
(2) The direct sum of any two KXY -injective A-modules is KY -
-injective.

Remark 5. (1) If A is of left finite Goldie di-
mension such that every divisible singular A-module is inje-
ctive, then A is left hereditary, left Noetherian; (2) The
following are equivalent: (a) An A-module is CY-injective iff
it is KY -injective; (b) All CY ~injective and KY -injective A-
~modules are injective; (3) If the sum of any two KY-injecti-
ve A-modules is KY-injective then A is a left hereditary,

left Noetherian, left V-ring.

Note that if AM is XY -injective and N is a left
submodule of M, then AN is a direct summand of AM iff N is a
complement left submodule of M which is KY -injective.
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A is called left KY-injective if ,A is KY -injec-
tive. An element c of A is called left regular if 1(e) = 0.
Then ¢ is a non-zero-divisor iff it is left and right regu-

lar. The next result extends [6, Lemma u4.11.

Proposition 7. Let A be a left Kf-injeective ring.
Then (1) Every left regular element is »ight invertible in
A; consequently, every left (right) A-module is divisible;
(2) Z = J and A/Z i8 von Neumann regular.

Proof. (1) Let = € A such that 1(c) = 0. Since
the map g : A~ A given by g(a) = ac (a € A) is a monomorp-
hism, then with i : A + A the identity map, there exists a
left A-homomorphism h : A + A such that hg = i, which yields
1 = hg(1) = h(ec) = ch(1), showing that any left regular ele-
ment is right invertible. It follows that every non-zero-di-
visor is invertible and every left (right) A-module is divi-
sible. ‘ '

(2) For any z € Z, a € A, since 1(za) N 1(1-za) =
= 0, then 1(1-za) = 0 which implies 1 - za right invertible
in A by (1), showing that z € J. In order to have Z =‘J;
since (J + Z)/Z is contained in the Jacobson radical of A/Z,
it is sufficilent to prove that A/Z is von Neumann regular.
Let 0 + D€ A/Z, D= b+ Z, bE A, b € Z. There exists a
non-zero complement left ideal € of A such that E = C@® 1(b)
is an essential left ideal. For any 0 * ¢ € C, ¢cb *# 0 and
since the map g : C * A given by g(c) = cb(c € C) is a mono-
morphism, if 1 : C * A is the inclusion map, then there
exists a left A-homomorphism h : A + A such that hg = i. For
every ¢ € C, ¢ = hg(e) = h(eb) = cbd, where d = h(1).
?herefore C € 1(b-bdb) which vields E < 1(b-bdb), whence

b = bdb in A/Z, proving that A/Z is von Neumann regular.

Corollary 7.1. A i3 left continuous regular Zff
A 75 a left non—gsingular left KY—-injective ring wkose com-

plement left <ideals are finitely generated.
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Corollary 7.2. A left Noetherian left X{—-injeec-

tive ring i8 left Artinian.

Qusstion: When 18 a left Nostherian left KY-in-
Jective ring gquasi-Frobenliusean?

T is called a strongly regular ideal of A if T
is a reduced two-sided ideal which is a regular ring. If A
is left KY=-injective, then any reduced principal left ide-
al is generated by an idempotent (cf. the proof of Propcsi-
tion 7 (2)). If A is also semi-prime, then any reduced left
ideal is a two-sided ideal of A which is a strongly vregular
ring. (We shall later look into conditions when non-reduced
left idéals in semi-prime left KY-injective rings contain

central idempotents.)

Remark 6. Let A be semi-prime left KY-injective.
Then S, the sum of all reduced left ideals of A, coincides
with the sum of all reduced two-sided ideals of A and is the
unique maximal strongly regular ideal of A. If, further, eve-
ry complement left ideal of A is finitely generated, then
A =S e T, where S-is a left and right continuous strongly
regular ring and T contains all the nilpotent elements of A.

We are now in a position +» mention a few charac-
teristic properties of semi-simple Artinian rings.

Combining {4, Theorem 3.2], Propositions 1 and 7,
together with the proof of Theorem 5, we get

Proposition 8. 7The following conditiona are ecui-—
valent: '

(1) A te semi-aimple Artinian;

(2) Every cyelic semi-aimple A-~module i8 CY-injeo-—
tive; ‘

(3) Every cyelic toratonfree A-module i3 CY-injeoti-
ve;

(4) Every finitely generated torsitonfree A-module is
K¥=injective:
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{(5) A is semi-prime left XY—-injective satisfying

the maximum conditien.on left annihilators.

