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ABSTRACT

The paper compares different definitions of the be-
haviour of a distribytion at iInfinlty with the S-asymptotic
by some examples and proposltions.

INTRODUCTION

In theée last thirty years,many definitions of the
asymptotic behaviour of distributions have been presented. We
can divide them into two sets. To the first one belong those
definitions which directly use the classical definition of the
asymptotic behaviour of a numerical function. All of them are
given only in the one dimensional case. The second set conta-
ins definitions which correspond to the distribution a class of
distributions depending on some parameters. ’

Representatives of the first set are definitions gi-
ven by M.J. Lighthill [5] and by J. Lavoine and 0.P. Misra (4],

AMS Mathematice Subject Classtfication (1980): Primary 46F10.

Key words and phrases: Asymptotic behaviour of dtstr@butions,
quastasymptotie, equivalence at infinity, S—asymptotic.



2 B. Stankovid

Definition 1. (Lighthil1"s definition). Distribution
T behaves as the numertcal function f{x) at a point %o if and
only if T ¥8 equal to a numertieal function F in an open neigh-
bourhood of xo and F(x) ~ £(x), X + Xo.

The definition used by J. Lavoine and 0.P. Misra has
been improved Ly other mathematicians. We shall cite the last
we know [8].

Definttion 2, (A. TakaZi"s definition). The distribu-
tion T 18 equivalent at Tnfinity with a regularly varying fune-
tion p(x) = xPL(x), P* -n, n €N, 2f there exiet n € No, n+p>0,
a > 1 and a continuoue function F on R such that T = DF(x)
on (a,») and F(x) ~ Cp’nxp+nL(x), X + o, We write then
T E p(x), X + o,

L(x) is a slowly varying function, and the constant

Cpsn

1/(p+1) ... (p+n), n € N
% = {
1 , n =0,

Representatives of the second set are: the quasiasymp-
totic and S -asymptotic.

The most general definition of the quasiasymptotic is
given in book [9]. Before we give this definition, we have to
introduce some notations.

let T be a closed, convex, acute and bodied cone in
R™; _
{Uy» k € I} be a set of linear applications defined

in R" such that Ul =T, k €I and det U, >0, k € I;

p(k) be a positive function, k € I;
I be a subset of R having =« as a limit point.

Definition 3. (Quasiasymptotic). Suppose thaqt T € S~

_with ite support 7n T. T hge the quastasymptotic in I related
to the set {Uy, k € I} qnd the function p(k) if in (7
1 ;

—_— T(U
p(k)

kt) + g(t), k » =, k € I.
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In our examples we shall use only the one-dimensio-
nal case with T = [0,=),

Definition 4. (S-asymptotic). 4 distribution T € (D7)
‘hae the S—asymptotic in cone T, related to some c(h) > 0, h €
€ T,and with the limit U € (D) if there exists

Lim < T(t+h)/c(),@(t) > = <U,0 > , © € (D).
heT, hil+=

Then we write T(t+h) £ c(h)U(t), h € T, [71.

1. S-ASYMPTOTIC OF A REGULAR DI!STRIBUTION AND
ASYMPTOTIC BEHAVIOUR OF FUNCTIONS AT INFINITY

According to Lighthill”s definition, we have cited,
of the behaviour of a distribution at infinity and bearing in
mind the local property of the S-asymptotic [7]), it is enough
to compare the S=-asymptotic and asymptotic of numerical functi-
ons and we have at the same time a comparison of the S-asymp-
totic and Lighthill”s definition of the behaviour of a distri-
bution at infinity.

