Zbornik radova Prirodno-matematičkog fakulteta-Univerzitet u Novom Sadu knjiga 13 (1983)

Review of Research Faculty of Science-University of Novi Sad, Volume 13(1983)

FIXED POINT THEORY IN PROBABILISTIC METRIC SPACES

T.L.Hicks University of Missouri - Rolla , USA

ABSTRACT

Most fixed point theorems for Probabilistic Metric spaces (PM-spaces) have been proved for the same subclass of PM-spaces. It is shown that this subclass is metrizable. Furthermore, the compatible metric d is related to the distribution functions by

$$d(x,y) < t$$
 if and only if $F_{x,y}(t) > 1-t$.

This allows an exact translation of the contraction condition, as well as other conditions studied in metric spaces, to PM-spaces. Thus, theorems follow immediately from corresponding theorems for metric spaces.

1. INTRODUCTION

A real-valued function defined on the set of real numbers is a <u>distribution function</u> if it is nondecreasing, left continuous and inf f = 0, sup f = 1. H denotes the distribution function defined by H(x) = 0 if $x \le 0$, and H(x) = 1 for x > 0.

DEFINITION 1.1. Let X be a set and F be a function on $X \times X$ such that $F(x,y) = F_{XY}$ is a distribution function. Consider the following conditions:

AMS Mathematics subject classification (1980): 47H10 Key words and phrases: Probabilistic metric spaces, fixed point theorems.

I.
$$F_{x,y}(0) = 0$$
 for all x, y in X.

II.
$$F_{x,y} = H$$
 if and only if $x = y$.

III.
$$F_{x,y} = F_{y,x}$$
.

IV. If
$$F_{x,y}(\varepsilon) = 1$$
 and $F_{y,z}(\delta) = 1$, then $F_{x,z}(\varepsilon+\delta) = 1$.

$$IV_{m}$$
. $F_{x,z}(\varepsilon+\delta) \geq T(F_{x,y}(\varepsilon), F_{y,z}(\delta))$.

If F satisfies conditions I and II then it is called a <u>pre-probabilistic metric structure</u> (PPM-structure) on X and the pair (X,F) is called a <u>pre-probabilistic metric space</u> (PPM-space). An F satisfying condition III is said to be <u>symmetric</u>. A symmetric PPM-structure F satisfying IV is a <u>probabilistic metric structure</u> (PM-structure) and the pair (X,F) is a <u>probabilistic metric space</u> (PM-space).

DEFINITION 1.2. A Menger space is a PM-space that satisfies ${\rm IV}_{\rm m}$, where T is a 2-place function on the unit square satisfying:

- 1. T(0,0) = 0, T(a,1) = a,
- 2. T(a,b) = T(b,a),
- 3. if a < c, b < d, then $T(a,b) \le T(c,d)$,
- 4. T(T(a,b),c) = T(a,T(b,c)).

T is called a t-norm.

Let (X,F) be a PPM-space. For $\varepsilon,\lambda>0$ and $x\in X$, let $N_{\mathbf{y}}(\varepsilon,\lambda)=\{y:F_{\mathbf{x}=\mathbf{y}}(\varepsilon)>1-\lambda\}$.

A T_1 topology $\tau(F)$ on X is obtained as follows: $U \in \tau(F)$ if for each $x \in U$, there exists $\varepsilon > 0$ such that $N_{\mathbf{X}}(\varepsilon,\varepsilon) \subseteq U$. The study of fixed point theory in probabilistic metric spaces (PM-spaces) was started by Sehgal and Bharucha-Reid [10]. The following definition and theorem appeared in their paper.

DEFINITION 1.3. A mapping f of a PM-space (X,F) into itself is a contraction if there exists k, with 0 < k < 1, such that for each $x,y \in X$,

$$F_{fx,fy}(kt) \ge F_{x,y}(t)$$
 for all $t > 0$.

THEOREM 1.1. Let (X,F,T) be a complete Menger space where $T(a,b)=\min\{a,b\}$. If f is any contraction, there exists a unique peX such that f(p)=p. Moreover, $\lim_{n\to\infty} f^n(q)=p$ for each $q\in X$.