Recall that A is directly finite iff
‘AA ® AM ~ AA implies M = 0.
Corollary B.1. Let A be directly finite such that
any ecyelic torsionfree A-module not isomorphic to AA 18 CY -
~tnjective. Then A 18 either eemi-simple Artintan or an in-

tegral domain.

Proof. It is clear that every principal left ide-
al of A is projective. Suppose that A is not a domain. Then
there exists b € A such that 1(b) = Ae, where e is a non-tri-
vial idempotent. Since A = Ae ® A(1-e) is directly finite,
then both Ae and A(1-e) must be CY-injective and hence injec-
tive by Proposition 1. A is therefore left self-injective
which implies that every cyclic torsionfree A-module is CY -
-injective and the corollary follows from Proposition 8.

The next remark also holds.

Remark 7. The following conditions are equivalent:
(1) A is either semi-simple Artinian or a left principal ide-
- al domain; (2) A is a directly finite ring such that any
left ideal not isomorphic to AA is injective.

We now turn to conditions which will ensure that
two injective modules are isomorphic. For any left A-module
M, any two-sided ideal T of A, rM(T) = {y € M/Ty = 0} is a
left submodule of M. If M, N are A-modules and f : M =+ N is
a left A-homomorphism, then f (rM(J)) c rN(J).

Theorem 9. ILet A be a left K{-injective ring sa-
tisfying the maximum condition on left annihilators, M, N
A—modules, u:M->N,v :N->Mleft A-monomorphisms. If E,
H are injective A-modules and £ : M > E, g : N = H are left
A-monomorphisms such that f(rM(J)) (resp. g(rN(J)) i3 an es=
sential left submodule of rE(J) {resp. rH(J)), then AE ~ AH'
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Proof. Since Aﬁ is injeective, there exists a left
A-homomorphism h : E = H such that gu+s hf. If y € ker h N
N Imf, theny = £(z), z € M and g(u(z)) = h(f(z)) = h(y) = 0
implies u(z) = 0, vhence z = 0, yielding y = 0. Now ker h N
n f(rM(J)) = 0 implies ker h N0 rE(J) = 0 (because f(rM(J))
is essential in rE(J) (as left A-modules)). First suppose
that J # 0., Since A is left KY~injective satisfying the maxi-
mum condition on left annihilators,; then by Proposition 7,
J = Z is nilpotent. Let n be the least positive integer such
that 0" = 0. Then J" ker h = 0 implies J" * ker h g rg(J) 0
Nker h = 0. If n-1 > 1, we similarly have J° 2 ker h = 0 and
so on. Finally, we reach ker h = 0. By symmetry, we also get
a left A-monomorphism of H into E. It follows from [3, Theo-
rem 1.13] that AE ® JH. Now if J =0, then A is semi-simple
Artinian by Proposition 8 and in that case, AE oM AN M.

The next proposition may be similarly proved.

Proposition 10. (1) If A te eemi-primary, M, N A-
-modules such that either rM(Z) ie tsomorphic to ry(Z) or
rM(J)'is i8omorphic to rM(J) (as left A-modules) then A and
AN have isomorphic injective hulls; '

(2) Let A satisfy the maximum condition on left an-—
nihilatore. If P, Q are A-modulee such that rP(Z) and rQ(Z)
are tsomorphio (as left A-modules), then AP and AQ have ts8o-
morphic injective hulle.

Note that, in general, for any non-singular A-mo-
dule M, rM(Z) = M. '

Proposition 11. Let A be a commutative ring, M a
non-singular injective A-module. For any ideal T of A, ry(T)
t8 an itnjective submodule of M.

Proof. Let E be an injective hull of rM(T) in M.
For any y € E, there exists an essential ideal L of a such
that Ly rM(T) which implies LTy = TLy = 0, whence Ty is
contained in the singular submodule of M which is zero. The-
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refore y € rM(T) which proves that rM(T) is an injective

A-module. ’

Corollary 11. Let A be a commutative non-gingular
ring satisfying the maximum condition on annihilators. For
any non-singular divisible A-module M and any idealT of A,
rM(T) i8 an injeetive A-module (ef. [3,P. 102 ex. 18]1).:

The proof of Theorem 9 and Proposition 11 yield

Remark 8. Let A be commutative with a nilpotent
ideal U, If M is a submodule of a non-singular A-module N,
then M is essential in N iff (W) is essential in rN(U).

Proposition 12. The following conditions are
equivalent for a commutative ring A:

(1) A is self-injective regular;

(2) Por any finitely generated A-module M and any
ideal P of A, rM/Z(M)(P)‘ia an injective pro-
Jjeetive A-module;

(3) For any finitely generated A-module M and any
ideal P of A, rM/Z(M)(P) 728 a C¥-injeotive
projective A-module.

