Zbornik radova Prirvodno-matematidkog fakulteta-Universitet u Novom Sadu
knjiga 13 (1983)
Review of Research Faculty of Soiencae-Univereity of Nowi Sad,Volume 13(1983)

ON THE NUMBER OF ABELIAN GROUPS OF A GIVEN ORDER AND
THE NUMBER OF PRIME_FACTORS OF AN INTEGER

Aleksandar Ivid
Katedra Matematike RGF-a u Beogradu,
11000 Beograd, Djudina 7, Jugoslavija

ABSTRACT

Let a(n) and w(n) denote the number of non-
-isomorph.ic abelian groups with n elements and the number
of distinct prime factors of n respectively. The distri-~
bution of values of a(n) (which is multiplicative) and

w(n) (which 1s additive) is compared in several ways.

1. INTRODUCTION

Let, as usual, a(n) denote the number of non-
-isomorphic abelian groups with n elements. It is well-
-known (see [j]) that a(n) is a multiplicative function
of n such that a(pk) = P(k) for every prime p and
every natural number k, where P(k) is the number of
unrestricted partitions of k (here and later p,pl,pz,;..
denote primes). Various problems concerning the distribu-
tion of values of a(n) and related multiplicative func-
tions were investigated in [4], [5] and [8]. Thus for
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instance it was proved in [4] that for k > 1 fixed

/

(1.1) A (%) = ) 1=a.x+ 0o(x'/*1ogx)

n<x,a(n)=k
holds uniformly in k(f(x) = O(g(x)) and f£f(x) << g(x)
both mean |[£f(x)| < Cg(x) for x > X, and some constant
C > 0). The non-negative constant dk is called the local
density of a(n), and as shown in (5] it satisfies the
inequality

(1.2) 4, < c,exp(-c,logk-loglogk), (k > 3)

with some C,/Cy > 0. From the product representation

(1.3) J a(mn™® = z(s)z(2s)z(3s)z(48)... (Re s > 1)
n=1

it is seen that the mean value of a(n) equals

t(2)z(3)z(4) ... = 2.29485... . Thus a(n) is small on the

average, although one has (see [7])

(1.4) lim sup loga(n) loglogn/(logn) = (log5)/4,

n-o
and the bound implied by (1.4) is asymptotically attained
for n = (plpz...pk)4, where Py is the i-th prime. It
seemed interesting to compare the values of a(n) and
other common arithmetical functions such as d(n) and
w(n), which represent the number of divisors and the number
of distinct prime factors of n respectively. From the
elementary formulas ’

(1.5) ] d(n) = xlogx + (2y - x +0(x2) (y = 0.577...)
n<x

and .

(1.6) ] w(n) = xloglogx + Bx + O (x/logx), (B > 0)
n<x

it is seen that the average order of d(n) and w(n) is
logn and 1loglogn respectively.
Therefore it is no surprise that
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x + O(xloge-lx),

(1.7) 1
n<x,d(n) >a(n)

K

(1.8) 1 = x + O(x(loglogx) "

n<x,w(n) >a(n)

).

These formulas were proved in [5), and here 0 < e < 1,
while K 1is an arbitrary, but fixed positive number.

2. STATEMENT OF RESULTS

In this note we shall further compare the values of
a(n) and w(n). Possible generalizations to other arithme-
tical functions which behave "similarly"” as a(n) and w(n)
will be omitted to make the exposition clearer; e.g. functions
of class F1 of [ﬁ] can be obviously considered instead_of
a(n) only, and likewise instead of w(n) one may consider
the familiar function Q(n), the number of all prime factors
of n etc. The problem to compare the values of a(n) and
w(n) seems interesting, because a(n) is multiplicative
(a(mn) = a(mla(n) for (m,n) = 1) and w(n) is additive
(w(rmm) = w(m) + w(n) for (m,n) = 1). In treating two multi-
plicative or two additive functions, one can make use of the
fact that the product (or quotient) of two multiplicative
functions is again multiplicative, while the sum (or differen-
ce) of two additive functions is again additive. However,
in our case special methods have to be used which will simul-
taneously deal with a(n) and w{(n). The first result is an
improvement of (1.8), which we formulate as

THEOREM 1. There i8 a constant C>0 such that

(2.1) ) 1 = x + O(xexp(-Clog,xlog,x)) .
n<x,w(n)>a(n)

Here we used the abbreviation logrx = 1og(logr_1x),
1oglx = logx = the natural logarithm of x. At this point it
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may be remarked that the equation a(n) = w(n) holds for
many n, and quantitatively we have, for any fixed A > 0,

(2.2) ) 1 >> xologlogx)A/logx .
nix,w(n)=a(n)

) To see this recall that for an infinity of integers

k > 5 there exists an integer r < k such that P(r) = k.
r

Let m= PPy--Py_ 1Pk where the pi's are distinct primes.

