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ABSTRACT

In this paper we construct the approximate solutlon of a certain
linear partial differential equation with constant coefficients, using the
field of Mikusifiski operators M, in steps, on the Interval [b,f]. We also
give the error of approximation.

In papers [1] and [2] the following linear partial dif-
ferential equation with constant coefficients was observed:

m n u+vx
(1) 1 ) e 3 20,4

A = ¢p(r,t), A, <A<
pu=o v=o MV a\M atV 1="=

Py Of_t< ©

Using the field of Mikusinski operators M the approxi-
mate solution of equation (1) was constructed in (1] and the
error of approximation was given in [2] on the interval [0,T].
This error of approximation increases rather fast by enlarging
T.

In this paper we shall find the approximate solution
of (1) for n=1 and ¢(A,t) =0, i.e.
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with the following conditions:
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on the interval [0,T]. We shall divide thisinterval into two inter-
vals ([0,'1‘1] and ETI’T] }and seek the approximate solution suc-

t>0

cesively., We shall prove that this enables us to obtain a bhet-
ter estimation of the error. At the same time we can construct
the approximate solution on an arbitrary interval ['I‘l,'.l‘],

0 < '1’1 < T, The method which we shall use can be applied in many
steps in the same way as in two steps (dividing the interval
(0,7] into intervals [0,T,][T,,T5]...[T _,.,T ] where T =T).

In the field M the differential equation

. m 1 v. (u)
(5) L1 oy S % ) = £
H=0 v=0 ’
where m "
- _ v %x(A,t)
69 £ = fo,, EEAE

corresponds to equation (2). Conditions (3) imply £()) = 0. The
exact solution of equation (5) with (5°) has the form ([1]):

m .
(6) x(A) = jzllbjexp()‘wj) where wj:iéo ci,jg‘
while the approximate one is ([1]):
~ m ~ ~ 10 ip
(7 x(A) = s-y;l lbjexp(xmj) where wy = 1£° 5 e 9

We shall suppose that Ej € Cc, where {Sj} = ij
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In (6) and (7) an exponential operator exm appears .
The conditions for the existence of that operator, together
with its character, are given in [1]. Now, in this paper we
suppose that p/g< -1, so then (exm-I) belongs to 8. & is the
ring of continuous complex valued functions defined over [b,w).

After a change of variables t=T+T, equation (2) be-

comes:
@ 7 1 o 2Txoemm)
u=o v=o MrVv M 5V
Let us denote x(A,T+Tl)==y(A,T) and observing that:
-T.s f yOo,t=T), 1>7T;
(9) e {yx, )} = = X(A,T)
0, , TX T1
we obtain:
Tls Tls
{yh,1)} = {x(A,t+T))} = e {(X(x,71)} = e © X(X) .
and
ax()‘,r+T1) Tls
{———a—T—-———}=s{x(x,r+T1)}—x(A,Tl)I=e sX(X)-x(A,T )1
Equation (8) corresponds in field M to the equation:
Tls m 1 vo (1)
(10) e 77 e sxM oy = FL )
- = M,V 1
H=O V=0
where
m u
arx(x,t)
(11) F.(\)= ] «a e
! p=o Hrl ad  Fh .
The solution of equation (10) with conditions in M:
X(0) = x°(0) =...= x™2)(g) =0
(12) x™ 0y = ¢

(which follows from (4)) can be formed in the following way

CEIPE -T s A
X(0) =e 1 [ FOOX (A-x)ax,
0

(13)
Fy(X) F, (X)

where F(x) = =
l(am’o+am'i§T C
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and xh(x) is the solution of the homogeneous part of equa-
tion (10), In fact, it has the same form as the solution x(A)
of equation (5) given by (6), so we have:

Jrls kv
(14) X(A) = x(A) + e J FOOx(A-x)dy .
0

Integrals in (13) and (14) exist because F(x)x(A-x) is
a continuous function.
Let us observe that the solution of equation (2) x(A,t)

can be written as X(,7) for t=1+T, and te [T,,T].

