ON A COMMON FIXED POINT IN QUASI-- UNIFORMIZABLE SPACES

Olga Hadžić

Prirodno-matematički fakultet. Institut za matematiku 21000 Novi Sad, ul. dr Ilije Djuričića br.4, Jugoslavija

ABSTRACT

Using a similar method as in [7] we prove in this paper a generalization of Fisher's fixed point theorem in quasi-uniformizable spaces. First, we shall give some difinitions from [5] and [7].

1. Let X be an arbitrary set, $\{d_i | i \in I\}$ be a family of mappings of XxX into \mathbb{R}^+ and $g:I \to I$.

DEFINITION 1. A triplet $(X, \{d_i\}_{i \in I}, g)$ is said to be a quasiuniformizable space if for every $x, y, z \in X$ and $i \in I$ we have:

- (a) $d_{i}(x,y) \ge 0, d_{i}(x,x) = 0,$
- (b) $d_{i}(x,y) = d_{i}(y,x)$,
- (c) $d_{i}(x,y) \le d_{q(i)}(x,z) + d_{q(i)}(z,y)$.

A quasi-uniformizable space $(X,\{d_i\}_{i\in I},g)$ is Hausdorff if the relation $d_i(x,y)=0$, for every iel implies x=y. A Hausdorff quasi-uniformizable space $(X,\{d_i\}_{i\in I},g)$ becomes a Hausdorff topological space if the fundamental system of neighbourhoods of xeX is given by:

$$B(x;\varepsilon,i)=\{y\in X: d_{i}(x,y)<\varepsilon\}.$$

A mapping t: $[0,1]^2+[0,1]$ is called a T-norm if for every a,b,c,de[0,1]:

- 1. t(0,0)=0, t(a,1)=a,
- 2. t(a,b)=t(b,a),

AMS Mathematics subject classification (1980): 47810 Key words and phrases: Common fixed points, quasi-uniformizable spaces, probabilistic locally convex spaces.

3.t(a,b) \geq t(c,d) if a \geq c and b \geq d, 4.t(t(a,b),c)=t(a,t(b,c)).

Now, let X be a vector space. I be an index set, L be a family of distribution functions and for every isI, $F^{1}: X \rightarrow L$.

DEFINITION 2. [5] A triplet $(X, \{F^i\}_{i \in I}, t)$ is called a probabilistic locally convex space if t is a T-norm and for every 1 \in I the following conditions are satisfied $(F_X^i = f^i(x))$:

A.
$$F_x^1(s) = 1$$
, for every $s > 0 \iff x=0$,

B.
$$F_x^i(0)=0$$
, for every $x \in X$,

C.
$$F_{rx}^{i}(s)=F_{x}^{i}(\frac{s}{|r|})$$
, for every $x \in X, s>0$ and $r \in K \setminus \{0\}$ (K

is the scalar field).

D.F $_{x+y}^1(s_1+s_2) \ge t(F_x^1(s_1), F_y^1(s_2))$, for every x,yeX and every $s_1, s_2 > 0$.

In X the (ϵ,λ) -topology is introduced in the following way:

The fundamental system of neighbourhoods of xeX is given by the family $u=\{v_{\mathbf{x}}^{\mathbf{i}}(\varepsilon,\lambda): i\in I, \varepsilon>0, \lambda\in(0,1)\}$ where $v_{\mathbf{x}}^{\mathbf{i}}(\varepsilon,\lambda)=\{y\in X: F_{\mathbf{x}=\mathbf{v}}^{\mathbf{i}}(\varepsilon)>1-\lambda\}$.

In [7] it is shown that a probabilistic locally convex space $(x,\{F^i\}_{i\in I},t)$, such that $\sup_{a<1}t(a,a)=1$, is a quasi-uniformizable space in which the family $\{d_i\}_{i\in I}$, is defined in the following way:

For
$$j=(i,\lambda) \in I'$$
, where $i \in I$ and $\lambda \in (0,1)$, $d_j(x,y) = \sup \{s : F_{x-y}^i(s) \le 1-\lambda \}$.