A little thought convinces oneself that this is a reasonable definition in this new setting. Also, if f is a contraction $(d(fx,fy) \le k \ d(x,y))$ on a complete metric space (X,d), and one makes it into a PM-space in the natural way; that is,

$$F_{x,y}(t) = H(t-d(x,y)),$$

then $F_{fx,fy}(kt) \ge F_{x,y}(t)$. In [1], it was shown that the weaker condition,

$$F_{fx,fy}(kt) \ge F_{x,y}(t)$$
 whenever $F_{x,y}(t) > 1-t$,

is sufficient to obtain the above theorem. As originally given, the theorem required T to be continuous and satisfy T(x,x) > x. It is easy to see that this forces $T(a,b) = \min\{a,b\}$.

2. BASIC THEOREMS

The following condition is another reasonable generalization of a contraction to PM-spaces.

(c) For
$$t > 0$$
, $F_{fx,fy}(kt) > 1-kt$ whenever $F_{x,y}(t) > 1-t$.

REMARK 1. If the metric space (X,d) is made into a PM-space as indicated above; that is, $F_{X,Y}(t) = H(t-d(x,y))$, then if $d(fx,fy) \le k \ d(x,y)$, for $0 < k \le 1$, we have condition (c).

Proof. $F_{fx,fy}(kt) = H(kt-d(fx,fy)) \ge H(kt-kd(x,y)) = H(t-d(x,y)) = F_{x,y}(t)$. Now $F_{x,y}(t) = H(t-d(x,y)) > 1-t$ if and only if $F_{x,y}(t) = 1$ if and only if $F_{x,y}(t) > 1-kt$. Condition (c) follows.

We now show that for each PM-space in a class larger than the one described in Theorem 1.1, there exists a compatible metric d such that

$$d(fx,fy) \le k d(x,y)$$
 iff (c) holds.

Then, using condition (c) as our definition of a contraction, we have Banach's theorem for PM-spaces as a consequence of Banach's theorem for metric spaces. Actually, a nicer result is obtained that allows you to translate many other fixed point theorems for metric spaces to PM-spaces. The result that makes this possible is:

$$d(x,y) < t$$
 iff $F_{x,y}(t) > 1-t$.

THEOREM 2.1. Let (\mathbf{X},\mathbf{F}) be a symmetric PPM-space such that

$$F_{x,z}(r+s) \ge \min\{F_{x,y}(r),F_{y,z}(s)\}$$
.

$$\text{Let } d(x,y) = \left\{ \begin{array}{l} \sup\{\epsilon:y \not = N_{_{\mathbf{X}}}(\epsilon,\epsilon) \text{ , } o < \epsilon < 1\} \text{ ,} \\ 0 \text{ if } y \in N_{_{\mathbf{X}}}(\epsilon,\epsilon) \text{ for all } \epsilon > 0 \text{ .} \end{array} \right.$$

Then

- (1) d(x,y) < t if and only if $F_{x,y}(t) > 1-t$.
- (2) d is a compatible metric for t(F).
- (3) If f:X + X and $0 < k \le 1$,
 - (c) holds if and only if $d(fx, fy) \le k d(x, y)$.
- (4) (X,F) is complete if and only if (X,d) is complete.

Proof. Observe that if t<r, $N_X(t,t) \subset N_X(r,r)$. Also, $\bigcap \{N_X(\epsilon,\epsilon): 0 < \epsilon < 1\} = \{x\}$. For, if $x \neq y$, $F_{x,y} \neq H$. Thus

there exists $\varepsilon > 0$ such that $F_{\mathbf{x},\mathbf{y}}(\varepsilon) = \delta$ where $0 < \delta < 1$. Set $\delta = 1 - \delta_1$ and let $\varepsilon_1 = \min\{\varepsilon, \delta_1\}$. Then $F_{\mathbf{x},\mathbf{y}}(\varepsilon_1) \leq F_{\mathbf{x},\mathbf{y}}(\varepsilon) = \delta = 1 - \delta_1$ $\leq 1 - \varepsilon_1$ gives $\mathbf{y} \notin N_{\mathbf{x}}(\varepsilon_1, \varepsilon_1)$.