Now, let us replace the exact solution x(iA) with an
approximate one x(}) given by (7); so instead of equation (10)

we have:

Tls m 1. v (1) -
(15) e I I o sxM Q) =F @

u=o v=o W’
where
- o Wy
(16) Fooo= [ o, &X2et
u=o W¢ oM 1

The solution of equation (15) with conditions (12) has
the from

- -T)s A . 5 FL 00
(17) X,00 =X 0) +e f F( )X, (A-x)dx, F(x) = .
0
and the approximate solution of (15) is
~ - ~ - —Tls A -
(18) X(d) = x(x)-+xp(x) = x()) +e [ F(x)x(x-x)dy
0

where x(1) is the approximate solution of the homogeneous part
of (15). In fact it has the same form as the approximate solu-
tion of equation (5) given by (7).

Let us remark that equation (10) and (15) differ only
in their right-hand sides. In the next section we shall prove
that the solution of equation (10) depends continuously - on the
right-hand side. This fact enables us to use i(k,r), (where
{i(x,r)}==i(k), i(x) is given by (18)) as the approximate so-
lution of equation (2) on the interval [T,,T]| and to find the
error of fpproximation on E?l,f] as the difference between
X()) and X()\).
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MEASURE OF APPROXIMATION

In this section we use the notion of an absolute va-~
lue (module) of certain operators from M . If an operator a
is defined by a function a(t),t>0 from &, then its absolute
value |a) = |{a(t)}]|={]a(t)|} is again a function from & ([1].
[}]). # is the ring of locally integrable functions over [p,m).

If g(A,x) 1s a continuous operator function, there ex-
ists g eM such that {gl(x.x,t)}==qg(x.x) and gl(x.x,t) is a

continuous function, then:

A Y
[ [ aga,x)dx| <. &f G(A,x)dy
0 -T o

where G(x,x) = max |g,(Q.x,B)| . .
0<t<T

The other properties of the absolute value which we are going
to use are given in [1].°

First, let us estimate the difference between F(}\) gi-
ven by (11) and F()) given by (16). For that purpose we note
‘that in the field M the y-th derivative of x()) given by (6) has
the following form:

m
(19) xW ) = T b expOw,) .
j=1 1] J
In the same manner we take:
N m
(20) 00 =7 ¥ expOra,).
j=1 3] J

We shall also need the following lnequalities (for
(p/a) <-13, (1], [2]:

Yo (1-p) /q o (1-p) /a1
L, cuat D st Lo sl T T v
(21) o o
: 1.—.1X+1ci.jl(i_p)/q)k| A3 (¢ {toPH1-D) /qe.iiouizoup;p'i/qﬂ)ki T

[=]
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i°+1-p—q
i +1 .
<z ¥ p° L5 rt/d > k(7 s 3
- ¢ T _+1-p 2120 Py Wi+ =T Y3 k-1)1 ~ -
r( ) -
"o (i-p)/ = 3k o (1-p)/q; k
|rexp(x ] ¢ .t Py <n T 51 1 c; ;2 Pl x .
i=° 'J k=° ° i=o 'J -_'r
® _k k
A k T _
S lkzo -k—l Vj(T) m = Nj(AIT)l .
o0 , @ k k
(i-p)/q A k T
|exp (A c, .t Y=I| < ohys (T) T yLi(T) &= ¢ =
1£1°+1 ird REAERINIS AR

Since the solution x(A,t) and the approximate one i(x,t)
together with thelr partial derivatives by A up to the order m
are continuous on the set {(A,t)| 0<X<A, , 0<t<T}, there

exist numbers Ru(A,T) (which we shall determine later in Lemma
1.) so that:

(22) 1 o) - ;C(U)(A)]iTRu(A,T)E , u=0,...,m.