The construction of the mapping g:I \leq I'is as follows. From sup t(a,a)=1 it follows that for every $\lambda \in (0,1)$

 $\mathbf{a}^{<1}$ the exists $\delta_{\lambda} \in (0,1)$ so that for every $\delta \leq \delta_{\lambda}, t(1-\delta,1-\delta) > 1-\frac{\lambda}{2}$.

Let $\bar{g}(\lambda) = \sup\{\delta_{\lambda} : \text{ where } \delta_{\lambda} \text{ is defined above }\}$.

Then $g(j)=(i,\overline{g}(\lambda))$, for $j=(i,\lambda)$.

2. Now, we shall give a generalization of a common fixed point theorem from [1] in quasi-uniformizable spaces. This theorem is also a generalization of Theorem 1 from [4].

THEOREM Let $(X, \{d_i\}_{i \in I}, g)$ be a sequentially complete Hausdorff quasi-uniformisable space, $f: I \to I$, S and T be continuous mappings from X into $X, A: X \to SX \cap TX$ be continuous so that A commutes with S and T and the following conditions are satisfied:

$$d_{i}(Ax,Ay) \leq q_{i}(d_{f(i)}(Sx,Ty))d_{f(i)}(Sx,Ty)$$

for every i €I and every x,y €X.

2. There exists $x_0 \in X$ so that for every i f I:

$$\sup_{j \in Q(i,f)} d_{j}(Ax_{0},Ax_{p}) = K_{i} \in \mathbb{R}^{+}$$

where $O(i,f) = \{i,f(i),f^2(i),...\}$ and $\{x_p\}_{p \in N}$ is defined by: $Sx_{2n-1} = Ax_{2n-2}$, $Ax_{2n-1} = Tx_{2n}$ (n \in N).

Then there exists $z \in X$ so that Az=Sz=Tz. If, in addition, for every $i \in I$:

(1) sup
$$d_j(A^3x_1,A^2x_0)=M_i \in \mathbb{R}^+$$

 $j \in O(1,f)$

Proof:Similarly as in $\begin{bmatrix} 4 \end{bmatrix}$ it is easy to prove that for every $k \in \mathbb{N}$ and $i \in I$:

$$d_{\mathbf{1}}(\mathbf{Ax}_{2k}, \mathbf{Ax}_{2k-1}) \leq \bigcap_{s=0}^{2k-2} q_{\mathbf{f}^{s}(\mathbf{1})}(\mathbf{K}_{\mathbf{1}})\mathbf{K}_{\mathbf{1}}$$

$$d_{\mathbf{1}}(\mathbf{Ax}_{2k+1}, \mathbf{Ax}_{2k}) \leq \bigcap_{s=0}^{2k-1} q_{\mathbf{f}^{s}(\mathbf{1})}(\mathbf{K}_{\mathbf{1}})\mathbf{K}_{\mathbf{1}}.$$

Since $\overline{\lim_{n\to\infty}} g_{\mathbf{f}^{\mathbf{n}}(\mathbf{i})} (\mathbf{K}_{\mathbf{i}}) \leq Q_{\mathbf{i}} < 1$, for every $\mathbf{i} \in \mathbf{I}$, it follows that there exists $\mathbf{n}_{\mathbf{i}} \in \mathbf{N}$ so that $\mathbf{q}_{\mathbf{n}} (\mathbf{K}_{\mathbf{i}}) \leq Q_{\mathbf{i}}$, for every $\mathbf{n} \geq \mathbf{n}_{\mathbf{i}}$ which implies that:

$$d_{i}(Ax_{n},Ax_{n-1}) \leq S_{i}Q_{i}^{n}$$
, for every $i \in I$, $n \in N$.

