ON THE PROBABILISTIC INNER MEASURE OF NONCOMPACTNESS

Do Hong Tan

Institut Matematyczny PAN, Sniadeckich 8.
00-950 Warszawa, Poland (Current address, 1983-1985)
Institute of Mathematics, Box 631, Bo Ho, Hanoi, Vietnam

ABSTRACT

In this paper some properties of the probabilistic inner measure of noncompactness are investigated and a fixed point theorem is proved.

Beginning with Bocsan's work [1], remarkable attention has been paid to probabilistic measures of noncompactness (briefly, probabilistic measures) and their applications to fixed point theory [2-7]. Usually probabilistic measure is assumed to have the properties:

- 1) $\phi_{A}(t) = 1 \quad (\forall t > 0)$ if and only if A is precompact,
- 2) $\phi_{\overline{COA}} = \phi_A$,
- 3) $\phi_{AUB} = \min\{\phi_A, \phi_B\}$.

Having been suggested by [8], here we show that for getting fixed point theorems it suffices to assume 1) and that

- 2^{\prime}) $\phi_{\overline{CO}} = \frac{1}{2} \phi_{\overline{A}}$,
- 3') $\phi_{A} \cup \{x\} \stackrel{>}{=} \phi_{A}$ for each singleton $\{x\}$.

Then, as an example, we give the definition of probabilistic inner measure and establish some of its properties and its relation with the inner measure studied in [8-9].

AMS Mathematics subject classification (1980): 47H10 Key words and phrases: Random normed spaces, fixed point theorems, inner probabilistic measure of noncompactness.

1. Let us first recall some definitions. In the sequel we shall use the following notations. $R(R^{+})$ stands for the set of all real (non-negative) numbers, 2^{X} - the family of all nonempty subsets of X, B(X)-the family of all bounded subsets of a locally convex space X, \overline{co} A-the closed convex hull of A.

A function $F:R \to [0,1]$ is called a <u>distribution</u> if it is non-decreasing, left-continuous, inf F=0, sup F=1. A random normed space is a pair (X,F) of a given linear space X and a family F of distributions $\{F_{\underline{x}}: x \in X\}$ satisfying

- a) $F_{\mathbf{x}}(t) = 1 \quad (\forall t > 0)$ if and only if $\mathbf{x} = \theta$,
- b) $F_{v}(0) = 0$,
- c) $F_{CX}(t) = F_X(\frac{t}{|c|})$, $\forall c \neq 0$,
- d) $F_{x+y}(t+s) \ge \min\{F_x(t)F_y(s)\}$.

Putting $p_{\lambda}(x) = \sup\{t: F_{x}(t) \le 1-\lambda\}$, $(\lambda \in [0,1])$, we get a seminorm and (X,p_{λ}) becomes a Hausdorff locally convex space. In what follows by all the topological notions in (X,F) we mean the corresponding ones in (X,p_{λ}) . Let $\{\phi_{A}: A \in B(X)\}$ be a family of distributions satisfying $\{1,2^{\circ}\}$, $\{1,2^{\circ}\}$.

DEFINITION 1. A mapping $T:X+2^X$ is said to be probabilistic ϕ -condensing if $\phi_{TA}>\phi_A$ for every $A\in B(X)$ which is not precompact.

Using the method of Reich in [10], we can prove.

THEOREM 2. Let (X,F) be a quasi-complete random normed space, C a nonempty closed convex subset of $X,T:C \rightarrow 2^C$ an upper semicontinuous probabilistic ϕ -condensing mapping having a bounded range. If $T(x) = \overline{COT}(x)$, for every x in C then there exists $x \in C$ such that $x \in C$

Proof. Fixing zeC we denote $\Phi = \{y = C : z \in Y, Y \text{ is closed, convex and } T(Y) = Y\}$. Then $\Phi \neq \emptyset$ (since $C \in \Phi$) and each chain in (Φ, Ξ) has a lower bound. So by the Zorn lemma, Φ has a minimal element Z. Denote $V = \overline{Co}(T(Z) \cup \{z\})$. Obviously, $V \in \Phi$ and V = Z, hence V = Z. But it follows that Z is bounded and $\Phi_{TZ} \leq \Phi_{Z}$, so Z is precompact. Since X is quasi-complete and Z is closed, it must be compact. Being an u.s.c. mapping acting in a compact convex subset Z of a Hausdorff locally convex space X, T has a fixed point by the well-known Ky Fan fixed point theorem.