- (1) If 1 < t, $d(x,y) \le 1 < t$ and also $F_{x,y}(t) \ge 0 > 1-t$. Suppose $d(x,y) < t \le 1$. Choose δ such that $d(x,y) < \delta < t \le 1$. Then $y \in N_x(\delta,\delta)$ and $F_{x,y}(t) \ge F_{x,y}(\delta) > 1-\delta > 1-t$. For, if we assume $y \notin N_x(\delta,\delta)$, then $d(x,y) = \sup\{ \} \ge \delta$, a contradiction. Conversely, suppose $F_{x,y}(t) > 1-t$ where $0 < t \le 1$. Then $y \in N_x(t,t)$. If $y \notin N_x(\epsilon,\epsilon)$ for all $\epsilon < t$, $F_{x,y}(t) = \lim_{\epsilon \to t^-} F_{x,y}(\epsilon) \le \lim_{\epsilon \to t^-} (1-\epsilon) = 1-t$, a contradiction. Thus there exists $0 < \epsilon < t$ such that $y \in N_x(\epsilon,\epsilon)$. Hence $d(x,y) \le \epsilon < t$.
- (2) If d satisfies the triangular inequality, it is a metric. Also, (1) shows it is compatible with t(F). We observe that $d(x,y) < \varepsilon_1$ and $d(y,z) < \varepsilon_2$ implies that $d(x,z) < \varepsilon_1 + \varepsilon_2$. For, suppose

$$F_{x,y}(\varepsilon_1) > 1 - \varepsilon_1$$
 and $F_{y,z}(\varepsilon_2) > 1 - \varepsilon_2$.

If $F_{x,v}(\varepsilon_1)$ is the minimum,

$$\begin{split} & \quad \quad F_{\mathbf{x},\mathbf{z}}(\varepsilon_1 + \varepsilon_2) \geq \min\{F_{\mathbf{x},\mathbf{y}}(\varepsilon_1) \;,\; F_{\mathbf{y},\mathbf{z}}(\varepsilon_2)\} > 1 - \varepsilon_1 > 1 - (\varepsilon_1 + \varepsilon_2) \\ & \text{gives d}(\mathbf{x},\mathbf{z}) < \varepsilon_1 + \varepsilon_2. \text{ The triangular inequality follows.} \end{split}$$

(3) Suppose $d(fx,fy) \le k \ d(x,y)$ and $F_{x,y}(t) > 1-t$. Then d(x,y) < t and d(fx,fy) < kt. Thus $F_{fx,fy}(kt) > 1-kt$. If (c) holds, let $\varepsilon > 0$ be given. Set $t = d(x,y) + \varepsilon$. $d(x,y) = t-\varepsilon < t$ gives

 $F_{x,y}(t) > 1-t$, and $F_{fx,fy}(kt) > 1-kt$ follows from (c). Thus $d(fx,fy) < kt = k(d(x,y)+\epsilon) = kd(x,y)+k\epsilon$. Since $\epsilon > 0$ was arbitrary, $d(fx,fy) < k \ d(x,y)$.

REMARK 2. Assuming the conditions in Theorem 1.1, we have

$$F_{x,z}(r+s) \ge T(F_{x,y}(r),F_{y,z}(s)) = min\{F_{x,y}(r),F_{y,z}(s)\}$$

the inequality in Theorem 2.1. Also, the inequality in Theorem 2.1 does not require the existence of a t-norm. Condition (c) and the earlier definition of contraction seem to be independent for 0 < k < 1.

COROLLARY. Let (X,F) be a complete symmetric PPM-space such that

$$F_{x,y}(r+s) \ge \min\{F_{x,y}(r), F_{y,z}(s)\}$$
.

Suppose $f:X \to X$ satisfies (c). Then f has a unique fixed point p. Also, if $x \in X$ and $x_n = f^n(x)$, then

(1)
$$p = \lim_{n \to \infty} x_n$$
, and

(2) for
$$t \ge \frac{k^{n-1}}{1-k} d(x, fx) = \alpha_n$$
,
 $1-F_{x_n, p}(t) \le \frac{k^{n-1}}{1-k} d(x, f(x))$.