Then w(m) = k = P{(r) = a(m), hence for k fixed
k-2
(2.3) ) 1> § 1> x(loglogx) /logx,
nzx,w(n)=a(n) m<x

by a classical result of E. Landau (see p. 168 of [6]) con-
cerning the number of n not exceeding x for which

w{n) = k. Now (2.2) follows from (2.3), since the values of
the partition function tend guickly to infinity because

2.4)  P(k) = (1 + o(1)) (430 lexp(n(2k/3?), (k' + =)

by a classical result of G.H. Hardy and S. Ramanujan ([9],
P. 240).

The next result shows that the egquation w{n) = ra(n)
has many solutions for any real number r'> 0. The result is

THEOREM 2. Every real number r > 0 1is the limit
point of the sequence w(n)/a(n).

Finally we present an asymptotic formula for a sum
involving the functions w®@(n) and a(n). This is

THEOREM 3. There i8 a constant A > 0 such that

2
) = Axloglogx + O(x) .

w(n) -~ loglogn
(2.5) nzx( Y

As a corollary it follows that for almost all n
we have

(2.6) [w(n) - loglogn| < a(n)(loglogn)1/2+6
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for any 0 < § < 1/2, To see this, let F(§,x) denote the
number of n < x for which (2.6) fails to hold. Then, using
(2.5), we obtain

2
w{n) - loglogn -1-24
F(8,x) < an( =03 ) (loglogn) <<
2 .
1/2+e | 5 (m(n) ;hl‘?glogn) (1oglogx)'1'25 << x(loglogx) 26’

v/x<n<x

since loglogn = loglogx + O(1l) for /X < n < x. The last
expression above is o(x) for &8 >0 as x + «, which
justifies the claim that (2.6) holds for "almost all” n.
Theorem 3 could be generalized by replacing a(n) by ak(n)
for any fixed integer k > 1, in which case the constant A
in (2.5) would depend on k.

3. PROOFS OF THE THEOREMS

To prove (2.1) let S(x) denote the number of
n < x for which w(n) < a{n). Write

(3.1) S(x) = 1=8, +8
n<x,w(n)<a(n)

say, where in S1 we sum over relevant n for which

a(n) < %logzx, while in § we sum over relevant n for

2
which a(n) > %logzx. Using a result of P. Erdds and
J.-L. Nicolas [?] on the distribution of values of w{(n)

we have

(3.2) s, < i 1 << xlog °x
n<x,w(n)<(log,x)/3

for some 0 < c < 1 (the exact value of c¢ is unimportant

here). To bound §, we use (1.1}, (1.2) and (1.4) to obtain

1/2

(3.3) S, < (dkx + O(x logx))

< )
2 (log,x) /3<k<exp (21ogx/log, x
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<< x ) exp (-c,logklog,k) + 0(x1/2+€)

k> (log,x) /3
<< xexp(-c3log3xlog4x).
Combining (3.1), (3.2) and (3.3) it follows that

1 =([x] - 8S(x) =
n<x,w(n)>a(n)

x + o(xexp(—Clog3xlog4x)),

as asserted.