Let us prove that $\{Ax_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence which means that for every $i \in I$ and every $\epsilon > 0$ there exists $n(i,\epsilon) \in \mathbb{N}$ so that $d_i(Ax_n,Ax_{n+p}) < \epsilon$, for every $n \ge n(i,\epsilon)$, $p \in \mathbb{N}$. Let $m \ge k$, $i \in I$. From the definition of the sequence $\{x_n\}_{n \in \mathbb{N}}$ and condition 1 of the Theorem it follows that:

$$d_{1}(Ax_{2k},Ax_{2m+1}) \leq q_{1}(d_{f(1)}(Ax_{2m},Ax_{2k-1})) \cdots q_{f^{2k-1}(1)}$$

$$(d_{f^{2k}(1)}(Ax_0,Ax_{2m+1-2k}))d_{f^{2k}(1)}(Ax_0,Ax_{2m+1-2k}))$$

and similarly for 2k>2m+1:

$$d_{i}^{(Ax_{2k},Ax_{2m+1}) \leq q_{i}^{(d_{f(i)}(Ax_{2m},Ax_{2k-1})) \dots q_{f^{2m}(i)}}}$$

$$(d_{f^{2m+1}(1)}^{(Ax_0,Ax_{2k-2m-1}))}d_{f^{2m+1}(1)}^{(Ax_0,Ax_{2k-2m-1})}.$$

Using condition 2 and the property of q_1 that $q_1(t) \le 1$ for every t $\in {\rm I\!R}^+$ we obtain that for every i $\in {\rm I\!R}$:

$$d_{1}(Ax_{2k'}Ax_{2m+1}) \leq q_{1}(K_{1}) \dots q_{f^{2k-1}(1)}(K_{1})K_{1}(m \geq k)$$

and:

$$d_1(Ax_{2k},Ax_{2m+1}) \le q_1(K_1) \dots q_{f^{2m}(1)}(K_1)K_1(2k > 2m+1).$$

This implies that :

$$d_{\mathbf{1}}(\mathbf{Ax}_{\mathbf{n}},\mathbf{Ax}_{\mathbf{n+p}}) \leq q_{\mathbf{1}}(\mathbf{K}_{\mathbf{i}}) \dots q_{\mathbf{f}^{\mathbf{n-1}}(\mathbf{i})}(\mathbf{K}_{\mathbf{i}}) \mathbf{K}_{\mathbf{i}}$$

for every $i \in I$ and for n=2k,p=2m+1 or n=2k+1, p=2m+1. Let p=2m and n=2k or n=2k+1. Then:

$$d_{1}(Ax_{n},Ax_{n+p}) \le d_{q(1)}(Ax_{n},Ax_{n+1}) + d_{q(1)}(Ax_{n+1},Ax_{n+1+p-1}) \le d_{q(1)}(Ax_{n},Ax_{n+p}) \le d_{q(1)}(Ax_{n},Ax_{n+p}) \le d_{q(1)}(Ax_{n},Ax_{n+p}) \le d_{q(1)}(Ax_{n},Ax_{n+p}) \le d_{q(1)}(Ax_{n},Ax_{n+p}) \le d_{q(1)}(Ax_{n},Ax_{n+p}) + d_{q(1)}(Ax_{n},Ax_{n+p}) \le d_{q(1)}(Ax_{n},Ax_{n+p}) \le d_{q(1)}(Ax_{n},Ax_{n+p}) + d_{q(1)}(Ax_{n},Ax_{n+p}) \le d_{q(1)}(Ax_{n},Ax_{n+p}) + d_{q(1)}(Ax_{n},Ax_{n+p}) \le d_{q(1)}(Ax_{n},Ax_{n+p}) + d_{q(1)}(Ax_{n},Ax_{n+p}) \le d_{q(1)}(Ax_{n},Ax_{n+p}) + d_{q(1)}(Ax_{n},Ax_{n+p}) + d_{q(1)}(Ax_{n},Ax_{n+p}) + d_{q(1)}(Ax_{n},Ax_{n+p}) \le d_{q(1)}(Ax_{n},Ax_{n+p}) + d_{q(1)}(Ax_{n},Ax_{n+p})$$

$$\stackrel{\text{n-l}}{\underset{s=0}{\leq}} q_{f^{s}(g(i))}^{(K_{g(i)})K_{g(i)}} + \prod_{s=0}^{n} q_{f^{s}(g(i))}^{(K_{g(i)})K_{g(i$$