2. Of course each probabilistic measure with properties 1),2),3) (in particular, the measures α_A and β_A in [1,2]) has properties 1), 2'), 3'). We now present a nontrivial example of probabilistic measure with these properties. Denote $h_{AB}(t) = \sup_{S < t} \sup_{X \in A} \sup_{X \in B} F_{XY}(s)$ and call it the probabilistic nonsymmetric Hausdorff distance between A and B in B(X). Now the probabilistic inner measure of A is defined by $b_A(t) = \sup\{\rho > 0 : there is a finite set <math>A_f = A$ with $h_{AA_f}(t) \geq \rho\}$ for $A \in B(X)$, teR. Remember that in [3] we defined $\beta_A(t) = \sup\{\rho > 0 : there is a finite set <math>A_f = X$ with $h_{AA_f}(t) \geq \rho\}$, and showed that it coincides with the probabilistic Hausdorff measure introduced by Constantin and Bocsan in [2], where h is replaced by H - the probabilistic Hausdorff distance. Obviously, we have

$$b_{\mathbf{A}} \leq \beta_{\mathbf{A}}$$

It is not difficult to see that b_A is a distribution. Besides, by Proposition 5(8) in [3] (where in the proof A_f was taken in A) we have

$$\mathbf{b}_{\mathbf{A}} \geq \alpha_{\mathbf{A}}.$$

From (1) and (2) it follows that b_A has property 1). Further, observe that in the definition of b_A we may replace a finite set by a precompact one, so modifying the proof of Proposition 5(6) in [3] we get property 2'). Property 3') is also

easy to verify. Obviously, in general b_{A} is not monotone with respect to A so it need not satisfy 2) and 3).

Moreover, modifying the proof of Proposition 5 in [3] and using condition c) of F_X above we easily get the following further properties of b_{λ} :

4)
$$b_{cA}(t) = b_{A}(\frac{t}{|c|}), \forall c \neq 0,$$

$$b_{x+A} = b_A,$$

$$b_{AUB} \ge \min\{b_A, b_B\},$$

7)
$$b_{A+B}(t+s) \ge \min\{b_A(t), b_B(s)\}.$$

Also, modifying the proof of Proposition 7 in [3] we can see that every probabilistic contraction is probabilistic b-condensing.

3. DEFINITION 3. A distribution f is said to be strict if it is strictly monotone, i.e. for each $C \in (0,1)$ the equation f(t) = C has at most one solution. Geometrically, it means that the graph of f does not contain any horizontal interval outside two lines $y \equiv 0$ and $y \equiv 0$.

In [9] Danes introduced the inner Hausdorff measure as follows:

(3)
$$X(A) = \inf\{\varepsilon > 0: A \text{ has a finite } \varepsilon - \text{net in } A\}$$
.

We now modify this notion for a locally convex space (X,p_{λ}) by putting

$$X_{\lambda}(A) = \inf\{\varepsilon > 0: \text{ there are } x_{1}, \dots, x_{n} \in A \text{ such that } A \subset UB_{\lambda}(x_{1}, \varepsilon)\}$$
 where $B_{\lambda}(x_{1}, \varepsilon) = \{x \in X: p_{\lambda}(x - x_{1}) < \varepsilon\}$. Obviously this measure has the following properties:

i) $\chi_1(A) = 0$ ($\forall \lambda \in (0,1)$) if and only if A is precompact,

ii)
$$\chi_{\lambda} (\overline{\operatorname{coA}}) \leq \chi_{\lambda} (A)$$
,

iii)
$$\chi_{\lambda}(A \cup \{x\}) \leq \chi_{\lambda}(A)$$
 for each x in X.

The following result establishes the relation between $b_{\boldsymbol{\lambda}}$ and $\chi_{\boldsymbol{\lambda}}$.

