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FIXED POINT THEORY IN PROBABILISTIC METRIC SPACES
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ABSTRACT

Most fixed point theorems for Probabilistic Metric spaces (PM-
spaces) have been prowed for the same subclass of PM-spaces. It is shown
that this subclass is metrizable. Furth‘ermore, the compatible metric d
is related to the distribution functions by

d(x,y) <t if and only If F_ y(t) >qat .

This allows an exact translation of the contraction condition, as well as
other conditions studied in metric spaces, to PM~spaces. Thus, theorems

follow immediately from corresponding theorems for metric spaces.

1. INTRODUCTION

A real-valued function defined on the set of real
numbers is a distribution function if it is nondecreasing,
left continuous and inf f =0, supf=1. H denotes the distri-
bution function defined by H(x) =0 1f x< 0, and H(x) =1 for
x>0.

DEFINITION 1.1, Let X be a set and F be a function
on XxX such that F(x,y) =Fx,y1:a a distribution funetion.
Consider the following conditions:
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1. F_ _(0)=0 for all x,y in X.

X:Y
. =H { : =v.
1I Fx,y if and only if x=y
ITI. F

=F .
X, Y Yrx

Iv. If Fx,y(e) =1 and F (8) =1, then Fx'z(e+6) =1.

Y.z
IV, Fy, gletd) 3T(Fx,y(e) ,Fy,z(tS) ).

If F satisfies conditions I and II then it is called
a pre-probabilistic metric structure (PPM-structure) on X and
the phir (X-,F-') is called a pre-probabilistic wmetric space (PPM~
space) . An F satisfying condition III is saild to be symmetric.
A symmetric PPM-structure F satisfying IV is a probabilistic
metric structure (PM-structure) and the pair (XFf) is a pro-
babilistic metric space (PM-space).

DEFINITION 1.2. A Menger space 18 a PM~gpace that
satisfies IVy, where T s a 2-place function on the unit squ-

are gattefying:

. T(0,0) =0, T(a,l)=a,

. T(a,b) =T(b,a),

. tf a<c, b<d, then T(a,b) <T(c,d),
. T(T(a,b),c) = T(a,T(b,c)).

- oW N

T 28 called a t-norm.

Let (X,F) be a PPM-space. For €, >0 and x €X, let
N (e/2) = {y:Fx,y(e) >1-2}.

A Tl topology T(F) on X is obtained as follows:
Uet(F) if for each x & U, there exists ¢ >0 such that
Nx(e,e),CU. The study of fixed point theory in probabilistic
metric spaces (PM-spaces) was started by Sehgal and Bharucha-
Reid [:10] . The following definition and theorem appeared in

their paper.
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DEFINITION 1.3, A mapping £ of a PM-gpace (X,F) in-
to itself ia a contraction if there exists k, with 0 <k<1l,
such that for each x,y €X,

fo,fy(kt) :Fx'y(t) for all t>0.

THEOREM 1.1. Let (X,F,T) be a complete Menger spa-
ce where T{a,b) =minf{a,b}. If £ i8 any contraction, there ex-
ists a unique p € X euch that f(p) = p. Moreover, lim fn(q) =p
for each q € X.

A little thought convinces oneself that this is a re-
asonable definition in this new setting. Alsc, if f is a con-
traction (d(fx,fy) <k d(x,y)) on a complete metric space (X,d),
and one makes it into a PM-space in the natural way; that is,

Fx,y(t) = H(t-d(x,y)),

then F (kt) > F_ y(t) . In [1], it was shown that the wea-
2%, _

fx, fy
ker condition,

fo,fy(kt)lFx,y(t) whenever Fx,y(t) >1-t ,

is sufficient to obtain the above theorem. As originally gi-
ven, the theorem required T to be continuous and satisfy
T(x,x) >x. It is easy to 'see that this forces T(a,b) =min{a,b].

2. BASIC THEOREMS

The following condition is another reasonable genera-
lization of a contraction to PM-spaces.

(c) For t>0, fo’fy(kt) > 1-kt whenever Fx,y(t) >1-t.
REMARK 1. If the metric space (X,d) is made into

a PM-space as indicated above; that is, F:“‘y(t) =H(t-d(x,vy)),
then if d(fx,fy) <k d(x,y), for 0<k<1l, we have condition (c).
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Proof. fo'fy(k‘.t) =H(kt - d(fx,fy))>H(kt-kd(x,y))=
= H(t-d(x,y)) =Fx,y(t) . Now Fx,y(t) =H(t-d(x,y)) >1-t if and
only if F, _(t) =1 if and only if F (t) >1-kt. Condition

'Y X,y

(c) follows.

We now show that for each PM-space in a class larger
than the one described in Theorem 1.1, there exists a campa-
tible metric 4@ such that

d(fx,fy) <k d(x,y) 41iff (c) holds.

