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ABSTRACT

The '“asymptotic behaviour! of distributions, which na-
turally generalizes the "equivalence at infinity" used in [5],
is defined. Its properties and relations to some other “asympto-

tics' of distributions or generalized functions are analyzed.
1. INTRODUCT ION

The equivalence of a distribution at infinity with a
function of the form xP or xP. 1nx for real P, which is not a ne-
gative integer, was used in a number of papers, for instance in
[ 5] and [ 2], though it seems that this notion appeared in [ 8].

In this paper we shall define the equivalence at infinity of a
distribution with a regularly varying function of the order

P € Z_, Z_ being the set of negative integers. After proving some
properties, we shall compare it with the "asymptotic behaviour"
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of generalized functions used in [6] and with the quasiasympto-
tic behaviour of distributions analyzed in [ 3].

Throughout the paper, p will stand for a regularly va-
rying function at infinity such that p(x) = xPL(x), x > 0, and
L:(0,o) - R will always denote a locally integrable function on
(0,») which is slowly varying at infinity, i.e. satisfies the

condition

(1) %ig L(tx)/L{(x) = 1 for every t30.
Similarly as in [7] it is supposed that L is of the same sign
and nonzero in some neighbourhood of infinity. '

Furthermore, D stands for the distributional derivati-
ve, Ha(x) denotes the function which is zero for x < a and equal
to 1 for x > a and the sign "%" the usual convolution between
functions or distributions. S; denotes the space of tempered di-
stributions with supports in [0,«). Finally, p will always deno-

te a real number which is not a negative integer, and

(2) 1
‘p,0

2. EQUIVALENCE AT INFINITY

1
for n e N, and

(p+1)(p+2)...(p+n)

_—
(@]
o
-
o]
n

1.

We shall first rewrite a definition from [ 5].

DEFINITION 1. The distribution T i8 equivalent at in-
finity with CxP, C # 0, if there exists n 6 Ng, n + p > 0, a
real number a > 1 and a continuous function F on R such that
T = D"F(x) on [a,®) and
p+n

a8 X -» o

(3) F(x) mCCP,nx

in the ordinary sense (CP n from (2)). It is supposed that
, ,
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PEZ_1ifn>0.

In a later paper Lavoine and Misra defined the equival-
ence at infinity with cxPlnx for P> ~-1and C # 0. It is natural
to replace the logarithm with an arbitrary slowly varying func-
tion at infinity, and, if possible, omit the assumption on p. We
shall do that in Definition 2 for real p which is not a negative
integer; however the case p e Z_ cannot be handled in this man-
ner, so we shall have to omit it.

DEFINITION 2. The distributton T 18 equivalent at in-
finity with a regularly varying functionp(x) = xPL(x), a>1,
if there exiat n € Ng , ntp > 0, a > 1 gand a continuous functi-
on F on R such that T D"F(x) on (a,~) and

11}

(4) F(x) v C. _xP*PL(x) ag x » =
Pyn
in the ordinary sense. We then write T E p(x) as x » o,

Let us remark first that in Definition 2, we have omit-
ted the equality of distributions on a set which is not open,
namely [d,=), used in the previous one. Also the constant C # 0
from (3) is now included in the slowly . varying function L.
Now, our task is to prove the correctness of Definition 2. The
following lemma from [7]} p. 86 shows that the increase of n do-
es not change the equivalence at infinity:

LEMMA 1. Let F be g positive locally integrable func-
tion on 8some interval [a,x), @ > 0. Then F(x) xPL(X) a8 x » =

implies _
X xp+1
] F(t)dt ~ L(x)
a ptl

as x + », provided that p > =-1.
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It is obvious that the choice of'Cp n in (2) was deter-
k]
mined by this lemma. Next, we shall prove the uniqueness of the

equivalence at infinity in a natural asymptotic sense.