THEOREM 4. Let (X,F) be a random normed space, $b_{\widehat{A}}$ the probabilistic inner measure in X. Put

$$\beta_{\lambda}(A) = \sup\{t:b_{A}(t) \leq 1-\lambda\}$$
.

Then $\chi_{\lambda} \leq \beta_{\lambda}$. If b_{A} is strict, we have $\chi_{\lambda} = \beta_{\lambda}$.

Conversely, if χ_{λ} is the inner measure which is left-continuous and non-increasing in $\lambda,$ then

(4)
$$\beta_{\mathbf{A}}(\mathsf{t}) = 1 - \sup\{\lambda \in (0,1) : \chi_{\lambda}(\mathbf{A}) \geq \mathsf{t}\}\$$

is a distribution with properties 1), 2'), 3') and $\beta_A \geq b_A$. Moreover: b_A is strict $\Rightarrow b_A = \beta_A$.

Proof. Fixing A and λ we denote $K=\{t:b_{A}(t)\leq 1-\lambda\}$, so $a=\beta_{\lambda}(A)=\sup K$. First we show that $a\geq \chi_{\lambda}(A)$. Let $t_{O}>a$, then $b_{A}(t_{O})>1-\lambda$. By the definition of b_{A} we get

 $\sup\{\rho > 0: \text{ there are } x_1, \dots, x_n \in A \text{ with } \sup_{s < t_0} \inf_{x \in A} \max_{i} F_{xx_i}(s) \ge \rho\}$

So there are $x_1, \dots, x_n \in A$ such that

$$\sup_{s < t} \inf_{x \in A} \max_{i} F_{xx}(s) > 1 - \lambda .$$

This implies that there exists an $s_0 < t_0$ such that for each $x \in A$ there is an i with $F_{xx_1}(s_0) > 1-\lambda$. This inequality is equivalent to $p_{\lambda}(x-x_1) < s_0$ (see, for example, [11]). But this implies immediately that $\chi_{\lambda}(A) \leq s_0 < t_0$, from this $\chi_{\lambda}(A) \leq s_0 < t_0$.

Assume now b_A is strict and suppose the contrary that $a>b>c>\chi_{\lambda}(A)$. Then by (3) there are x_1,\ldots,x_n eA such that for each $x\in A$ there is an i with $p_{\lambda}(x-x_i)< c$, or equivalently $F_{xx_i}(c)>1-\lambda$. But it implies

$$h_{A\{x_i\}}(b) = \sup_{s < b} \inf_{x \in A} \max_{i} (s) \ge 1-\lambda.$$

So by the definition of b_A we get $b_A(b) \ge 1-\lambda$. Since b_A is nondecreasing and left-continuous, K is closed, i.e. a ϵ K.But this implies $b_A(a) = b_A(b) = 1-\lambda$, a contradiction to the strictness of b_A and the first part of the theorem is proved.

Now fix A, t and denote $\beta_A(t) = a$. Then we must show that $a \ge b_A(t)$. Suppose the contrary that $a < b_A(t)$. Choose a $\lambda_O \in (0,1)$ so that $0 \le a \le b = 1 - \lambda_O < b_A(t)$. Then by the definition of b_A , there exist $x_1, \ldots, x_n \in X$ such that sup inf max $F_{xx_1}(s) > b$. So there is an $s_O < t$ such that for every $x \in A$ there exists an i with $F_{xx_1}(s_O) > b$ or equivalently, $p_{\lambda_O}(x-x_1) < s_O$. From this $\chi_{\lambda_O}(A) \le s_O < t$, consequently, $\lambda_O > \sup\{\lambda : \chi_\lambda(A) \ge t\}$, hence $1 - \lambda_O = b < \beta_A(t)$, a contradiction. b_A is strict $b_A = b_A = b_A$. To prove it, denote $b_\lambda(A) = \sup\{t : b_A(t) \le 1 - \lambda\}$ and recall that $b_A(t) = \sup\{p : \exists \{x_1\} = A, h_{A\{x_1\}}(t) \ge p\}$, $\chi_\lambda(A) = \inf\{s : \exists \{x_1\} = A, h_{A\{x_1\}}(t) \ge p\}$, $\chi_\lambda(A) = \inf\{s : \exists \{x_1\} = A, h_{A\{x_1\}}(t) \ge p\}$, $\chi_\lambda(A) \ge t\}$. One can prove that $b_A(t) = 1 - \sup\{\lambda : b_\lambda(A) \ge t\}$, so for proving $b_A = \beta_A$ it suffices to show that $\chi_\lambda = b_\lambda$.