Proof. The theorem gives a compatible metric d such that $d(fx,fy) \le k \ d(x,y)$. From Banach's fixed point theorem, f has a unique fixed point p satisfying (1). Also,

$$d(x_n, p) \le \frac{k^n}{1-k} d(x, fx) < \frac{k^{n-1}}{1-k} d(x, fx) = \alpha_n$$
.

From (1) of the Theorem,

$$F_{x_n,p}(\alpha_n) > 1 - \alpha_n$$
.

For $t \ge \alpha_n$,

$$F_{x_n,p}(t) \ge F_{x_n,p}(\alpha_n) > 1 - \alpha_n$$
.

REMARK 3. Note that the error bound is usable. Given $\epsilon > 0$, choose $0 < \epsilon_0 < 1$ and x such that $d(x,fx) < \epsilon_0$; that is, $F_{x,fx}(\epsilon_0) > 1 - \epsilon_0$. For $t \geq \beta = \frac{\epsilon_0}{1-k} > \alpha_n$,

$$1 - F_{x_n, p}(t) \le \frac{k^{n-1}}{1-k} d(x, fx) < \frac{k^{n-1}}{1-k} \epsilon_0.$$

$$\text{If } \frac{k^{N-1}}{1-k} \ \epsilon_0 < \epsilon \text{, then } 1-F_{\kappa_n,p}(\texttt{t}) < \epsilon \text{ for all } n \geq N \text{ all } \texttt{t} \geq \beta \text{.}$$

We next consider how to translate other contractive type conditions for metric spaces to PM-spaces.

LEMMA. Let (X,F) and d be as in Theorem 2.1, and $0 \le k \le 1$. Let R = R(x,y) be a function such that $d(x,y) \le R$.

(C*) $F_{fx,fy}(kt) > 1-kt$ whenever $F_{x,y}(t) > 1-t$ and t > R. Then (C*) holds if and only if d(fx,fy) < kR.

The proof given for (3) of Theorem 2.1 Proof. will work here.

The numbering of the various contractive type conditions are those of Rhoades [9]. Conditions (1),(2) and (3) of [9] have obvious translations using Theorem 2.1. The Lemma can be used on other conditions. We illustrate this with the condition

(24): For
$$0 < k < 1$$
,

 $d(fx,fy) < k \max\{d(x,y),d(x,fx),d(y,fy),d(x,fy),d(y,fx)\}.$ The translation is (C*) of the lemma with $R = Max\{---\}$. There is a difficulty with this translation since (C*) involves R = R(x,y). Another approach is possible. We translate condition that gives a common generalization of many of the conditions in [9]. The following theorem was proved by Hicks and Rhoades in [4].

THEOREM 2.2. Let (X,d) be a complete metric space and 0 < k < 1. Suppose f is a self map of X, and there exists an x such that

- (A) $d(fy, f^2y) < k d(y, fy)$ for every $y \in O(x, \infty) = \{x, f(x), f^2(x), \ldots\}$. Then:

 - (i) $\lim_{x \to q} exists$. (ii) $d(f^n x, q) \leq \frac{k^n}{1-k} d(x, fx)$.
 - (iii) If f is continuous at q, fq=q

It was pointed out in [9], that conditions (1), (4), (5), (7), (9), (11), (18) and (19) each imply (21) and (21) is equivalent to (21).

$$(21')$$
 For $0 < k < 1$,

 $d(fx,fy) \leq k \max\{d(x,y),d(x,fx),d(y,fy),\frac{d(x,fy)+d(y,fx)}{2}\}.$ It was noted in [4], that (21') implies (A) for all $y \in X$, and for $0 \leq k \leq \frac{1}{2}$, (24) implies (A). The following general theorem follows from Theorem 2.1 and 2.2.

THEOREM 2.3. Let (X,F) be as in Theorem 2.1 and f a self map of X. Suppose there exists an x such that

(A') for
$$t > 0$$
, $F_{fy,f^2y}(kt) > 1 - kt$ whenever
$$F_{x,fy}(t) > 1 - t \text{ and } y \in O(x,\infty) .$$

Then:

- (i) $\lim_{x \to q} exists$.
- (ii) If f is continuous at q, fq = q.

