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ABSTRACT
In this paper some properties of the probabilistic

inner measure of noncompactness are Investigated and a fixed

point theorem is proved.

Beginning with Bocsan’s work [1], remarkable attention
has been paid to probabilistic measures of noncompactness (bri-

efly, probabilistic measures) and their applications to fixed
point theory [2-7]. Usually probabilistic measure is assumed to
have the properties:

1) ¢A(t)==1 (vt >0) if and only if A is precompact,
2 o5a T ¢a v

Having been suggested by [8], here we show that for getting
fixed point theorems it suffices to assume 1) and that

3°) ¢Al[x}-3¢A for each singleton {x},
Then, as an example, we give the definition of probabilistic
inner measure and establish some of its'properties and its

relation with the inner measure studied in [8-9].
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1. Let us first recall some definitions. In the
sequel we shall use the following notations. R (R+) stands
for the set of all real (non-negative) numbers, 2x - the fa-
mily of all nonempty subsets of X, B(X)-the family of all
bounded subsets of a locally convex space X, co A-the closed
convex hull of A, '

A function F:R+ [0,1] is called a distribution if it
is non~decreasing, left-continuous, inf F=0, supF=1. A

random normed space is a pair (X,F) of a given linear space
X and a family F of distributions {Fx: x e X }satisfying
a) Fx(t) =1 (¥t>0) 1if and only 1f x=8,
b) Fx(o) =0,
_ t
c) ch(t) =F,( TeT ), ¥c#0,

d) Fx+y(t+s)_>_min{Fx(t)FY(s)} .

Putting p, (x) = sup{t:F_(t) <1-1}, (xe [0,1]), we get a semi-

norm and (x,px) becomes a Hausdorff locally convex space. In
what follows by all the topological notions in (X,F) we mean
the corresponding omes in (X,p,). Let {¢A: AeB(X)} be a fa-

mily of distributions satisfying 1),2°), 3°).

DEFINITION 1. A mapping T:X~+ 2% ie said to be pro-
babilistic ¢-condensing if ¢mpp > $p for every A e B(X) which is

not precompact.

Using the method of Reich in [10], we can prove.

THEQREM 2. Let (X,F) be a quasi-complete random
normed space , C a nonempty closed convex subset of X,T:C+ZC
an upper semicontinuous probabilistie ¢~condensing mapping
having a bounded range. If T(x) = COT(X), for every x in C then
there exists x, €ec such that x, € Tx,.
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Proof. Fixing z € C we denote ¢ ={yc=C:zey, ¥
is closed ,convex and T(Y) =Y}. Then ¢ ## (since Ce ¢) and
each chain in (¢, £) has a lower bound. So by the Zorn lemma,
4 has a minimal element Z. Denote V=co(T(Z) U {z}). Obviously,
Ved and V=Z, hence V=12, But it follows that Z is bounded
and "Tzi"z' so Z is precampact. Since X is quasi-complete

and Z is closed, it must be compact. Being an u.s.c. mapping
acting in a campact convex subset Z of a Hausdorff locally
convex space X, T has a fixed point by the well-known Ky Fan
fixed point theorem.

2. Of course each probabilistic measure with proper-
ties 1),2),3) (in particular, the measures a, and Bp in .2

has properties 1), 27), 3°). We now present a nontrivial exa-
mple of probabilistic measure with these properties. Denote

hAB(t) = sup inf sup F__(s) and call it the probabilistic non-
s<t x€A ye€B
symmetric Hausdorff distance between A and B in B(X). Now the

probabilistic inner measure of A is defined by bA(t) = sup{p > 0:

there is a finite set Ag <A with hAA (t) > p} for AeB(X), teR.
£
Remember that in [3} we defined B, (t) =sup{p>0: there is a

finite set Af

des with the probabilistic Hausdorff measure introduced by
Constantin and Bocsan in [2] , where h 1s replaced by H - the
probabilistic Hausdorff distance. Obviously, we have

=X with hAA (t) > p}, and showed that it coilnci-
£ Z

(1) bAj BA

It 1is not difficult to see that bA is a distribution. Besides,
by Proposition 5(8) in [3] (where in the proof A, was taken
in A) we have

(2) bAZ_ ap -
From (1) and (2) it follows that bA has property 1). Further,
observe that in the definition of bA we may replace a finite
set by a precompact one, so modifying the proof of Proposi-
tion 5(6) in [3] we get property 2°). Property 3”) is also
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easy to verify. Obviously, in general bA is not monotone with
respect to A so it need not satisfy 2) and 3).

Moreover, modifying the proof of Proposition 5 in [3]
and using condition c¢) of Fy above we easily get the following
further properties of bA:

4) b (t) = byl -I‘t"—l ), Va#0,

5) bx+A = bA !

6) byyp>min{by, by} ,

7 bp,p(t+s) >min{b, (£) ,by(s)} .

Alsp, modifying the proof of Proposition 7 in [3] we
can see that every probabilistic¢. éontraction is probabilistic

b-condensing.
3. DEFINITION 3. A distribution £ is said to be

striet if it i strictly monotone, i.e. for each ¢ € (0,1) the
equation £(t) =c has at most one solution. Geometrically, it
means that the graph of f does not contain any horizontal in-

terval outeide two lines Y= 0 and y=0.

