Zbornik radova Prirodno-matematičkog fakulteta-Univerzitet u Novom Sadu knjiga 13 (1983)

Review of Research Faculty of Science-University of Novi Sad, Volume 13(1983)

ON BIPARTITE SCORE SETS

Vojislav Petrović

Prirodno-matematički fakultet. Institut za matematiku 21000 Novi Sad, ul. dr Ilije Djuričića br.4, Jugoslavija

ABSTRACT

A necessary and sufficient condition for sets of non-negative integers $A = \{a\}$ and $B = \{b_1, b_2, \dots, b_n\}$, $0 \le b_1 < b_2 < \dots < b_n$ to be the score sets of a bipartite tournament is given.

A bipartite tournament is a complete asymmetric bipartite digraph. The number of edges oriented from a vertex is called a score. Two sequences $a_1 \leq a_2 \leq \ldots \leq a_k$ and $b_1 \leq b_2 \leq \ldots \leq \ldots \leq b_k$, corresponding to the scores of the bipartite sets of a bipartite tournament, are called a score sequence. The sets $A = \{a_1 \mid 1 \leq i \leq k\}$ and $F = \{b_1 \mid 1 \leq i \leq k\}$ of elements of the score sequences, are called score sets.

Throughout the paper we shall denote by $A = \{a_1, a_2, \dots, a_m\}$ and $B = \{b_1, b_2, \dots, b_n\}$ sets of non-negative integers such that $a_1 < a_2 < \dots < a_m$ and $b_1 < b_2 < \dots < b_n$ where a_1 and b_1 are not both zero.

At the Fourth International Conference on Theory and Applications of Graphs in Kalamazoo 1981, K.B.Reid raised

AMS Mathematics subject classification (1980): 05C20 Key words and phrases: Digraph, bipartite tournament, score set.

the problem of determining the score sets of bipartite tournaments. K.Wayland [4] found a necessary and sufficient condition for the existence of a bipartite tournament with bipartition (X,Y) and the score sets A and B, if $|X| > b_n$.

Since some bipartite tournaments exist only for $|X| = b_{n'}$ it is very unlikely that a sensible necessary sufficient condition can be given for general case.

We present, using a constructive method, a necessary and sufficient condition for the existence of a bipartite tournament with the score sets $A = \{a\}$ and $B = \{b_1, b_2, \ldots, b_n\}$.

THEOREM. The sets of non-negative integers $A = \{a\}$ and $B = \{b_1, b_2, \ldots, b_n\}$ are the score sets of some bipartite tournament if and only if one of the following conditions is satisfied:

(a)
$$b_1+b_2+...+b_n = (n-a-1)b_n$$
;

(b)
$$b_1 + b_2 + ... + b_n > (n-a-1)(b_n+1)$$
;

(c)
$$b_1+b_2+...+b_n = (n-a-1)b_n+d$$
, $1 \le d \le n-a-1$

and there exist positive integers $\gamma_1,\gamma_2,\ldots,\gamma_{n-1}$ such that

$$ab_n = \gamma_1 (b_n - b_1) + \gamma_2 (b_n - b_2) + \dots + \gamma_{n-1} (b_n - b_{n-1})$$
.

P r o o f. Necessity. Firstly we prove the inequality

(1)
$$b_1 + b_2 + ... + b_{n-1} \ge (n-a-1)b_n$$
.

Let T be a bipartite tournament whose bipartite sets X and Y have the score sequences

$$\underbrace{(a,a,\ldots,a)}_{\alpha} \text{ and } \underbrace{(b_1,\ldots,b_1}_{\beta_1},b_2,\ldots,b_2,\ldots,b_n,\ldots,b_n)$$

respectively, where $\alpha \ge 1$ and $\beta_1 \ge 1$, i=1,...,n. Denote by ψ_{i1} , $\psi_{i2},...,\psi_{i}$, i=1,...,n vertices in Y having the score b_i and

by $X_{i1}, X_{i2}, \ldots, X_{i\beta_i}$ their insets, i.e. $X_{ij} = \{x \mid x \leftarrow y_{ij}\}$. Since every vertex of X has a score a, the sets X_{ij} , $i=1,\ldots,n$, $j=1,\ldots,\beta_i$ are a covering of X such that every vertex of X is covered by precisely a insets. Thus,

$$|x_{i1}| = |x_{i2}| = \dots = |x_{i\beta_i}| = |x| - b_i = \alpha - b_i, \quad i=1,\dots,n$$

and

$$\mathbf{a}\alpha' = \sum_{i=1}^{n} \sum_{j=1}^{\beta_i} |\mathbf{x}_{ij}| = \sum_{j=1}^{n} \beta_i (\alpha - b_i)$$

hold and we have

(2)
$$\alpha = \frac{\beta_1 b_1 + \beta_2 b_2 + \ldots + \beta_n b_n}{\beta_1 + \beta_2 + \ldots + \beta_n - a}.$$