The following example (see [1], p. 45) points out that
a continuous function can have the S-asymptotic as a distributi-
on without having the asymptotic: Let

T
T(t) = [ g(x)dx, g € L'(~,w) N C(~=,»), a > 0,
o,
Then
.
T(1+8) & 1+ [ g(x)dx, B € R,.
o ®
By Theorem 1 c) [7] T (t+g) 2 1« (f g(x)dx)”",B € R,. Hence
g(t+g) 2 1 « 0, BER,. o

But g must not have the asymptotic behaviour when t+= . This
example shows that every function from L1 1 C has an S -asymp -
totic zero, vhen B » « or B + ==, related to c(h) = 1.
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't
Let, now, h(t) = et [ g(x)dx, where g(x) has the sa-
a
me properties as in the preliminary case. It is easy to see

that
L]
n(t+g) 2 efeet f g(x)dx, B € R,
a
h7(t) = h(t) + etg(t) has the S—asyhptotic related to eB, 8 €

o0

€ R, just et f g(x)dx. But h”(t) must not have an asymptotic

a
related to e' because of g(t). All derivatives h(k)

same S-astptotic as h(t), related to eB.
The following example shows that a function can have

(t) have the

the usual asymptotic behaviour without having an 8 -asymptotic

. with the limit U different from zero. This example will be the
function: exp(x2)., Suppose that the regular distribution defined
by the function exp(x3) has the S-asymptotic relative to c(h)>0,
h € R, with a limit U different from zero. By Proposition 4 [7],
U has the form U(t) = C exp(at). Then for every ¢ €(D), and con-
sequently for ¢ > 0 we have

Lim # eaho < Ceax,w(x) >.
h+» c(h)

Jexp[(x+h+ho)3] @(x)dx =
Therefore -~
o < y,0 > =

-1
= exp(h3)lim —fe(xth)? 2ho (x+h)
h+w c(h),

©(x)dx
2 exp(hg) < y,®» >, for every ho > 0.
But this is not correct.
_ It is easy to show that for some classes of numeri-
"cal functions from the asymptotic behaviour at infinity there

follows the S-asymptotic. The next proposition is such a one.

Propostitlon 1. Let T be a convax cone and Q@ < R®
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an open set with the property: for every r > 0 there exists
a8 such that B(h,r) € @, h € T, IInll 2 Br'
Suppose that the function G is local integrable
over @ and has the following properties:
‘ a) The distribution Go 18 equal on Q to the dis-
tribution éQ defined by the funetion G.
b) There exist number Mr and a local integrable

funetion V sueh that
|6(x+h)/c(h)]| = M, x € B(O,r), xth < @ ;

£im G(x+h)/c(h) = V(x), x € B(O,r).
her,llhll e

Then Go(x+h) £ c(h)V(x), h € T.

Proof. Because of the local property of the S-
-asymptotic [7] it is enough to prove that for a ¢ € D,
Aduppy < B(0,r)

G(x+h)
Lém  f———— 0 (x)dx = [V(x)@(x)dx.
heTr,hll4+= c(h)
Bearing in mind the property of 2 and supposition b), we
can go to the limit in h under the integral sign.

2. RELATION BETWEEN THE QUASIASYMPTOTIC AND S-ASYPTOTIC

To compare these two notions we have first to fix
the basic space and the class of numerical functions c(h).
As the quasiasymptotic is defined for tempered distributions
(S°) and related to regular varying functions (c(h) = h®L(h),
a € R and L(h) is a slowly varying function) we shall compa-
re, first, in this case, supposing moreover that the limit
distribution U differs from zero.

The following example shows the imperfection of
the comparison of these two notions. In the following 6(t) =
=1, t>0; @6(t) =0, t<0O
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1) The regular distribution T = 6(t) elat, a #
# 0, has the quasiasymptotic %6 in (S7) related to c(h) =
h-t [2]: ®

k < 8(kt) et*aT () >z k [ e
0

ikatyryat

il

1
Bl

Jo(g Xy 4(elax)
0

«©
L1 iaxgxy (" -1 iax, -
=1z © ‘p(k-)lo ]-(-g e © ( X)dx

- %w(O), kK + o,

But the distribution T has no S -asymptotic rela-
ted to a h® with a U4 0:

ia(t+h) iah’ f elat

< 6(t+h)e (L) > = e w(t)dt

® <h

~ gldh f elatw(t)dt h =+ ®.