In [9] Danes introduced the inner Hausdorff measure

as follows:
(3) X(A) =inf{e > 0:A has a finite ¢-net in A} .
We now modify this notion for a lecally convex space (X,p}‘)
by putting
Xk (A) = inf{e > 0: there are KyreensX € A such that Ac UB).(xi'E)}
where B, (xi,e) ={xe X:pA (x—xi) < ¢}, Obviously this
measure has the following properties:
i) X}\(A) =0 (¥Ae (0,1)) if and only if A is precampact,
i1)  x, (cod) <x, (B), _
i11) X, (AU {x}) <X, (n) for each x in X.

The following result establishes the relation between

bA and XA .
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THEOREM 4. Let (X,F) be a random normed apace, bA

the probabilistic inner measure in X. Put

B)‘(A) = sup{t:bA(t)il—)\} .

x
Conversely, if Xy 18 the inner measure which is left-

Then X)‘f_B)‘- If bA 18 strict, we have x)‘=8

continuous and non-increasing in A, then
(4) BA(t) = 1 - sup{) € (0,1):x)‘(A)_>_t}

i8 a distribution with properties 1), 2°), 3°) and BA_>_bA.
Moreover:bA 18 strict abA= BA .

Pr oo f. Fixing A and A we denote K= {t:bA(t) <1-x},
S0 a=B)‘(A) =gupK . First we show that azx)‘(A). Let to> a,

then bA(to) >1-) . By the definition of bA we get

sup{p > 0: there are x --,X eA with sup inf maxF (s) >p}

’e
1 s<t xeA 1 i
>1-) .

So there are x ,...,xneA such that

1

sup inf maxF (s) >1 =x .
s<to xeA i i

This implies that there exists an s, < to such that for
each x e A there is an i with Fxxi(so) >1-) . This inequality
is equivalent to P, (x—xi) <8 (see, for example, [11]). But
this implies immediately that Xy (n) <8¢ tor from this X (A<

<a= (A).

Assume now bA is strict and suppose the contrary that

a>b>c> x)‘(A) . Then by (3) there are x --1X, e A such that

i
for each x e A there is an i with P, (x—xi) < é, or equivalently
Fxxi(c) >1-). But it implies
(b) = sup inf maxF (s) >1-2.
Alxy} s<b xea 1 **§ ~
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So by the definition of bA we get bA(b) >1-A. Since bA is

nondecreasing and left-continupus, K is closed, i.e. a€ K.But
this implies bA(a) =bA(b) =1-X , a contradiction to the stric-~
tness of bA and the first part of the theorem is proved.

Now fix A, t and denote BA(t) = a. Then we must show
that a_>_bA(t) . Suppose the contrary that a <bA(t) . Choose a
Ag € (0.1) so that 0<a<b= 1~1° < bA(t) . Then by the defini-

tion of bA’ there exist x ,...,xnex such that sup inf max F

s<t x€A i
> b, So there is an 84 < t such that for every x € A there exists
an i1 with Fxx

1 xxi(s)

(s ) >b or equivalently, p, (x-x,) <s_. Fram this
4 © A, i o

X . . -} =
)‘o(A) 285% t, consequently, Ao > sup{;\.x)‘(A) >t}, hence 1 Ao

=b <'BA(t) , a contradiction. bA is strict => bA= g,. To prove

A
it, denote b)‘(A)=sup{t:'bA(t) <1-2} and recall that bA(t) =

= sup{p:3{xi}=A, i}(t) >p}, X, () =inf{s:3{xi}=A,

Baix
A=UB, (x,,e)}, By(t) =1-sup{i:y, (A) > t}. One can prove that
bA(t) =1 -sup{)\:b)‘ (A) > t}, so for proving b, = B8, it suffices
to show that Xy, =Db,.

First note that b)‘_>_x)‘ without any assumption. Indeed
denoting K= {t:bA(t) >1-1}, a=b)‘(A) we have a=inf K

(here 2 and A being fixed). Take v e K, then bA(v) >1-) and

hence 3{xi}=A, Ju< v gsuch that ¥xe A 31 with Fxx (u) >1-)
i

but it implies A cUB, (x,,u) and hence x)‘(A) <v. So )()‘(A) <
<inf K = a=b,(A).

Now suppose b, is strict (1.e. t<s => bAr(t) <bA(s),
except for bA(t) =bA(s) =0 or 1). We assume the contrary that

a=Db, (a) >a’>x)‘(A). Then 3{x,}<A such that ¥xeA 3i with

py (x-x.) <a” but it implies inf max F (a”) >1-). So b_(t)>
A . xeA 1 X - A-

>1-)x for each t>a” . Since bA ig strict, infK =inf{t:bA(t)z

*y

>1-AY. From this, a”>infK=a, a contradiction.
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So a=b,(A) = x, (A).
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REZIME

O VEROVATNOSNOJ UNUTRASNJOJ MERI
NEKOMPAKTNOSTI

U ovam radu dokazane su neke osobine verovatnosne
unutragnje mere nekampaktnosti. )