As $a \ge b_n$, we get from (2)

(3)
$$\beta_1 b_1 + \beta_2 b_2 + \dots + \beta_{n-1} b_{n-1} \ge (\beta_1 + \beta_2 + \dots + \beta_{n-1} - a) b_n$$
.

From $\beta_1 \ge 1$, $i=1,\ldots,n-1$ and $0 \le b_1 < b_2 < \ldots < b_n$ (1) follows.

Now we prove that the equality

(4)
$$b_1 + b_2 + \dots + b_{n-1} = (n-a-1)b_n + d$$
, $1 \le d \le n-a-1$

implies $ab_n = \gamma_1(b_n - b_1) + \gamma_2(b_n - b_2) + \dots + \gamma_{n-1}(b_n - b_{n-1})$ for some positive integers γ_i , $i=1,\dots,n-1$.

Let y_1, y_2, \ldots, y_n be vertices in y with the scores b_1 , b_2, \ldots, b_n and X_1, X_2, \ldots, X_n their insets. Denote by s_0 the total number of vertices in all other insets and by s_i the cardinality of X_i , $i=1,\ldots,n$. Then the equalities

$$b_i = \alpha - s_i$$
, $i=1,...,n$
 $s_1 + s_2 + ... + s_n + s_0 = a\alpha$

hold and imply

(5)
$$b_i = (s_1 + ... + s_{i-1} + (1-a)s_i + s_{i+1} + ... + s_n + s_0)/a, i=1,...,n.$$

Substituting (5) in (4) we get

$$(n-a)s_n + s_0 = d$$

and, since $s_n \ge 0$ and $1 \le d \le n-a-1$ (in particular a < n), we get

$$s_n = 0$$

i.e.

$$b_n = \alpha$$
.

Hence (3) becomes an equality and hence

$$ab_n = \beta_1(b_n-b_1) + \beta_2(b_n-b_2) + ... + \beta_{n-1}(b_n-b_{n-1})$$

where $\beta_i \ge 1$, $i=1,\ldots,n-1$.

Setting $\gamma_i = \beta_i$, i=1,...,n, we prove the statement.

Sufficiency. The structure of a bipartite tournament with the given bipartite sets X and Y is determined by the outsets of all the vertices of Y. We shall just construct these outsets.

According to the theorem we have to consider three cases.

(a)
$$b_1 + b_2 + \dots + b_{n-1} = (n-a-1)b_n$$
.

Let T be the bipartite tournament with the bipartite sets X = $\{1,2,\ldots,b_n\}$ and Y = $\{y_1,y_2,\ldots,y_n\}$ and the dominance structure

$$y_i \rightarrow \{b_1 + b_2 + \dots + b_{i-1} + 1, \dots, b_1 + b_2 + \dots + b_{i-1} + b_i\}, i=1,\dots,n.$$

Summarizing is modulo b_n . Clearly the score of y_i , i=1,... ..., n is $s(y_i) = b_i$. From the construction and the fact that

$$\sum_{i=1}^{n} s(y_i) = \sum_{i=1}^{n} b_i = (n-a)b_n,$$

it follows that every vertex of X is dominated by precisely (n-a) vertices of Y. As |Y| = n, the scores of all the vertices of X are a, and T is required tournament.

(b)
$$b_1 + b_2 + ... + b_{n-1} = (n-a-1)(b_n+1) + d, d \ge 1$$
.

Set $X = \{1, 2, ..., b_n + 1\}$ and $Y = \{y_1, y_2, ..., y_{n-1}, z_1, z_2, ..., z_d\}$, and construct the bipartite tournament T with the bipartite sets X and Y as follows:

$$y_i + \{b_1 + b_2 + \dots + b_{i-1} + 1, \dots, b_1 + b_2 + \dots + b_{i-1} + b_i\}$$

for $i=1,\ldots,n-1$ and

$$z_j + \{b_1 + \dots + b_{n-1} + (j-1)b_n + 1, \dots, b_1 + \dots + b_{n-1} + jb_n\}$$

for j=1,...,d. Summarizing is modulo b_n+1 .