Then, using condition (c¢) as our definition of a contraction,
we have Banach“s theorem for PM-spaces as a consequence of
Banach “s theorem for metric spaces. Actually, a nicer result
is obtained that allows you to translate many other fixed
point theorems for metric spaces to PM-spaces. The result
that makes this possible is:

d(x,y) <t iff px,'y(t) >1-t .,

THEOREM 2.1. Let (X,F) be a éymmetric PPM-gpace
such that

Fy, z(T+s) >min{ Fx,y(r) 'Fy,z(s)'} .

Let d(x,y) = sup{e:yﬁNx(e,e), o<e<l} ,
0 <f yeNx(e,e) for all e€>0 .

Then
(1) d(x,y) <t if and only if F, y(t) >1-¢t.

(2) d is a compatible metrie for t(F).
(3) If £f:X+X and 0<k<1,

(c) holds if and only if d(fx,fy) <k d(x,y).
(4) (X,F) <8 complete if and only if (X,d) ie complete.

Proof. Observe that if t<r, Nx(t,t) ch(r,r).
Also, ﬂ{Nx(e,e):O <e<l}=(x}. For, if x#y, F y#H. Thus
14
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there exists € > 0 such that Fy y(e) =6 where 0<§<1. Set
14

=1—61~ and let € =min{e,61}. Then Fx,y(el) :Fx,y(e) =6==1-6l

:1-51 gives ytNx(el,el) .

(1) If1<t, d(x,y) <1<t and also Fx y(t) >0>1-t.
, 2z
Suppose d(x,y) <t<1l. ‘Choose § such that d(x,y) <s<t<1.
Then yeNx(G,G) and Fx,y(t) 3Fx,y(5) >1-8§ >1~-t. For, if we
assume ytN {§,8), then d(x,y) =sup{ } >4, a contradiction.

Conversely, suppose F (t) >1-t where 0<t<1. Then

yeN, (t, t).IfyﬁN(e.e) for all e<t Fy (t)—l:LmI‘ (e)
gert” XY

<1lim (1-¢) =1-t, a contradiction. Thus there exists 0<e<t
e+t
such that ye Nx(e,e) . Hence d(x,y) <e<t.

(2) If d satisfies the triangular inequality, it is
a metric. Also, - (1) shows it is compatible with t(F). We ob-
serve that d(x,y) < € and d(y,z) < €, implies that d4(x,z) <
<g + €,- For, suppose

Fy y(e y > 1- € and I“)(,’z(t:z)‘>1—e:2

1f Fx,y(el) is the minimum,

F (el+e:2) 3‘“1“{Fx,y(51) ' Fy,z(ez)} >1l-¢

X,2 >1-(e +e

1 2

gives d(x,z) < e1+e2. The triangular inequality follows.

(3) sSuppose d(fx,fy) <k d(x,y) and Fx,y(t) >1-t,
Then d(x,y) <t and d(fx,fy) < kt. Thus fo'fy(kt) > 1-kt. If
(c) holds, let € >0 be given. Set t=d(x,y) +e. d(x,y) = t-e<t
gives

y(t) >1-t, and fo,fy(kt) > 1-kt

follows fram (c). Thus d(fx, fy) < kt=k(d(x,§)+s) = kd(x,y)+ke.
Since € > 0 was arbitrary, d(fx,fy) <k d(x,y).

REMARK 2. Assuming the conditions in Theorem 1.1,

we have
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Fx,z(r"'S) _>_T(Fx’y(r) F (s)) =min{F’x’y(r) ,Fy'z(s)} '

Yz

the inequality in Theorem 2.1. Also, the inequality in Theo-
rem 2.1 does not require the existence of a t-norm. Condition
(c) and the earlier definition of contraction seem to be in-
dependent for O<k<1l.

COROLLARY. Let (X,F) be a complete symmetric PPM-
gpace such that

Fx’y(r+s) _>_min{”£'x'y(r) ,Fy’z(s)} .

Suppose f:X +X gatisfiea (c¢). Then £ has a unique fized point
p. Alge, if x eX and x = fn(x), then

(1) p = lim X, and
kn—l
1-k

(2) for t> d{x, fx) =a, .

kn—l
l—Fxn'p(t) 1Ix d(x,f(x)).

Proof. The theorem gives a compatible metric
d such that d(fx,fy) <k d(x,y). From Banach’s fixed point
theorem, £ has a unique fixed point p satisfying (1). Also,

K0 kn—l
d(xn,p) 1% d(x,fx) < " d(x, fx) =a, -

Fram (1) of the Theorem,

F, ,p(an) >1 e, -

n
For tz L
1~ .
Fxn'p(t) 3Fxn,p(an) > a,

REMARK 3, Note that the error bound is usable. Gi-
ven £ > 0, choose 0 < €g < 1 and x guch that d(x,fx) <¢ that
is, F

0;
_=-d
x,fx(EO) >1-eo. For t>B8=yog>ay,
n-1 n-1

k
1 —F&n'p(t)frT:E-d(x,fx)<-i:3; Eo.
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N-1
If 5% ¢ <€ then l-Fxn,p(t) <e for all n>N all t> g,

We next consider how to translate other contractive
type conditions for metric spaces to PM-spaces.