THEOREM 1. Let T & D” be equivalent at infinity with
two regularly varying Ffunections pi(x) =xP1Li(x), where P; £ Z_
and Li are slowly varying function at infinity ae indicated in

P2 and

the introduction, i = 1,2. Then p,

Ll (x)

1lim 1.

X+ Lo (x)

PROOF. Let n,, a. and Fi (ni > —pi), i=1,2, be as

i i
in Definition 2, i.e. T = DMF.(x) on (a;50) and F.(x) o C_., _.°
P:+n: . 1 1 1 Pi»nj
« x°1 lLi(x) as x + =, Let a: = max(a,,a,) and let us suppose
that n, 2 n,. Furthermore, let '
x
G, (x) = H_(x) [ Fa(t)adt,
a
x

G (x) = H,(x) a{' G _,(t)dt, m = 2,3,...

and X ¢ R. One can check easily that T = Dnl(Gn -nz(X)) on (a,»)
L .
(for n; = n, one can take G,(x) = H (x)F,(x)). In view of Lemma

1, we have

G (x) ~ C xp2+(n‘_n2)+n2L2(x)
n,-n, P2sn,

as x + o. Now Gn (x) and F,(x) can differ on (a,») only by a
170

-n
polynomial of a degree less or equal to n;-1, and this is possi-
ble only if p, = p, (since they are not negative integers) and

if Li(x) ~ Lp(x) as x + «.

It is natural to ask about the relationship between the
classical asymptotic behaviour of a locally integrable function
(which can be observed as regular distributions in some neigh-

bourhood of infinity) as x+», and the equivalence at infinity.



Arpad Takacli 179

Let us remember that in [ 8] such a definition of the asymptotic
behaviour of distributions is given. Namely, if T is a distri-
bution and h a locally integrable function in some interval
(a,»), then T ,~ h(x) as x + = in the sense of [6] means that in
some neighbourhood of infinity T is defined with a locally in-
tegrable function, say f, and f(x) » h(x) as x + = in the ordi-
nary sense. For regularly varying function of order p £ Z_ the

equivalence at infinity is a more general notion, as follows from

THEOREM 2. Let T € D° be of the form T = B + f(x) whe-
re B € D” has its support itn (-=,a) and f be g continuous fun-
etion with support in (a=1l,«), a > 1, If f(x) ~ xPL(x) a8 x + =
for some p £ Z_ and some slowly varying function L at infinity,
then T E xPL(x) a8 x + =.

-PROOF. The statement is trivial for p > -1. Let, now,
P = -(m+q) for m ¢ N and 0 < q < 1. Then by an analogue to Lemma
1 (see [7), p. 87) the function
X o o
G(x): = [ [ ... [ £(t) at dxy ... dx , X Za, ...

X
2 ™ m X1 cees X 2 a, x 2 a,

behaves like
xp+m+1

L(x) = C 19 1(x) as x + .

- X
(p+1)(p+2)...(p+m+1) p,m+l

m+1

Observing that D "G(x) = f(x) = T on (a,»), we finish the proof.

.Let us remark that this theorem also gives a sufficient
condition for equivalence at infinity. Let us prove now a ne-
cessary condition for the equivalence at infinity of a distri-
bution with some regularly varying function. For that purpose;
let us suppose ‘additionally, that function L is both slowly
varying at zero and infinity. Let (xPL(x))+ denote the follo-
wing distribution from $7 (the number a > 1 is chosen so that

L is of the same sign on (a,®)):

(vl

(5.a) < (xPL(x))+,¢ > = f PL(x)e(x)dx if P >-1and v e S;
(o]
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oo

(5.b) < (xPL(x)) 0 > = [ xPLx) (o (x) - 9 (0) - ...
o
m=-1 (m-1)

e - GyT ¢ (0))dx
if -(m+1) < p < -my,me N and ¢ e S (see [4]). Since (xpL(x))+=
= xPL(x) on (a,=), obviously (xpL(x))+’E xPL(x) as x + =,
We have come to

THEQGREM 3. Let the distribution T be equivalent at
infinity with a regularly varying,function p(x) = xPL(x). Then
there exists a number b > 1, such that the distribution R defi-
ned by R: = T =~ (xpL(x))+ has the propenrty

e (x/k)
(6) lim < R(x)y —— > =0
ko= kp(k)

for gvery ¢ € D with the support in (b,w).