Since $\overline{\lim}_{S\to\infty}$ $q_{(g(i))}(K_{g(i)})^{<1}$, for every $i \in I$ it follows that $\{Ax_n\}_{n \in N}$ is a Cauchy sequence. Let $z=\lim_{n\to\infty} Ax_n$. As in [4] it follows that Az=Sz=Tz.

Further (1) implies that Az is a common fixed point for A,S and T. Indeed, from $d_j(A^2z,Az)=\lim_{n\to\infty}d_j(A^2Ax_{2n+1},AAx_{2n})$ for

every $j \in O(i,f)$. using condition 1.and (1) we conclude that $d_{i}(A^{2}z,Az) \leq M_{i}$, for every $j \in O(i,f)$, since for every $n \in N$:

$$d_{j}(A^{3}x_{2n+1},A^{2}x_{2n}) \leq d_{f^{2n}(j)}(A^{3}x_{1},A^{2}x_{0}) \leq M_{i}$$
, for every $i \in I$,

where $j \in O(i,f)$.

So we have that:

$$d_{1}(A^{2}z,Az) \leq q_{1}(M_{1})q_{f(1)}(M_{1})...q_{f^{n}(1)}(M_{1})M_{1}$$
 for every $i \in I$ which implies that $d_{1}(A^{2}z,Az)=0$, for every $i \in I$, This implies that Az is a common fixed point for A,S and T.

Let us prove that $M = \{Az\}$. Suppose that w=Aw=Tw=Sw and for every i G I :

$$\sup_{j \in O(i,f)} d_j(Az,w) \leq R_i.$$

Then:

$$d_{1}(Az,w) = d_{1}(A(Az),Aw) \le q_{1}(d_{f(1)}(S(Az),Tw))d_{f(1)}(S(Az),Tw) =$$

$$= q_{1}(d_{f(1)}(Az,w))d_{f(1)}(Az,w) \le ... \le q_{1}(d_{f(1)}(Az,w))... \times$$

$$q_{f^{n}(1)}(d_{f^{n+1}(1)}(Az,w))d_{f^{n+1}(1)}(Az,w).$$

From this it follows that $d_j(Az,w) \le R_i$ $(j \in O(i,f))$ and so $d_i(Az,w) \le q_i(R_i)q_{f(i)}(R_i) \dots q_{f^{n}(i)}(R_i)R_i$.

Since $\lim_{n\to\infty} q_{\mathbf{f}^n(\mathbf{i})}(R) < 1$ it follows that $d_{\mathbf{i}}(Az, \mathbf{w}) = 0$,

for every $i \in I$ and so Az=w.

Remark: If there exists u ∈ X so that for every i ∈ I :

$$d_{j}(Az,u) \leq T_{i}$$
, for every $j \in O(i,f)$

and g:O(i,f) + O(i,f), for every $i \in I$, then there exists one and only one common fixed point $w \in X$ for A,S and T so that for every $i \notin I$:

 $d_{j}(w,u) \le T'_{1}$, for every $j \in O(1,f)$.

Namely, then we have :

 $d_j^{(Az,w)} \leq d_{g(i)}^{(Az,u)} + d_{g(i)}^{(u,w)} \leq T_i + T_i'$, for every $i \in I$ and every $j \in O(i,f)$ and in the Theorem is proved that Az=w.