LEMMA. Let (X,F) and 4 be as in Theorem 2.1, and
0<k<1l. Let R=R(x,y) be a function such that d(x,y) <R.

(C*) fo,fy(kt) > 1-kt whenever Fx,y(t) >1-t and t>R.

Then (C*) holde if and only if d(fx,fy) <kR.

Proof. The proof given for (3) of Theorem 2.1
will work here.

The numbering of the various contractive type condi-
tions are those of Rhoades [9]. conditions (1),(2) and (3)
of [9] have obvious translations using Theorem 2.1. The Lemma
can be used on other conditions. We illustrate this with the
condition

(24): For 0<k<1,
d(fx,fy) <k max{d(x,y),d(x,£x),d(y,£fy),d(x,fy) ,d(y,£x)}.

The translation is (C*) of the lemma with R=Max{---}. There
is a difficulty with this translation since (C*) involves
R=R(x,y). Another approach is possible. We translate a
condition that gives a common generalization of many of the
conditions in [9]. The following theorem was proved by Hicks
and Rhoades in [4].

THEOREM 2. 2. Let (X,d) be a complete metric epace
and 0<k<1l. Suppose f is a self map of X, and there exists
an x such that

(a)  a(fy,£2y) <k d(y,fy)

for every ye 0(x,») = {x,f(x),fz(x),...}. Then:

(1) limfnx=q exists.
n
(1) ate™x,q@ <5 ax, ) .
(111) If £ i8 continuous at q, fgq=q
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It was pointed out in [9], that conditions (1),(4),
(5),(7),(9),(11),(18) and (19) each imply (21) and (21) is
equivalent to (21°).

(21°) For 0<k<1l ,

a(fx, fy) <k max{d(x,y),d(x, £x),d(y, fy), SEENZAYL 00 4

It was noted in [4], that (21°) implies (A) for all ye€X,

and for O:ki% , (24) implies (A). The following general

theorem follows from Theorem 2.1 and 2.2.

THEOREM 2. 3. Let (X,F) be as in Theorem 2.1 and f

a gelf may of X. Suppose there sxists an x such that

(A7) for t>0, F fzy(kt) >1 -kt whenever

fy,
Fx,fy(t) >1-t gnd yeO(x,») .
Then:

(1)- 1imf™x = q exists.

(11) If £ s colztinuoua at q, fqgq=q.
nv-
(iii) For tzkl-:i- £(x,Tx), we have
kn—l
- t d .
1 Fxn'p( ):;T:E- (x,fx) .

Thus, for condimious f, (A”) is more general than
the translation of (21°). Also, (A~°) refers only to the dis-
tribution function. The compatible metric d satisfying d(x,y)
<t if and only if Fx,y(,t) > 1-t allows the translation of many
other concepts and theorems from metric spaces to PM-spaces.
The following will serve as an illustration.

Let (X,d) be a metric space and let € > 0. X is e-cha-
inable if for every x,y € X, there exists XgrXy g Xy in X
such that

d(xi'xiﬂ) <g, i=0,1,...,n-1.

For PM-spaces the condition becomes

F (e) >1-¢ i=0,1,...,n-1,
Xge¥141 ) ! !
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A mapping f is called an (g&,1)-local contraction if
a(fx,fy) <id(x,y) whenever d(x,y) <e.
This becames

fo’fy(lt) > 1-1t whenever Fx,y(e) >1-¢ and

F (A) >1-1; that is, whenever
X,y

Fx’y(a) >1-a where a=min{e,2}.

Edelstein’s Theorem [2] for PM-spaces follows.

THEOREM 2 .4. Let (X,F) be a complete e~chainable
gymmetric PPM-gpace such that

Fx'y(r+s) 3m1n{Fx’Y(r),FY’z(s) }.
Suppose f:X+X is an (e¢,A)-contraction, where G<i <1,
Then f has a unique fixed point p and lim fnx=p for any x
n
in X.

PROBLEM. Can the condition Fy z(r+s) >m1n{Fx (r),
’ - 24

Fy z(s)} in Theorem 2.1 be replaced by some other reasonable
’

(weaker) conditions ?
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REZIME

TEORIJA NEPOKRETNE TACKE U VEROVATNOSNIM
METRICKIM PROSTORIMA

Dokazane su teoreme o nepokretnoj tadki za neke
klase verovatnosnih metriZkih prostora.