In order to prove this theorem, we shall prove two lem-
mas first. If n e N and S € S, then H*'#5(x) denotes the itera-

- ted convolution H # H % ... H % S(x) which is again in S;.
n times

LEMMA 2. Let h e N. Then the iterated convolution
H‘*np(xPL(x))+ 18 a tempered distribution which is equivalent at
ihfinity with the regularly varying function Cp’nxn+PL(x). More-
over, there exists a locally integrable function K on R which is8
glowly varying at zero and at infinity, and satisfies the

asymptotic behaviour
(7) K(x) = Cp,nL(X) as X + o
such that Hy™x (xPL(x)), = (P™Mk(x)), .

PROOF. First let p > -1. Then we have for ¢ 6 $§

. o L] X
< Ho# (xPL(X)) o >= [ xPL (] v (y)dydax = <(fyPL(y)dy) w(x)>
[o] x (o]
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where the distribution (; pr(y)dy)+ is defined like the one in
(5.a). Using Lemma 1, weoget the statement for n = 1; the choice
of K is obvious. For arbitrary n and p > -1, the proof follows
by induction.

Now let -(m+l1l) < p < -m, for some natural number m > 1.

Then
@ p.9
<Ho#(xPLx)),,v> = [ xPLOx)(- [ w(yray +
° 0
m=-1 .
xd(§-1) i
+ 23—!w (0)) dx =: < S,p >,
j=1

where S is a functional to be analyzsd. For that purpose, we
shall observe the function o(x) = - £ yPL(y)dy for x > 03 sin-
ce p < -1, this function is well defined. First of all, it is a
regularly varying function at infinity (see. (7], p. 87), name-
ly

xp+1
(8.a) o(x) ~ L(x) as x + =,
p+l
Next, o is a regularly varying function at zero, too. In fact,
we have '
xp+1
(8.b) o(x) ~ L{x) as x * 0+.
ptl

by transferring the statement from zero to infinity. A short
calculation shows that in view of (8.b) and (5.b) the distribu-~
tion S can be observed as a regularization of the locally inte-
grable function ¢ on (0,~). Hence, we can write

<Hgx (xPL(x)), 50 > = <S8y > = < -(f yPL(YIAY) .0 >,
x
so by (8.a) and Theorem 1 the distribution S is equivalent at

Pl 7(pe1).
Thus we have proved the Lemma for n = 1 and p < -2; the choice

infinity with the regularly varying function x

of K and the remaining cases are similar to this one and are
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omitted.

LEMMA 3. Let f be a loecally integrable function on
[b,®), b > 0, such that £f(x) = 0(xIL(x)) as x + » for some
q>0 and 8ome glowly varying funetion L at infinity, whieh
t8 also locally integrable on [b,»). Then
L]
| FUx)g(x)dx = 0(k3L(k)) as k + =
b

for every locally integrable Ffunction g on [b,®) such that
o
L x| g(x) [dx < @
b ‘ '
for some r > 0.