(iii) For
$$t \ge \frac{k^{n-1}}{1-k}$$
 f(x,Tx), we have
$$1 - F_{x_n} p(t) \le \frac{k^{n-1}}{1-k} d(x,fx) .$$

Thus, for condimious f, (A') is more general than the translation of (21'). Also, (A') refers only to the distribution function. The compatible metric d satisfying d(x,y) <t if and only if $F_{x,y}(t) > 1-t$ allows the translation of many other concepts and theorems from metric spaces to PM-spaces. The following will serve as an illustration.

Let (X,d) be a metric space and let $\varepsilon > 0$. X is ε -chainable if for every $x,y \in X$, there exists x_0,x_1,\ldots,x_n in X such that

$$d(x_i,x_{i+1}) < \varepsilon, i=0,1,...,n-1.$$

For PM-spaces the condition becomes

$$\mathbf{F}_{\mathbf{x}_{i},\mathbf{x}_{i+1}}(\varepsilon) > 1-\varepsilon, \quad i=0,1,\ldots,n-1.$$

A mapping f is called an (ε,λ) -local contraction if $d(fx,fy) \le \lambda d(x,y) \text{ whenever } d(x,y) < \varepsilon.$

This becomes

$$\begin{split} & F_{fx,fy}(\lambda t) > 1 - \lambda t \text{ whenever } F_{x,y}(\epsilon) > 1 - \epsilon \quad \text{and} \\ & F_{x,y}(\lambda) > 1 - \lambda; \quad \text{that is, whenever} \\ & F_{x,y}(\alpha) > 1 - \alpha \quad \text{where } \alpha = \min\{\epsilon,\lambda\}. \end{split}$$

Edelstein's Theorem [2] for PM -spaces follows.

THEOREM 2.4. Let (X,F) be a complete ϵ -chainable symmetric PPM-space such that

$$F_{x,y}(r+s) \ge \min\{F_{x,y}(r),F_{y,z}(s)\}.$$

Suppose $f:X\to X$ is an (ϵ,λ) -contraction, where $0<\lambda<1$. Then f has a unique fixed point p and $\lim_{n\to\infty} f^nx=p$ for any x in X.

PROBLEM. Can the condition $F_{x,z}(r+s) \ge \min\{F_{x,y}(r), F_{y,z}(s)\}$ in Theorem 2.1 be replaced by some other reasonable (weaker) conditions ?

REFERENCES

- [1] G. L. Cain, Jr., and R. H. Kasriel, Fixed and Periodic Points of Local Contraction Mappings on Probabilistic Metric Spaces, Mathematical System Theory 9, (1976), 289-297.
- [2] M. Edelstein, An Extension of Banach's Contraction Principle, Proc. Amer.Math.Soc. 12(1961), 7-10.
- [3] O. Hadžić, Fixed Point Theorems For Multivalued Mappings in Probabilistic Metric Spaces, Matematički vesnik, 3(16)(31),1979 125-133.
- [4] T.L. Hicks and B. E. Rhoades, A Banach Type Fixed Point Theorem, Math. Japonica 24, (1979), 327-330.

- [5] T.L. Hicks and P.L. Sharma, Statistical Metric Spaces, to appear.
- |6| Vasile I.Istrățescu, Probabilistic Metric Spaces. An Introduction.

 Ed. Technica, Bucharest, 1974.
- [7] ______, Fixed Point Theory, D.Reidel Publishing Company, 1981.
- [8] K. Menger, Statistical Metrics, Proc.Nat.Acad. of Sci., U.S.A., 28 (1942), 535-537.
- [9] B. E. Rhoades, A Comparison of Various Definitions of Contractive Mappings, Trans. Amer. Math. Soc. 226(1977), 257-290.
- [10] V.M. Sehgal and A.T. Bharucha-Reid, Fixed Points of Contraction Mappings on Probabilistic Metric Spaces, Mathematical Systems Theory, 6(1972), 97-102.

Received by the editors August 10, 1983.

REZIME

TEORIJA NEPOKRETNE TAČKE U VEROVATNOSNIM METRIČKIM PROSTORIMA

Dokazane su teoreme o nepokretnoj tački za neke klase verovatnosnih metričkih prostora.