First note that $b_{\lambda} \geq \chi_{\lambda}$ without any assumption. Indeed denoting $K = \{t: b_{A}(t) > 1-\lambda\}$, $a = b_{\lambda}(A)$ we have $a = \inf K$ (here λ and A being fixed). Take $v \in K$, then $b_{A}(v) > 1-\lambda$ and hence $\exists \{x_{i}\} \subseteq A$, $\exists u < v$ such that $\forall x \in A$ $\exists i$ with $F_{XX_{i}}(u) > 1-\lambda$ but it implies $A \subseteq UB_{\lambda}(x_{i}, u)$ and hence $\chi_{\lambda}(A) \leq v$. So $\chi_{\lambda}(A) \leq v$ inf $K = a = b_{\lambda}(A)$.

Now suppose b_A is strict (i.e. $t < s \Rightarrow b_A(t) < b_A(s)$, except for $b_A(t) = b_A(s) = 0$ or 1). We assume the contrary that $a = b_\lambda(A) > a^* > \chi_\lambda(A)$. Then $\exists \{x_i\} \subseteq A$ such that $\forall x \in A \exists i \text{ with } p_\lambda(x-x_i) < a^* \text{ but it implies } \inf_{x \in A} \max_{i} F_{xx_i}(a^*) \ge 1-\lambda$. So $b_A(t) \ge 1-\lambda$ for each $t > a^*$. Since b_A is strict, $\inf_{x \in A} K = \inf_{x \in A} \{t : b_A(t) \ge 1-\lambda\}$. From this, $a^* \ge \inf_{x \in A} K = a$, a contradiction.

So $a = b_{\lambda}(A) = \chi_{\lambda}(A)$.

REFERENCES

- [1] G.Bocsan, On some fixed point theorems in random normed spaces,

 Proc.V-th Conference on Probability Theory (1974), 153-156.

 Editura Acad.R.S.Roumania, Bucuresti, 1977.
- [2] G. Constantin, G. Bocşan, On some measure of noncompactness in probabilistic metric spaces, ibid., 163-168.
- [3] D.H. Tan, On probabilistic condensing mappings, Revue Roum, Math.

 Pures Appl., 26, 10(1981), 1305-1317.
- [4] D.H.Tan , A note on probabilistic measures of noncompactness, ibid., 28, 4(1983).
- [5] D. H. Tan , Some remarks on probabilistic measures of noncompactness (to appear).
- [6] O. Hadžić, Fixed point theorems for multivalued mappings in random normed spaces, Zb.rad.Prir.-mat.fak.Novi Sad, 9(1979), 29-36.
- [7] 0.Hadžić, M.Stojaković, Some applications of Bocsan's fixed point theorem, ibid., 10(1980), 37-47.
- [8] A.S.Potapov, B.N.Sadovski, On a fixed point theorem for condensing mappings, Operator methods in nonlinear analysis, Vorone (1982), 85-88.
- [9] J. Dan es, On the Istratescu's measure of noncompactness, Bull.Math. Soc.R.S.Roumania, 16(64),1972, 403-406.
- [10] S. Reich, Fixed point theorems in locally convex spaces, Math. 2. 125(1972), 17-31.
- [11] G. Cain, R. Kasriel, Fixed and periodic points of local contraction mappings on probabilistic metric spaces, Math. System
 Theory, 9(1976), 289-297.

Received by the editors June 10, 1983.

REZIME

O VEROVATNOSNOJ UNUTRAŠNJOJ MERI NEKOMPAKTNOSTI

U ovom radu dokazane su neke osobine verovatnosne unutrašnje mere nekompaktnosti.