) PROOF. By supposition for a given € >:0,we can find a
number M = M(g) > b such that the function h(x): = £(x)/(x%L(x))
has the property |h(x)| < ¢ for x » M. We take k > M/b and
obtain

|f fOx)gxiax| < e kT [ xIL0x) |g(x) Jax.
b b

By [;], Theorem 2, we have

0 0

[ xWx) [g(x) [dx & LK) [ xT[gex) [ax
b b
or
|/ fGo0gx)ax| < € e (kL)) [ x3gx) |ax
b b

for some C > 0 (which does not depend on ¢ or g). So, for a gi-
ven € we can find a k¢ = k¢(e) such that for k # k, we have
1 . *
—— |[ fkx)g(x)dx| < C € [ x3|g(x) [ax
xL(x) b b
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PROOF OF THEOREM 3. Let T & p(x) as x » = and let
n > -p, F and a > 1 be as announced in Definition 2. This means
that

F(x) = C. _x"p(x) + £(x), x > a,

Psn
and £(x) = o(x"p(x)) as x + w. Taking K from Lemma 2, observing
that the function g(x): = CP n PPL(x) - xP*PK(x) is also
3

o(x™p(x)) as x + =, we get

¢ (x/k) p(x/k)

< R(x), > = < DF(x)- D (H™* (xPL(x)) h—— >
kp(k) kp(k)
n v(x/k)
= <D (f(x) $# g(x)), ——— > =
kp(k)
(-nH)° ;
= K = | (f(kx) + g(kx))v(x)dx >,
kK" *PL(k)
a
Using, new, Lemma 3 we get the statement for b: = a.

A condition analogous to (6) appeared in [5]. Unfortuna-
tely, this is not sufficient for the equivalence at infinity of a
distribution T with a regularly varying function. For instance,
if T = e-t on the interval (1,«), then (6) holds for every regu-
larly varying function p(x) = xPL(x), p < 0 and p e Z_, but, ob-
viously, T is not equivalent at infinity with any regularly va-
rying function. In fact, such distributions like T "tend" to ze-
ro faster then any regularly varying function. In view of that it

is reasonable to give the following

DEFINITION 3. A distribution T tends to szero faster
than any degree of x at infinity, if there exist n, € N gnd a > 1
such that for every n € N, n > n,, there exists a continuous
function F_ on R with the‘properties T = DnFn(x) on (a,=) agnd

lim men(x) = 0 for every m € N. We then write T E 0.
X
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It is obvious that T € E’, or more generally T = 0, on
some interval (b,») implies T k 0. Similarly as Theorem 2, one
can prove

THEOREM 4. Let T € D~ be of the form T = B + £(x),
where B € D” has its support in (-=,a) and f be g continuous
function with a support in (a=1,®), a > 1. If function f satis-

fiee the condition 1im x™f(x) = 0 for every m € N, then T E 0.

X+

At the and of this section, we shall give a necessary
and sufficient condition for the equivalence at infinity of a di-
stribution with a regularly varying function or for T 5 0. It
will show that the equivalence at infinity is a local property
of distributions, differing from the quasiasymptotic behaviour
of distributions; the relation of these two asymptotics will
be analyzed in Section 3.

THEOREM 5. Let T = B + S, where B and S are distribu-
tions with supporte in (-=,b) and (b-1,=), reepectively. Then
T E p(x) = xPL(x) a8 x + = iff S E p({x) as x + », Also, T isa
equivalent at itnfinity with zero iff S i8 equivalent at infinity

with aero.

PROOF. If T E p(x) as x - =, then there exist n > -p,
a > byand a continuous function F on R so that T = D"F(x) on
(a,=) and (4) holds. By supposition, there exists a polynomial
Pk of order k < n so that B = DnPk(x) on (b,w); it is clear that
k) implies that P) can be chosen so that k < n+p. Taking G(x): =
= F(x) - Pk(x), we obtain S = D"G(x) on (a,»), hence S E p(x).
Conversely, if S E xPL(x) as x + =, then there exist n > -p,
a > b and a continuous function G on R so that S = D"G(x) and
G6(x) ~ C. xP*PL(x) as x + ». Let us observe the iterated con-

volution U: = Hi™(-x)#B(x) = H,(~x)#H_ (=x)% ... #H(-x)&B(x),
a m times

which exists in view of the assumption on the suppdrt of B. For
a sufficiently large m > n U becomes a continuous function (0,«),
which is zero on (a,=). Hence T = Dme_n(x), on (a,«), where

X X
Gi(x): = Ha(X)£ G(t)dt, G (x): = H,(x) é G 4 (t)dt for
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k = 2,3,...,m-n and we have G __(x) ~ CP mxp+mL(x)'as X + @,
?
We .shall omit the proof of the second statement, since
it is similar to the proaf of the first one.