For the proof of Theorem 2 we may consider r > O
only, sincde for n. =(plpz...pk)2 we have

lim w(n)/a(n) = lim k27k = .

ko ko

Suppose then that r > 0 and 0 < e < r/2 are
given. Using (2.4) it is seen that we may find an integer
u > 1 such that

(3.4) (r - e)P™u) > m

for m > m,. Further for m > m  there exists an integer
k = k(m,r,e) such that

k- 1< (r-epP™u <k,

and in view of (3.4) k > m. We must have k < rP™(u),
since otherwise

P™Mu) <k <1+ (r - e)P™) .,

implying eP™(u) < 1, which is impossible for m large
enough. Therefore

(3.5) (r -aP™u) < k < rP™(u),

and taking n_ = (9192‘"Pm)upm+1"'9k-lpk we have
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r-e<kP (u) = wlng/aln ) <r,

which proves Theorem 2, since € may be arbitrarily small
and we make m +> «,

The idea for a result like (2.5) originates with
‘P. Tur&n [10], who proved

(3.6) J (w(n) - loglogn)? << xloglogx

n<x
thus providing a simple proof of the classical result of
Hardy & Ramanujan ([9], pp. 262-275) that almost all integers
have about loglogn distinct prime factors. Therefore our
asymptotic formula (2.5) may be considered as a “"weighted”
analogue of (3.6). Squaring out the expression on the left
of (2.5) it is seen that the proof will follow from

(3.7) ) (lg(;o )2 = Bx(loglogx)2 + C xloglogx + O(x)
n<x

(3.8) ¥ Ei&llgﬂlQSE = Bx(loglogx)2 + szloglogx + 0(x)
n<x a“ (n)
w? (n)

= Bx(loglogx)2 + C3xloglogx + 0(x)
n<x a“{n)

(3.9)

where Cl, C C are suitable constants and

2" 73
S (p-2 -2 Lo
(3.10) B=1{1+ } (P°(3) -P “(G-1))p 3.
P j=2
To prove (3.7)-(3.10) we proceed similarly as in the
proof of (9.9) in [1].

Note that a 2(n)z®™) 15 a multiplicative function
of n, so that for Re s >1 and [z| <1

o«
1 a2m)z*®™y™8 o p (1 4 zp % + 27%zp728 372zp738 5-2zp-‘s+...)
n=1 P

= cz(s)G(s,z),
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where

G(s,z) =T (1L - p s z -8 , 2-2zp-2s + 3-2zp—3s + 5-229—4s+.“)

P

(1 + zp

is absolutely and uniformly convergent for Res > 1/2 and
fz] < C for any fixed C > 0. Using a well-known convolution
result of A. Selberg ([1], Lemma 2.1) it follows that

-2 w(n) _ G(1,z) z~1
(3.11) ana (n)z = —i.,-(-;-)——xlog + R(x,z) ,

where uniformly for |z| < 3/2 we have R(x,z) <<

<< x(logx)Re 272 xlog_l/zx. Differentiating (3.11) with

respect to the complex variable =z we obtain, for |z| < 1,

-2 w(n)-1 G(l,2z) -1
(3.12) } a “Mmlun)z = (—Tl-;—)xlog X +
n<x dz I'(z2
+ —LT—GI(;%ZZ)xlogz—lxdoglogx + O(xlog 1/‘?x) .
2
-2 -2 d G 1, -1
(3.13) ngxa () w(n) (s(n) - 1)z°® = S5 1‘,(z§))::1c>gz x +

1
dz(-I(.—(-;-)z—)-) xlog xloglogx +
+ E-I(Wl-szTl-xlogz—lx(loglogx)z + O(xlog-l/zx)

where we used Cauchy’s inequality for derivatives of analytic
functions to bound ZR(x,z)(k=1,2). Setting z = 1 in
3z

(3.11)-(3.13), adding (3.12) to (3.13) and observing that
G(1,1)

—P—('l-r- = B (as defined by (3.10))., we obtain (3.7)-(3.9) by
partial summation or by using loglogn = loglogx + 0O(1) for
vk <n < x. Finally a calculation shows that A = C, - 2C, +Cy>

> 0, completing the proof of (2.5). In concluding it may be
mentioned that the asymptotic formula (2.5) could be further
sharpened (by introducing new main terms in place of O(x)) by
using the methods developed in Ch. 5 of [1].
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REZIME

0 BROJU ABELOVIH GRUPA DATOG REDA I
BROJU PROSTIH FAKTORA CELOG BROJA

Neka a(n) i w(n) oznadavaju broj neizomorfnih
Abelovih grupa sa n elemenata i broj razli¥itih prostih
faktora od n respektivno.
Jje multiplikativna) 1

na nekoliko na&ina.

Raspodela vrednosti a(n) (koja
win) (koja je aditivna) je uporedjena