Now
$$s(y_i) = b_i$$
, $i=1,...,n-1$ and $s(z_j) = b_n$ $j=1,...,d$.

The equality

$$\sum_{i=1}^{n-1} s(y_i) + \sum_{j=1}^{d} s(z_j) = \sum_{i=1}^{n-1} b_i + db_n = (n-a-1+d)(b_n+1)$$

implies that every vertex x of X is dominated by exactly n-a-1+d vertices of Y and, therefore, has the score

$$s(x) = |Y| - (n-a-1+d)$$

= $(n-1+d) - (n-a-1+d) = a$

This proves the construction.

(c)
$$b_1 + b_2 + ... + b_{n-1} = (n-a-1)b_n + d, \quad 1 \le d \le n-a-1$$

and,

$$ab_n = \gamma_1 (b_n - b_1) + \gamma_2 (b_n - b_2) + \dots + \gamma_{n-1} (b_n - b_{n-1}), \gamma_1 \ge 1,$$

 $i=1,\dots,n-1.$

In this case let $X = \{1, 2, \dots, b_n\}$,

$$Y = \{Y_n, \dots, Y_{1\gamma_1}, Y_{21}, \dots, Y_{2\gamma_2}, \dots, Y_{n-1,1}, \dots, Y_{n-1,\gamma_{n-1}}, Y_n\}$$

and

$$y_{ij} + \{\gamma_1b_1 + \dots + \gamma_{i-1}b_{i-1} + (j-1)b_i + 1, \dots, \gamma_1b_1 + \dots + \gamma_{i-1}b_{i-1} + jb_i\}$$

for
$$i=1,\ldots,n-1$$
, $j=1,\ldots,\gamma_{i}$

$$y_n + \{y_1b_1 + \dots + y_{n-1}b_{n-1} + 1, \dots, y_1b_1 + \dots + y_{n-1}b_{n-1} + b_n\}$$

Summarizing is modulo b_n . Similarly as, in (a) and (b), we obtain that $s(y_{ij}) = b_i$, i=1,...,n-1, $s(y_n) = b_n$ and s(x) = a for every $x \in X$.

This proves the theorem.

CORROLARY. (Wayland [4]). Any finite nonempty set of non-negative integers, except {0}, may be the union of the score sets of some bipartite tournament.

Proof. Let a_1, a_2, \ldots, a_n be a set of nonnegative inregers such that $0 \le a_1 < a_2 < \ldots < a_n$. Set $A = a_n$, and $B = \{a_1, a_2, \ldots, a_{n-1}\}$. Since $a_i \ge i-1$, $i=1,\ldots,n$, particularly $a_n \ge n-1$, the following inequality

$$a_1 + a_2 + ... + a_{n-2} > ((n-1) - a_n - 1)(a_{n-1} + 1)$$

holds.

According to the case (b), there exists a bipartite tournament with bipartite sets X and Y whose score sets are $\{a_n\}$ and $\{a_1,a_2,\ldots,a_{n-1}\}$, respectively.

REFERENCES

- [1] L.W.Beineke, J.W.Moon, On Bipartite Tournaments and Scores, The Theory and Applications of Graphs, Fourth International Conference Western Michigan University, Kalamazoo.pp.55-71, John Wiley, 1981.
- [2] J.W.Moon, On the score sequence of an n-partite tournament. Canadian Mathematical Bulletin, Vol.5, No. 1 Jan. 1962, pp. 51-58.
- [3] C. Thomassen, private communication, 1984.
- [4] K. Wayland, Bipartite score sets, Canadian Mathematical Bulletin, Vol. 26, No. 3, 1983, pp. 273-279.

Received by the editors May 15, 1984.

REZIME

O SKUPOVIMA SKOROVA BIPARTITNOG TURNIRA

U ovom radu daje se potreban i dovoljan uslov za skupove nenegativnih celih brojeva, $A = \{a\}$ i $B = \{b_1, b_2, \ldots, b_n\}$ $0 \le b_1 < b_2 < \ldots < b_n$, da budu skupovi skorova nekog bipartitnog turnira.