Thig implies:

_a¥xoLt)

| Bp'x()‘,t) | |
t=T 3*1 t=

aM
Using (11), (16) and (22) we have:

pl < ROLT) -

~ m
(23)  [Fy00)-F 0] < u£° la, 1 IR, LT = e(,D

From (2] and notation (21) follows (if (p/g) <-1):

m
(24)  [3(0)-2ON) | <2 j£1 |bj|Nj(A,T)Gj(A,T)T=TRO()\,T)!L

LEMMA t. The error of approzimation of the u—th de-
rivative is:

(u)

@ -2 ) < T Iba N, (LT WE e, (T Do g+
-T 521 373 ! J b ul

(25)

u o k k
Uy u-°P r . A k, .7 u=1
+ T'il (T)Vj (T)'Yj (T)( k-z:o %T Yj (T) T )2 ) e
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Proo f. In view of (19) and (20) we can write:
(o) > (u) T u Ty U ~
I ® - 0= § bl lehtexpOw.)-ahrexp(ra,) | <
g1 303 i3 it =
m R w© @
< I o ltexpOin @+ [ e 2PV Dlepn § o,
j=1 3 3 Joa=i a1 td 1=i +1 *7J

(i-p)/qy_.uy . % - “up
L ) mj| <1 |bj||Eexp(Amj)|([mjl

j=1
m .
- lexp(x § c 2 1PVay gy
i=1_+1 *7J
)
u-r, T (1~p) /g 5 (1-p)
+ | ( E (r )m; (1 e, 5 P /q))exp(x'_'z 5 p)/q )|
r=1 i=i +1 i=i_+1
) o
AL, e, 0,1 L g
< . . ,T . . ’ — +
< j£1 | 5 J(A ) vy 1G5 (1 T

oo k Tk
Uy, u-r r ALK u-1l,
+ ('rzl (FIvg T(Ty (TH( kgo kTR (TIED LT =R (LTI

LEMMA 2. The solution X()\) given by (13) of equation
(10) with conditions (12) depends continuously on F(XA).

Proof. If il(x), given by (17), is the solution
of equation (15) with conditions (12) (equations (10) and (15)
differ only in their right-hand sides) then using relations (21)

and (23) we have:

- ’ X . -T s
I XO0=-X, ) | = |[ (F(x)-F(x)e Lxo-xvax | <
0

< PeOUTDF 0T (65,118 + ).
io L-p
where |%2exp(x § c, .2 )] < F. (0,7
C = jeg 1.3 - T3
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Lemma 2 enables us to use X()) from relation (18) as
the approximate solution in the field M of equation (10).

PROPOSITION. If X()) Z8 the solutton of equation (10)
given by (13) and X()\) is the approximate one of equation (15)
given by (18) then the error of approximation is:

- m -—
(26)  |X(A)=-X(N) | < 521 ij|ANj(X,T-T1)!.(e(X,T1) +

+ G, (0, T-T)) (T-T,) (e (A, T, ) +F (1)) ) +R, (A, T-T, ) ¢

Proof. Using (13) and (18) we can write:

-T,s -
(F()x(A-X)-F(X) X2 -X))aX | =

- A
X, (0 -X (1) |= |£ e
-T,s . . -
e (F (X)X (A=X) =F(X) x (A=X) +F (X) X (A-X) =F (X} X (A-X) ) &X |

-T.s

T.s, A - 1 ’
x(A=x)|aX + [ [(F(X)-F(X)e “(x(r-X) -
o

[ (FOO-F(X))e !

O~ O

T

. Ao~ -T.s o
- XO-xNAX + [ [F(oe 1 (x(A-X)-k(A-X))| ax .

o .
In view of (21),(23),(24) and (25) we have:

~ m -—
|x(x)—x(x)|5T j£1 ijIANj(A,T-Tl)(e(}\,Tl)l +
+ G5O T=T)) (T-T)) 2 (e (A, T )+F (1)) + R (4, T-T)) L

EXAMPLE. The following example will show the adva-
ntage of approximation in two steps compared to the older met-
hod from [1],[2].

