ZBORNIK RADOVA Prirodno-matematičkog fakulteta Univerziteta u Novom Sadu Serija za matematiku, 15,1 (1985) REVIEW OF RESEARCH Faculty of Science University of Novi Sad Mathematics Series, 15,1 (1985)

FUZZY CONGRUENCE RELATIONS AND GROUPOIDS

Branimir Šečelja, Gradimir Vojvodić

Prirodno-matematički fakultet, Institut za matematiku 21000 Novi Sad, dr Ilije Djuričića br.,4,Jugoslavija

ABSTRACT

Fuzzy congruence relations on algebras are defined in [3], and discussed in [2], [4] and [5]. Fuzzy groupoids are considered in [1], [5], and [2].

In this paper, we define a weak fuzzy congruence relation on a groupoid, and we prove that this relation uniquely determines a fuzzy groupoid on the same algebra. Starting with a weak fuzzy congruence relation $\bar{\rho}$ on a groupoid (S,.) and using the decomposition of a fuzzy set defined in [2], we get two collections of fuzzy sets (on S, and on S², respectively). We prove that the first collection consists of the fuzzy groupoids on (S,.), and that in the second are the fuzzy congruence relations on these groupoids.

All fuzzy sets here are L-valued, where L is a complete lattice.

1. Let $S \neq \emptyset$, and let $l = (L, \Lambda, V, 0, 1)$ be a complete lattice. $\bar{\rho}: S^2 \to L$ is a weak fuzzy equivalence relation on S, iff the following conditions are satisfied:

AMS Mathematics Subject Classification (1980):Primary 03E72 Secondary 08A30.
Key words and phrases:Fuzzy sets,universal algebras.

(2)
$$\overline{\rho}(x,y) = \overline{\rho}(y,x)$$
, for all $x,y \in S$;

(3)
$$\bar{\rho}(x,y) > \bigvee_{z \in S} (\bar{\rho}(x,z) \wedge \bar{\rho}(z,y)), \text{ for all } x,y \in S.$$

REMARK. An obvious consequence of (2) and (3) is (1) $\bar{\rho}(x,x) \ge \bar{\rho}(x,y)$, for all x,y \in S, and if $\bar{\rho}(x,x) = 1$ for every x \in S, then $\bar{\rho}$ is a fuzzy equivalence relation on S ([3]).

Let $\overline{A}: S \to L$ be a fuzzy set on S, and let $\overline{\rho} \subseteq \overline{A}^2$ (that is $\overline{\rho}(x,y) \le \overline{A}(x) \wedge \overline{A}(y)$, for all $x,y \in S$, [6]). $\overline{\rho}$ is a <u>fuzzy equivalence</u> relation on \overline{A} , iff it satisfies (2), (3) and

 $\overline{\rho}(x,x) = \overline{A}(x)$, for every xes.

Let (S, \cdot) be a groupoid. A <u>fuzzy groupoid</u> (\overline{A}, \cdot) on (S, \cdot) is a mapping $\overline{A}: S \to L$, satisfying

(4)
$$\bar{A}(x \cdot y) > \bar{A}(x) \wedge \bar{A}(y)$$
, for all $x, y \in S$ ([1]).

Let (S, \cdot) be a groupoid $((\bar{A}, \cdot)$ a fuzzy groupoid on (S, \cdot)), and let $\bar{\rho}$ be a weak fuzzy equivalence relation on S (a fuzzy equivalence relation on \bar{A}) satisfying the substitution property:

(5)
$$\bar{\rho}(x \cdot u, y \cdot v) > \bar{\rho}(x, y) \wedge \bar{\rho}(u, v)$$
, for all $x, y, u, v \in S$.

Then $\bar{\rho}$ is a weak fuzzy congruence relation on (S, \bullet) (a fuzzy congruence relation on (\bar{A}, \bullet)).

PROPOSITION 2.1. If $\bar{\rho}$ is a weak fuzzy equivalence relation on $\bar{A}:S\to L$, then $\bar{\rho}$ is a weak fuzzy equivalence relation on S.

Proof. From
$$\overline{\rho}(x,x) = \overline{A}(x), \text{ it follows that}$$

$$\overline{\rho}(x,x) \leq \overline{A}(x) \wedge \overline{A}(y) \leq \overline{A}(x) = \overline{\rho}(x,x).$$

PROPOSITION 2.2. If $\bar{\rho}$ is a weak fuzzy equivalence relation on S, and if $\bar{A}:S+L$, such that

$$\bar{A}(x) = \bar{\rho}(x,x)$$
, for every $x \in S$,

then $\bar{\rho}$ is a fuzzy equivalence relation on \bar{A} .

Proof. From $\bar{\rho}(x,y) < \bar{\rho}(x,x) = \bar{A}(x), \text{ and}$ $\bar{\rho}(x,y) < \bar{\rho}(y,y) = \bar{A}(y), \text{ it follows that}$ $\bar{\rho}(x,y) < \bar{A}(x) \wedge \bar{A}(y). \square$

Now we shall prove that a weak fuzzy congruence relation on a groupoid (S, \cdot) induces on (S, \cdot) a fuzzy groupoid (\bar{A}, \cdot) (which is also called a fuzzy subgroupoid of (S, \cdot)).