COROLLARY 1. Let $(X, \{d_i\}_{i \in I})$ be a sequentially complete Hausdorff uniformizable space, $f:I \to I,S$ and T be continuous mappings from X into $X,A:X \to SXOTX$ be continuous so that condition 1. of the Theorem is satisfied and there exists $X \to SXOTX$ and $X \to SXOTX$ so that $SX \to SXOTX$ and for every $X \to SXOTX$ be continuous so

$$\sup_{n \in \mathbb{N}} d_{f^{n}(1)}(Ax_{0}, \lambda x_{1}) = K_{1}, K_{1} \in \mathbb{R}^{+}$$

Then there exists $z \in X$ so that Az=Sz=Tz. If, in addition, for every $i \in I$: $\sup_{n \in \mathbb{N}} d_{i}$ $(A^3x_1, A^2x_0)=M_i$, $M_i \in \mathbb{R}^+$ then Az is a common fixed point for A,S and Az. Further, if for every $i \in I$:

(2)
$$\sup_{n \in \mathbb{N}} d_{(i)} (A^2 x_1, A^2 x_0) = R_i, R_i \in \mathbb{R}^+$$

then there exists one and only one element wex such that

(3)
$$\sup_{n \in \mathbb{N}} d_{f^{n}(1)} (w, A^{2}x_{o}) = N_{1}, N_{1} \in \mathbb{R}^{+}, for every i \in I$$
 and $Aw = Sw = Tw = w$.

Proof: Every uniformizable space $(X, \{d_i\}_{i \in I})$ is a quasiuniformizable space, where g(i)=i, for every $i \in I$. So we have that:

$$d_{i}(Ax_{p},Ax_{0}) \leq d_{i}(Ax_{p},Ax_{p-1}) + d_{i}(Ax_{p-1},Ax_{p-2}) + \dots + d_{i}(Ax_{1},Ax_{0})$$
(for every $i \in I, p \geq 2$). Since for every $j \in O(1,f)$

$$d_{j}(Ax_{p},Ax_{p-1}) \le \int_{s=0}^{p-2} q_{f^{s}(j)}(K_{1})K_{1}, \text{ for every } i \in I, it$$

follows that :

$$d_{j}(Ax_{p},Ax_{0}) \leq \sum_{r=1}^{p} (\sum_{s=0}^{r-2} q_{f^{s}(j)}(K_{j}))K_{j}.$$

Since $\overline{\lim}_{n \in \mathbb{N}} q_{\mathbf{f}^{n}(i)}$ (K_i)<1 there exists $n_{i} \in \mathbb{N}$ so that:

$$q_{f^{n}(1)}(K_{1}) \leq Q_{1} < 1$$
, for every $n \geq n_{1}$

and if $j \in \{f^{S}(i) | s \ge n_i\}$ then:

T and that (3) is satisfied.

$$d_{\mathbf{j}}(\mathbf{A}\mathbf{x}_{\mathbf{p}},\mathbf{A}\mathbf{x}_{\mathbf{o}}) \leq \sum_{r=1}^{\infty} Q_{\mathbf{i}}^{r-1} K_{\mathbf{i}}, \text{ for every } \mathbf{p} \geq 2.$$

Since $Q_1 < 1$ it is easy to see that condition 2.of the Theorem is satisfied. So, there exists $z \in X$ such that Az is a common fixed point for A,S and T. Prom (2) it follows that $d_j(Az,A^2x_0) \le R_i$, for every $i \in I$ and every $j \in O(i,f)$ and using the Remark we conclude that there exists one and only one

Using the Theorem we obtain the following corollory which is a generalization of the Theorem 1 from [2] .

element we X such that w is a common fixed point for A, S and

COROLLARY 2 Let $(X, \{f^i\}_{i \in I}, t)$ be a sequentially complete Hausdorff probabilistic locally convex space where

(i) For every icI, there exists $q_i \colon \mathbb{R}^+ \to [0,1]$, which is a nondecreasing function continuous from the right such that for every icI and every $s \in \mathbb{R}^+$