Let us observe the partial differential equationé

2
2°x (A, t)_ 3x(A,t) _ -
3A3£ EYY x(l,t) =0

with conditions:

(27)

(28) %’A‘-{i’l=o,x>o : x(0,8)=1, t>0 .
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In the field M, equation
(29) (s=-1)x"(A} - x(A) = 0O

corresponds to the equation (27) with (28). The solution of
equation (29) is:

" x(1) = texp(Aw), where w = [ ¢ and x°()) = ftwexp (Aw)
while the approximate solution of equation (29) is:

%()) = Lexp(Ad), where = 3? 21t and x-00) = taexprd) -
i=0

After a change of variables t= 1+ T. equation (27) be-

1
comes:

2
(30) 3 x(k,r+'1‘1) ax(x,r+T1)

= x()\,r+T1) =0
X 31 I

with conditions:

3ax (A, T+T,)
=0 " $(N),  x(0,7) =1,
In the field M, equation
(31) e T1%(s-1)x () - X)) = {O)
corresponds to equation (30). The solution of equation (31) is:
(32) X(A) = e IS T poO)x(-X)dX + x(A) .

o
X (A, T+T))
If we take §(A) = ——y—— |T=° instead of $(A) we

get equation:
T s

(33) e '(s=DX () - X)) = EO).
From Lemma 2 and EIJ the approximate solution of equa-
tion (33) given by:

- —Tls A L - -
(34) X(A) = e [ FOOx(A-X)aX + x(})
o
can be observed as the approximate solution of equation (31)

and the function X(1,7) (X() = {X(X,1)}) as the approximate
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solution of equation (27) on interval [Terj-

Since m=1, bj =1, M=p=1, we can write the entities in

(21) without index j. Also, E(A) =¢(A) and E(A) = ¢()) and the-
refore we can obtain £ (A,T) using estimation (25) for u= 1.
So we have:

(35) . [x7 () =8"(N) | < NOX,T) (WITIG(A,T)T +
o ka mk
+y (MO 7 Y (D) =e(h, TR .
k=0
If the exact solution of equation (31) is given by (32)
and the approximate one is given by (34) then the measure of

app¥oximation is:

|X(M)=X () | < (NOLT-T)) (e (A, T)) +G(,T=T)) (T-T) (e (A,T)) +

+ 6(0)) g + R (A, T-T)) 8 -

In the following table there are two errors of approxi-
mation, the first (one step) on interval [0,T] and the other
(two steps) on the interval [?I,T]. Let us remark that the er-
ror of approximation is smaller when we work in two steps, es-
pecially if T is bigger than 1.

TA? one step T1 Two steps
ig=3sa=1 1,5, A=1

0,1 | 1-10°10 )
0,2 |2,77-1078 . 0,1 2, 1-107°
0,4 16,17.10°° = 0,2 2,56.10" 7
0,5 |4,08-10™°> 0,1 1,02.1072
0,8 |3,80-10°3 | 0,4 5,75¢107°
1 ]5,73-107% | 0,5 4,51.107%
1,6 |5,85-10° | o0.,8 1,14-107!
2 |1,00-1077 % 1 5,75-10°
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It is cobvious that this method can be applied in the
same way in many steps, by dividing the ‘interval E),'J:] into n
parts which are not neccessarily equal.
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REZIME

PRIBLIYNO RESENJE DIFERENCIJALNE
JEDNACINE U KORACIMA

U ovom radu se konstruiSe pribliZno refenje diferencijal-
ne jednadine:

m 1 u+v
) J oa ) XA, t) _

u=o v=o0 XA Btv
sa sledeéim uslovima:

u
ax(Ou‘t) =0 x>0’ u=0'ooorm
DY

u
Mﬁﬂ=0 t>0, u=0,...,m2
oA

m-1
~ax00,8) t>0
=D
na intervalu [0,T] u koracima. Znajuéi pribli¥no reZenje na in-

tervalu ['_'O,Tl:l » T) <T, konstruiSe se pribli¥no refenje na inter-

valu ETI’T] i ocenjuje gredka.