THEOREM 2.3. Let $\bar{\rho}$ be a weak fuzzy congruence relation on (S, \cdot) . Then, a mapping $\bar{A}: S \to L$, defined with

$$\bar{A}(x) = \bar{\rho}(x,x)$$
, for every $x \in S$,

is a fuzzy groupoid on (S, \cdot), and $\bar{\rho}$ is a fuzzy congruence relation on $(\bar{\mathbf{A}}, \cdot)$.

Proof. Since $\vec{A}(x) = \vec{\rho}(x,x)$, and $\vec{A}(y) = \vec{\rho}(y,y)$, the following is satisfied:

$$\overline{A}(x \cdot y) = \overline{\rho}(x \cdot y, x \cdot y) > \overline{\rho}(x, x) \wedge \overline{\rho}(y, y) = \overline{A}(x) \wedge \overline{A}(y)$$
.

Thus, $\overline{A}(x \cdot y) > \overline{A}(x) \wedge \overline{A}(y)$, proving that (\overline{A}, \cdot) is a fuzzy groupoid on (S, \cdot) .

By the definition, $\bar{\rho}$ is a fuzzy congruence relation on $(\overline{A}, \, \cdot \,)$. \Box

REMARK. If $L = \{0,1\}$, then the last theorem gives that (a nonempty) symmetric and transitive relation ρ on a groupoid (S, \bullet) , satisfying the substitution property, determines a subgroupoid (A, \bullet) of (S, \bullet) .

3. In [2] it was proved that a fuzzy set $\overline{A}: S+L$ uniquely determines a family $\{\overline{A}p \mid p \in L\}$ of fuzzy sets on S, and vice versa. The theorems of decomposition and synthesis of \overline{A} by means of that family were also given. From there we have:

$$\overline{Ap}(x) \stackrel{\text{def}}{=} \begin{cases} \overline{A}(x), & \text{if } A(x) > p \\ 0, & \text{otherwise} \end{cases}$$
 (x \in S)

We shall now consider the fuzzy congruence relation $\bar{\rho}$ on a fuzzy groupoid (\bar{A},\cdot) on (S,\cdot) , and also the corresponding families of fuzzy relations and sets.

PROPOSITION 3.1. Let (\overline{A}, \cdot) be a fuzzy groupoid on (S, \cdot) , and let $\overline{\rho}$ be a fuzzy congruence relation on (\overline{A}, \cdot) . Let $\{\overline{Ap} \mid p \in L\}$, and $\{\overline{\rho}p \mid p \in L\}$ be such that

$$\bar{A} = U \bar{A}p$$
, and $\bar{\rho} = U \bar{\rho}p$ ([2]), then for every $p \in L$:
 $p>0$ $p>0$

- a) (Ap,) is a fuzzy groupoid of (S, .), and
- b) pp is a fuzzy congruence relation on $(\bar{A}p, \cdot)$.

Proof. a) If $\overline{A}_{D}(x) = 0$, or $\overline{A}_{D}(y) = 0$, $x,y \in S$, then clearly $\overline{A}_{D}(x \cdot y) > \overline{A}_{D}(x) \wedge \overline{A}_{D}(y)$.

Suppose now that $\bar{A}_{p}(x) \neq 0$, and $\bar{A}_{p}(y) \neq 0$. Then

$$\vec{A}p(x) = \vec{A}(x) > p$$
, and $\vec{A}p(y) = \vec{A}(y) > p$. Hence $\vec{A}(x \cdot y) > \vec{A}(x) \cdot (\vec{A}(y)) > p$, and thus

 $\overline{Ap}(x \cdot y) > \overline{Ap}(x) \wedge \overline{Ap}(y)$, proving that (\overline{Ap}, \cdot) is fuzzy groupoid on (S, \cdot) .

b) $\bar{\rho}p$ is a fuzzy relation on $\bar{A}p$: Indeed if $(x,y) \in S^2$, then $\bar{\rho}(x,y) > p$, or $\bar{\rho}(x,y) \neq p$. In the first case,

$$\mathbf{p} \leq \bar{\rho}(\mathbf{x},\mathbf{y}) = \bar{\rho}\mathbf{p}(\mathbf{x},\mathbf{y}) \leq \bar{\mathbf{A}}(\mathbf{x}) \ \Lambda \, \bar{\mathbf{A}}(\mathbf{y}) = \bar{\mathbf{A}}\mathbf{p}(\mathbf{x}) \ \Lambda \, \bar{\mathbf{A}}\mathbf{p}(\mathbf{y}) \ .$$

If $\bar{\rho}(x,y) \not \ni p$, then $\bar{\rho}p(x,y) = 0$, and the inequality is satisfied again.