-0
This distribution really has an S -asymptotic but relative
to the function c(h) = eiah.

iZ) The regular distribution T(t) = 8(t)sint has

quasiasymptotic relative to c(h) = h=1 but it has no S -asymp-

totic at all:

- -
h < 8(ht)sinht,0(t) > = [ Ainuw(%)du
w 0
= ©0) + % Iw?%);déu du.

0

For the S-asymptotic we have

-0

< B (t+h)4n (t+h),p(t) >~ cosh [ sinte(t)dt +

[+ ] -0
+44nh [ costp(t)dt, h + « .,
-s0

i¢%) For the regular distribution T = 6(t)sin/t
we can not find an a € R and a distribution Ua * 0 such that
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(-]
Lim [k®in/kE 9(t)dt = < U ,0 >, © € (S).
k+= g
Suppose on the contrary that such a and U, exist.
" Then we can choose for the ®, ©(t) = e P, t >0, Re p > 0.

Then we have °

o«
eim x® [ sin/kt e Ptat = < Uu(t),e-Pt

ko 0

>,

The value of the last integral is vwk//Up® exp(-k/up) and
< Um(‘c),e-Pt > is the Laplace transform of distribution Uy -
In such a way the last relation says that the Laplace trans-
form of U, equals zero for Re p > 0, hence Ua = 0.

A proposition which compares these two notions is
the following [2]):

Proposition 2. Suppose that £ € (S[(R)) and
f(t+h) £ haU(t), h+ o, o > -1. Then £ has a quasiasymptotic
of order a as well.

Proof. By relation (6) < f(x+h),®(x) > = (fx@)(h) =
= H(h). This numerical function H(h) has the usual asympto-
tic of order o, when h + w. By Lemma 1 (2], it has the quasi-
asymptotic at infinity of the:aame order o. The Fourier trans-
form of distribution f gives F[f(kx)I(p) = % F[f](%). From the
continuity of the Fourier transform follows that F[f] has the
guasiasymptotic at zero of order a+1 if and only if f has the
quasiasymptotic at infinity of order a.

Suppose now that we chose an ¢ = @5 € (8) such that
F{9l(p) = 1 in a neighbourhood of zero. The Fourier transform
of H(h) = (f#®)(h) gives F[H] = FIfIFI®). We know that F[H](p)
has the quasiasymptotic at zero of order a+i. With the ¢, we
chose, there follows that F[f] has the quasiasymptotic at zero

of order q+1 as well. Therefore f has the quasiasymptotic at
infinity of the order . _

If we change the basic space, the conclusion can be
quite different. Suppose that the basic space is (K.) (see [6])
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Elements of (K4) are functions ¢ from ¢® such that

v (0) = sup ek|x|1Dn¢| <
x€ER,n<k
The function 8(x) Chx = %G(x)(ex + e %) defines an element
from (K7) and exp(-px2), p > 0, is from (Ki). \
To find the quasiasymptotic at infinity in (K3)
of 8(x)Ch(x) we shall analyse the integral

- -
[ chtone PPax = 1 fohe/ePX 92X = exp(ka/up).

0 0 i

This shows that there exists no function c(k) of
the form e2KTkbL(k); a,b € R, 0 £ r £ 2, L(k) slowly varying
function, such that 8(x)Chx has the quasiasymptotic relative
to c(k) with a 1limit U # 0.

For the S -asymptotic we have for ¢ € (K4):

k-

Lim e [ c(x+hdo(x)ax =

h+o

-h
(-] k-]
= % Je¥*e(x)dx + %e—Zh fe Xo(x)dx
- -

17 x
> [ e ©(x)dx, h + =,
‘meo "/
Therefore 6(x)Chx has the S-asymptotic relative to

e(h) = e with the 1imit U = %—e".

3. EQUIVALENCE AT INFINITY OF A
DISTRIBUTION AND THE S-ASYMPTOTIC

By Definition 2, the equivalence at infinity of a
distribution is related only to the power growth such as
‘xPL(x) of a distribution. Therefore, the comparison has a me-~
aning only for such distributions.