3. THE QUASIASYMPTOTIC BEHAVIOUR AND THE EQUIVALENCE OF
DISTRIBUTIONS AT INFINITY

The quasiasymptotic behaviour of distributions was defi-
ned by the Soviet mathematician B.I. Zav”jalov in 1973 and analy-
zed comprehensively in [3]. It is clear that the quasiasymptotic
behaviour and the equivalence at inrinity are not comparable in
general, since the first is defined only for distributions from
S:, while the other has no limitations on the support of the ob-
served distribution. Furthermore, a distribution with compact
support included in some interval [0,al, a > 0, has quasiasympto-
tic behaviour of order -m for some m e N, but obviously has no
equivalence at infinity in the sense of Definition 2; of course
such a distribution tends to zero faster than any degree of x
(see Definition 3). Another counterexample is the distribution
T = DkG + Hl(x)xP ok &€ Ny and p < -1, which acts in the following
way:

<10 > = 0%y + fexIxPax, ¢ e D.
1
Namely, it has quasiasymptotic behaviour of order -1 related to
the function x—l, and by Theorem 1 is equivalent at infinity with
the regularly varying function xP provided that p ¢ Z_. It
should be emphasized that again the case p & Z_ is not covered
by Definition 2. Let us state two "positive" results.

THEOREM 6. Let T & S which is not in‘E'. Let us suppoase
that tf T=B+S,where suppBcl0,al, suppsScla-1,»),and S has quasi-
asymptotic behaviour of order P > -m related to the regularly
varying function p(x) = xPL(x) (m e N is the quastasymptotic
order of B). Then T is equivalent at infinity with p(x).



186 On the equivalence of distributions at infinity

PROOF. It is easy to see that T also has quasiasimpto s~
tic behaviour of order p related to xPL(x); condition p > -m is
essential for that. Now, by Theorem I ([3], p. 373) a distribu-
tion T has a quasiasymptotic behaviour of order p related to
xPL(x) iff one can find an n > -p such that the iterated convo-
lution H:n % T(x) is a continuous function G on R and has an
ordinary asymptotic behaviour related to the regularly varying
function xP*PL(x) (up to a constant, which is easily seen to be

Cp n from (2)). Hence, T is equivalent at infinity with p{xJ.
> .

THEOREM 7. Let T = B + S, wherae thesz three distribu-—
tions are «8 in Theorem 6. If T is equivalent at infinity with
p(x) = xFPL(x) for p > =1, then T has quasiasymptotic behaviour
of order p related to p(xh

The proof of this statement is straightforward and it
is omitted. Let us just observe that the condition p > - 1 is
necessary, as the counterexampie at the beginrning of the Secti-
on shows,

At the end of the paper, let us say that it is possib-
le to give the notion of the asymptotic expansion at infinity
which we plan to analyze in a subsequent paper; it is worth no-
ting that a "qQuasiasymptotic expansion" was defined in [3]. It
might be of interest to use the equivalence at infinity,and the-
se expansions in order to obtain statements of the Abelian and
Tauberian type for certain generalized integral transformations.
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REZIME

0 EKVIVALENCIJ! DISTRIBUCIJA U BESKONATNOSTI

U radu se definife tzv. "ekvivalencija u beskonaZnosti',

dokazuju njene osnovne osobine i uporedjuje sa-definicijom asimp-
totskog ponafanja distribucije u beskonagnosti date u [6}, kao i
kvaziasimptotike date u [3]. '