Now we shall prove that $\bar{\rho}p$ is a fuzzy equivalence relation on $\bar{A}p$.

op is obviously reflexive and symmetric. To prove that it is transitive, consider the supremum

$$\bigvee_{z \in S} (\overline{\rho}p(x,z) \wedge \overline{\rho}p(z,y))$$
(1)

If it is equal to zero, then $\bar{\rho}p$ is transitive. If not, take all infima $\bar{\rho}p(x,z)$ $\Lambda \bar{\rho}p(z,y)$ in which both values are not equal to zero (i.e. they are not less than p). Then

$$p < \overline{\rho}p(x,z) \wedge \overline{\rho}p(z,y) = \overline{\rho}(x,z) \wedge \overline{\rho}(z,y) < \overline{\rho}(x,y) = \overline{\rho}p(x,y)$$
.

The same inequality is satisfied by the supremum (i), proving that ρp is transitive.

 $\bar{\rho}p$ satisfies the substitution property (5): Consider $\bar{\rho}p(x,y)$, and $\bar{\rho}p(u,v)$, x,y,u,ves, pel. If at least one of these values is 0, condition (5) is directly satisfied.

Suppose now that $\rho p(x,y) \neq 0$, and $\rho p(u,v) \neq 0$. Then

$$\rho(x,y) = \rho \rho(x,y) > \rho$$
, and $\rho(u,v) = \rho \rho(u,v) > \rho$,

and thus

$$\bar{\rho}(x \cdot u, y \cdot v) > \bar{\rho}(x, y) \wedge \bar{\rho}(u, v) > p$$
.

Thereby,

$$\overline{\rho}p(x \cdot u, y \cdot v) = \overline{\rho}(x \cdot u, y \cdot v),$$

and $\rho_{\rm p}$ satisfies (5).

Applying the synthesis theorems of fuzzy sets and relations formulated in [2], on the fuzzy groupoids and the corresponding (weak) fuzzy congruence relations, we get the following two propositions.

PROPOSITION 3.2. Let $\{\bar{A}p;\ p\in L\}$ be a family of fuszy sets on S satisfying:

- a) $\overline{A}p(x) \in \{0\} \cup [p]$, for every xes; ([p) is a filter (generated by pel)
- b) If s,teL, and s<t, then:
- b1) $\overline{A}t(x) \neq 0$ implies $\overline{A}s(x) = \overline{A}t(x)$;
- b2) If $\overline{A}s(x) = t$, then $\overline{A}t(x) = t$.

214

Also, let for every $p \in L$, (\overline{A}_p) .) be a fuzzy subgroupoid of a groupoid (S,.).

Then $(\bar{A},.)$, where \bar{A} is defined as in Proposition 3.1, is a fuzzy groupoid on (S,.).

PROPOSITION 3.3. Let $\{\bar{p}p; p \in L\}$ be a family of fuzzy relations on S, satisfying conditions (a) and (b), and for every $p \in L$, let $\bar{p}p$ be a fuzzy congruence relation on a fuzzy subgroupoid $(\bar{A}p, .)$ of a groupoid (S, .).

Then

$$\bar{\rho} = \bigcup_{p>0} \bar{\rho}p$$

is a fuzzy congruence relation on a fuzzy subgroupoid $(\bar{\mathbf{A}},.)$ of a groupoid (S,.), where

$$\bar{A} = \bigcup_{p>0} \bar{A}p$$
.

REFERENCES

- [1] Delorme, M., Sous-groupes flous, Seminaire: "Mathematique floue", Lion, 1978-79.
- [2] Vojvodić, G., Šešelja, B., On One Decomposition of Fuzzy

 Sets And Relations, Proc. Conf. "Algebra and Logic",

 Zagreb, 1984, Novi Sad, 1985, 177-184.
- [3] Vojvodić, G., šešelja, B., O strukturi slabih relacija ekvivalencije i slabih relacija kongruencije, Matematički Vesnik, 1(14)(29), 1977, 147-152.
- [4] Šešelja, B., Vojvodić, G., Fuzzy Sets On S As Closure Operations On P(S), Zbornik radova PMF u Novom Sadu, 14, 1(1984), 117-127.
- [5] Vojvodić, G., šešelja, B., On Fuzzy Quotient Algebras, Zbornik radova PMF, 13(1983), 275-288.

[6] Rosenfeld, A., Fuzzy Graphs, Fuzzy Sets and their Application to Cognitive and Decision Processes,
Academic Press, 1975, 77-95.

Received by the editors June 19 ,1985.

REZIME

RASPLINUTE KONGRUENCIJE I GRUPOIDI

U radu je definisana slaba rasplinuta relacija kongruencije na proizvoljnom grupoidu i dokazano je da ta relacija jednoznačno odredjuje rasplinuti podgrupoid datog grupoida. Pokazano je da se postupkom dekompozicije rasplinutog grupoida i odgovarajuće rasplinute kongruencije na njemu dobijaju familije podgrupoida i rasplinutih kongruencija na njima.