 $\begin{array}{ll} \overline{\lim} & q & (s)<1 \ \ and \ \ for \ \ every \ \ i \in I, every \ \ x,y \in X \\ \text{and every} & s \in \mathbb{R}^+ : \end{array}$

$$F_{Ax-Ay}^{i}(q_{i}(s)s) \ge F_{Sx-Ty}^{f(i)}(s)$$

(11) There exists $x \in X$ so that for every $i \in I$: $\frac{1}{\lim_{S \to \infty}} F^{j}_{Ax_{0}-Ax_{p}}(s)=1, \text{ uniformly in } j \in O(i,f) \text{ and } p \in N, \\
\text{where } \{x_{p}\}_{p \in N} \text{ is defined by } Sx_{2n-1}=Ax_{2n-2}, Tx_{2n}=Ax_{2n-1}, Tx_{2n}=$

Then there exists $z \in X$ so that Az = Sz = Tz. If, in addition, for every $i \in I$, $\lim_{S \to \infty} F^j_{A^3 x_1 - A^2 x_0}$ (s)=1, uniformly in $j \notin O(i,f)$ then Az is a common fixed point for A, S and T. Further, let $M = \{w : w \in X, w = Aw = Sw = Tw, for every <math>i \in I$, $\lim_{S \to \infty} F^j_{Az - w}(s) = 1$, uniformly in $j \in O(i,f)$. Then $M = \{Az\}$.

Proof: As in [7] it follows that (i) and (ii) implies 1 and 2 from the Theorem and that (1) is satisfied since for every if I, $\lim_{s\to\infty} F_A^j x_1^{-A^2} x_0^{(s)=1}$, uniformly in jeO(i,f), where $d_j(x,y)=\sup\{s:F_{X-y}^1(s)\le 1-\alpha\}$, for every $j=(i,\alpha)\in I'$, if I and $\alpha\in(0,1)$. Since, weM' implies weM, where M is from the Theorem, it follows M'={Az}.

Remark: If AX is a probabilistic bounded subset of $SX \cap TX$, (i) from Corollary 2 is satisfied and for every is I there exists h(i) \in I such that:

 $F_{\mathbf{x}}^{\mathbf{f}^{\mathbf{h}}(\mathbf{i})}(\mathbf{s}) \geq F_{\mathbf{x}}^{\mathbf{h}(\mathbf{i})}(\mathbf{s})$, for every $\mathbf{s} > 0$, every $\mathbf{x} \in X$ and

every neN it is easy to see that there exists one and only one element $x \in X$ such that Ax is the unique common fixed point for A,S and T.

REFERENCES

- [1] B.Fisher, Mappings with a Common Fixed Point, Math. Sem. Notes, 7,1979, 81-84
- [2] O.Hadžić, A fixed point theorem in probabilistic locally convex spaces,
 Revue Roum. Math. Pure Appl. 23,5(1978), 735-744
- [3] O. Hadžić, On Common Fixed Points in Probabilistic Metric Spaces, Math. Sem. Notes, 10(1982), 31-39
- [4] O.Hadžić, On Common Fixed Points in Uniformizable Spaces, Anal. Num. Appr., 12, 1(1983), 45-54
- [5] V.I.Istratescu, Introducere in teoria spatiilor metrice probabiliste cu aplicatii, Editura Technica, Bucuresti, 1974
- [6] Duong Trong Nhan, Pair of nonlinear contraction mappings and common fixed points, Studia Univ. Babes-Bolyai, Mathematica, XXVI, 1, 1981.
 34-51
- [7] Do Hong Tan, On the contraction principle in uniformizable spaces,
 Acta Mathematica Vietnamica, Tom 5, No. 1980, 88-99

Received by the editors March 5, 1984.

REZIME

O ZAJEDNIČKOJ NEPOKRETNOJ TAČKI U KVAZI-UNIFORMIZABILNIM PROSTORIMA

U ovom radu su uopšteni rezultati rada [4].