If we have regular distributions, the difference
between these two definitions of asymptotic behaviour of dis-
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tributions follows from the fact that the S-asymptotic pre-
serves the usual asymptotic of numerical functions (Theorem
1.b) [7]), but the equivalence at infinity generalizes 1“Hos -
pital”s rule with Stolz~’s improvement. Namely, this rule
‘says: Suppose that the real valued function H(x) has the first
derivative far x > %o; H(x) # 0, x > xo and H(x) + ©, x + =,
the function F(x) has its first derivative. If there exists

£im F7(x)/H“(x) = A, then there exists
X+00

Lim  T(x)/H(x) = A.

b ]

We know that the opposite does not hold. Definition 2 uses

just the opposite statement in 1“Hospital”s rule, with H(x) =

= xp+1. The next example shows this disagreement with the

usual asymptotiec by numerical functions:

-1

F(x) = X + eXcose® = D(x

3

+ 8ine™).

Nf

By Definition 2, the distribution defined by func-
tion F(x) is equivalent at infinity with % x3.
By reason of the same fact, the function

3

F(x) = x ¥ + s4inx = D(2x° - cosx)
is equivalent at infinity with x_% but has no S-asymptotic
with a limit U # 0 (see 2 . ii)).
Without any difficulty one can find a function
which has the S-asymptotic but for which Definition 2 does not
hold. We shall give such a one, not trivial:

F(x) = e—xbin(% -e™)

- Dw:n(; - e .
For x > 0

1> Ain(% -e Xy 2 Ain(; - 1),
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Hence
n-1. Xy t
X Y | -u
2 [ [ ... [ sin(z = e Tddu ... dy
- 1 -
(n=-1)! oo™ 1 0
n-1
X o
2 6&n(7 -1), n € N.
(n-1)!

The funetion F(x) can be written in the form F(x) =
= DnE(x), where E(x) is

Xy t .
E(x)=[f ... ]J Ain(g -eMdu ... ay.
0onlg
From the previous inequality it follows that the behaviour at
n-1

infinity could be x , but Definition 2 does not admit such

a power,

Proposition 3. Suppose that T 18 equivalent at
infinity with AxPL(x), then there extists ne such that T has
the S—-asymptotic related to c(h) = hp+nL(h), n 2 ne and with
the limit U = 0.

Proof. By Definition 2, there exists a continu-
ous funetion f(x), x € R such that T = Dkf(x), X > Xo and

£(x) ~ AP/ (p+1) .. (PHOILI(X), X - o.

Function f(x) has the property that for a C € R*
and every compact set K ¢ R

< C, x € K,

l £(x+h) l l £(x+h) | (x+h)P¥|
= p+k p+k
(+)PRLmy! n .

PR Ln)
K

and

Lim £(x+h) /P L) = A/(p+1) ... (p+k).

h-+o

By Theorem 1.b) [7] f(x+h) & hPY L(m)A/(p+1) ... (p+k), h + =,
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h > 0. Now from Theorem 1.c) [7] follows the statement of

our proposition with no = k.
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S~ASIMPTOTIKA 1 DRUGE DEFINICIJE ASIMPTOTSKOG
PONASANJA DISTRIBUCIJE

U poslednjih trideset godina matematilka literatura

je obogadena sa viSe definicija pona3anja distribucija v ,bes~-
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kona¥nosti'". Autori tih definicija polazili su ili od izuca-
vanja odredjenih matemati&kih modela, pre svega iz fizike,
ili od moguénosti matemati&kog aparata. Uporedjivanje tih
definicija otefava &injenica da su one po svojoj strukturi
razli&ite., Tako, dok jedne odraXavaju lokalni karakter dis-
tribucije u okolinl ,beskonalno udaljene talke', druge defi-
niclije vezane su za globalni karakter distribucije. | pored
tih teSkoéa, na raznim primerima, kontraprimerima [ tvrdje-
njima ukazano je na odnose razlilitih definficija pona%anja
distribucija u ,beskonafnosti' | S-asimptotike na &ijoj teori-
jt Je 1t sam autor radio. .
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