Proof. Assume (1). for any finitely generated
A-module M, we know that N = M/Z(M) is a non-singular A-mo-
dule which is therefore injective and projective by [9, Coro-
llary 6]. If P is an ideal of A, by Proposition 11, rN(P) is
an injective submodule which is therefore a direct summand
of N. Thus (1) implies (2).

(2) implies (3) evidently. ’

Assume (3). In as much as AA/Z is projective, we
get Z = 0 and hence (3) implies (1) by Propositions 1 and 7.

A theorem of M. Ikeda - T. Nakayama asserts that if
A is left self-injective, then for any left ideals L, S of
A, (L nNnS) = r(L) + r(S). We now consider situations where

certain proper direct summands of A contain non-trivial cen-
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tral idempotents.

Theorem 13. Let A be a semi-prime left K¥-injec-
tive ring such that r(L N SY = v(L) + r(S8) for any left
i7deals L, S. Let I be a non-singular CY—injective left ide-
al of A containing two non-gero prinecipal left tdeals P, Q
with the following properties: P contaitns no direct sum of
a patr of mutually isomorphic non—zero left ideals of A
while Q econtains no left ideal isomorphie to P. If A = QeoK,
then K contains a non-trivial central idempotent.

. Proof. For any b € I, there exist a € A such
that b = bab (c¢f. the proof of Proposition 7). Consequently,
P and Q are direct summands of AA. By Zorn“s Lemma, the set
E of all left A-monomorphisms from some submodule of AP into
AQ contains a maximal member g. let g : D+ Q, D€ P. Since
P, Q are also direct summands of I, they are CY-injective a
and henceﬁars injective A-modules by Proposition 1. If g(D) =
= F, let D, T be the injective bulls of D, F in P, Q respec-
tively. If we suppose that D # D, then g extends tg a 1eftA
A-homomorphism g : D » Q. Since D is essential in D, then g
is a monomorphism belonging to E, Ehich contradicts the maxi-
mality of g. This proves that D = D and therefore F = F. If
P= De Az, 2z = .23 € I, then z #+ 0 (in as much as Q contains
no left ideal isomorphic to P). If Q= F ® T, F= Au, T = Av,"
u, v being idepotents in I, then we claim that zAu = 0. If
not, let 0 # w= 2du, d € A, Since 1(w) = Ak, k = k2, the
map H : Az = Aw given by H(az) = aw for all a € A yields
Az/ker H » Aw. Then ker H = Akz implies Az/Akz ®» Aw. Since
Akz = As, 8 = 82 € I, and A = As ®© A(1-s), then Az = As ®
® Az(1-s8), where Az(1-s) A(1-s) 1 Az. Now r = 2(1-s) € Az,
which implies Ar = Ae, e = e3 € Az, whence Ae R Ac, where
" Aw = Ac, ¢ = c? € Au, yielding g='(Ac) ® Ae < P and g~ '(Ac) =~
~ Ae, thus contradicting the hypothesis on P. This proves
that zAu = 0. If we suppose that zAv # 0, then there exist
similarly non=-zero idempotents t € Av, q € Az and an isomor-
hism m of Aq onto At. Now the map n : De® Ag + F @ At given
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by n(p + aq) = g(p) + m(agq) for all p € D, a € A, is a mo-
nomorphism which contradicts the maximality of g in E. The-
refore zAv = 0 also which yields zQ = 0, z # 0. Since Q is

~ a direct summand of ahs if A= Q ® X, then K is the left an-
nihilator of h, where Q = Ah, h = h2. If T = QA, in as much
as A is semi-prime, 1(T) = v(T), 1(T) A T = 0 and hence A =
p(1(T)) + v(T) = 1(1(T)) + 1(T) which implies that A =
1(1(T)) ® 1(T). Again, since A is semi-prime, 1(Q) = 1(T)
is generated by a central idempotent and it follows that

K = 1(h) contains a non-trivial central idempotent of A.

Corollary 13. Let A be a semi—prime aelf-injeétive
ring with non-zero soecle. If Q te a non—-gero non—gingular
injective left ideal whiech contains no minimal left ideal
and A = Q@ V, then V ocontaine a non-trivial central idem-
potent. ‘

We conclude with a last remark.

Remark 9. Let A be a left continuous regular
ring, P, Q two non-zero injective left ideals having the
same properties as in Theorem 13. If A = @ ® K, then K con-
tains a non-trivial central idempotent.
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0 INJEKTIVNIM MODULIMA | UOPSTENJIMA

U ovom radu dva uop3tenja injektivnih modula su

uvedena | kori¥éena za karakterizaclju nekth dobro poznatih
klasa prstena.
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